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Abstract. In this paper, we introduced new notions namely h-topological groups and h-irresolute topo-
logical groups by using h-open sets [given by F. Abbas]. Some of the fundamental characteristics of these
newly introduced spaces have been thoroughly studied. It has been observed that the notion of h-irresolute
topological group is independent of the notion of topological group. Additionally, h-regular and h-Lindelof
spaces are presented and used to further explore h-topological groups and h-irresolute topological groups
respectively.
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1. Introduction

A topological group is defined as a group with a topology such that binary operations such as
multiplication and inverse mapping are continuous. For more information regarding topological
groups, one can refer [6,7, 10]. In [3], the notions of S-topological groups and s-topological groups
have been explored. Recently, Sharma et.al. [9] introduced a new class of topological vector space
namely h-irresolute topological vector spaces. In this study, we generalised h-topological group via
h-open sets. Another new notion called as h-irresolute topological groups have also been introduced.

2. Preliminaries

This section deals with some basic definitions that will used in the subsequent sections. X and Y
will represent two topological spaces with topologies τ and σ respectively, on which no separation
axioms are imposed. Int(P ) and Cl(P ) are the notations for the interior and closure of a subset P of
topological spaceX . A subset P of a topological spaceX is said to be h-open if P ⊆ Int(P ∪ V ), where

DOI: 10.28924/APJM/11-40

©2024 Asia Pacific Journal of Mathematics

1

https://doi.org/10.28924/APJM/11-40


Asia Pac. J. Math. 2024 11:40 2 of 12

V ∈ τ and V 6= φ,X . Complement of an h-open set is called an h-closed set. It is evident from the
definition that every open set is h-open but converse need not be true. τh will be the notation used for
the family of all h-open sets in a topological space (X, τ). Inth(P ) denotes the h-interior of a subset
P of X and defined as the union of all h-open sets in X contained in P . Also, Clh(P ) denotes the
h-closure of a subset P of X and defined as the intersection of all h-closed sets in X containing P . For
more notions and results on h-open sets, one can see [1]. Further, recent work on h-open sets can be
seen in [2, 4]. Let us recall some definitions that will be used frequently:

Definition 2.1. [1] A mapping g : X → Y is said to be

(1) h-continuous if inverse image of every open set in Y is h-open in X .

(2) h-open if image of h-open set in X is h-open in Y .

(3) h-irresolute if inverse image of every h-open set in Y is h-open in X .

(4) h-totally continuous if inverse image of every h-open set in Y is clopen in X .

(5) h-homeomorphism if it is bijective, h-continuous and h-open.

3. h-topological groups

Definition 3.1. Let (G, ∗) be a group endowedwith topology τ on it. Then (G, ∗, τ) is said to be anh-topological

group if group operation ∗ as well as the inverse operation −1 are h-continuous. Equivalently,

(1) for each open neighborhoodW of p ∗ q, there exists h-open neighborhoods U and V containing p and q

respectively such that U ∗ V ⊆W,

(2) for each open neighborhoodW of p−1, there exists an h-open neighborhood U containing p such that

U−1 ⊆W .

Example 3.1. LetG = (Z3,⊕) and τ = {φ, {1, 2}, Z3}. Now τh = {φ, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, Z3}.

Then (G,⊕, τ) is an example of h-topological group.

It is evident from the definition that every topological group is an h-topological group but converse
need not be true.

Example 3.2. Let G = (Z2,⊕) and τ = {φ, {0}, Z2}. Here τh = {φ, {0}, {1}, Z2}. Then (G,⊕, τ) is an

h-topological group which is not a topological group.

Note 3.1. For infinite topological spaces with topologies other than trivial ones, it is difficult to generate all

h-open sets and, consequently, an h-topological group. However, we can give one such example of an h-topological

group without finding all the h-open subsets of that set.

Example 3.3. Consider the group of real numbers (R,+) with the topology τ = {φ,Qc,R}. Clearly,Q is h-open

as Q ⊆ Int (Q ∪Qc) = Int (R) = R. Also, {{x} : x ∈ Qc} is set of h-open sets as {x} ⊆ Int ({x} ∪Qc) =
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Int(Qc) = Qc. Next, let a, b ∈ R. Then for each a+ b ∈ R, consider the following cases:

Case 1: If a+ b ∈ Q, then possible open neighborhood of a+ b is R. Proof follows trivially in this case.

Case 2: If a+ b ∈ Qc, then possible open neighborhood of a+ b is Qc,R. For open neighborhood R, proof follows

trivially. For each a+ b ∈ Qc and open neighborhood Qc containing a+ b, we have following sub-cases:

Sub-case(i): a ∈ Q, b ∈ Qc, then there exists h-open sets Q and Qc containing a and b respectively such that

Q + Qc ⊆ Qc.

Sub-case(ii): a ∈ Qc, b ∈ Q, then there exists h-open sets Qc and Q containing a and b respectively such that

Qc + Q ⊆ Qc.

Sub-case(iii): a ∈ Qc, b ∈ Qc, then there exists h-open sets {a} and {b} containing a and b respectively such

that {a}+ {b} ⊆ Qc.

This proves h-continuity of +. Similarly, we can prove h-continuity of −. Thus, (R,+, τ) is an h-topological

group. But (R,+, τ) is not a topological group because for open neighborhoodQc of 2 +
√

3, neither R+R ⊆ Qc

nor R + Qc ⊆ Qc.

Next, we shall prove some results and provide a way to generate finite h-topological groups.

Theorem 3.1. Consider a group (G, ∗) endowed with topology τ . Suppose τh is discrete. Then (G, ∗, τ) is an

h-topological group.

Proof. Suppose cardinality of G is 1, then the proof follows trivially. Now we shall prove the result if
cardinality of G is greater than one. Let p, q be any two elements of G andW be an open neighborhood
of p ∗ q. By given hypothesis, {p} and {q} are h-open neighborhoods of p and q respectively. Also,
{p} ∗ {q} = {p ∗ q} ⊆W . Also, let U be an open neighborhood of p−1. Again by the same hypothesis,
there exists a h-open neighborhood {p} of p such that {p}−1 = {p−1} ⊆ U . Hence, the proof. �

Remark 3.1. Converse of the Theorem 3.1 need not be true as G = {1,−1, i,−i}, the fourth roots of unity

endowed with the topology τ = {φ, {1,−1}, {i,−i}, G} and τh = {φ, {1,−1}, {i,−i}, G} is an h-topological

group but τh is not discrete.

Using preceding theorem, we can provide some instances of h-topological groups as follows:
(1) Consider a group (G, ∗) and any of discrete, indiscrete or seirpinski topology on it. This is an

example of h-topological group.
(2) Consider the group (R,+) with the topology τ = {φ,R \ {1},R}. We have τh = P(R). Then

(R,+, τ) is an h-topological group that is not a topological group.

Theorem 3.2. Suppose (G, ∗) be a group of finite order having a subgroup K of index 2. Consider topology

τ = {φ,K,Kc, G} endowed on G. Then (G, ∗, τ) is an h-topological group.

Proof. Proof follows directly from Theorem 3.8 of [8]. �
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Theorem 3.3. Let X be any non-empty set endowed with the topology τ = {φ,X \ {x}, X} where x be any

arbitrary element of X . Then τh = P(X).

Proof. Straightforward. �

Note 3.2. The only connected finite topological group is a finite group with indiscrete topology. However, we

can offer other connected topologies for h-topological group. Using preceding theorem, we can provide one such

classical example as follows:

Example 3.4. Consider any group (G, ∗) with cardinality greater than one and τ = {φ,G \ {e}, G}. Then

τh = P(G). Clearly, (G, ∗, τ) is a connected h-topological group with topology other than indiscrete one.

Note 3.3. Clearly τ = τh for discrete and indiscrete topologies. Our endeavour would be to find a topology other

that discrete and indiscrete for which τ = τh.

Proofs of the following two results follows trivially, hence omitted.

Theorem 3.4. Let (X, τ) be a topological space endowed with the topology τ = {φ, A, X \ A, X}, where

A ⊆ X . Then τ = τh.

Theorem 3.5. Let (X, τ) be a disconnected topological space. Then τ = τh.

Consequently, an h-topological group is a topological group if conditions of Theorem 3.4 or Theorem
3.5 is satisfied by it.

From now onwards, we shall assume that G refers to a topological group with binary operation ∗
and topology τ .

Theorem 3.6. Consider an h-topological group G. Let U be an open set in G containing identity element e.

Then

(1) left translation and right translation mappings on G are h-continuous.

(2) there exists a h-open set V containing e such that V ∗ V ⊆ U and V −1 ⊆ U .

Proof. Straightforward. �

Theorem 3.7. Consider an open set B in an h-topological group G. Then the following holds:

(1) i ∗B is h-open, ∀ i ∈ G;

(2) B ∗ i is h-open, ∀ i ∈ G;
(3) B−1 is h-open.

Proof. (1) Let y ∈ i ∗ B. Then y = i ∗ b for some b ∈ B. By theorem, we have i−1 ∗ V ⊆ B, for some
h-open set V . Thus, V ⊆ i ∗B. This implies that y ∈ Inth(i ∗B). Hence, the proof.
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(2) Proof for this part is analogous to the first part.
(3) Consider an element y−1 of B−1. Clearly, y ∈ B. Since G is an h-topological group, there exists an
h-open neighborhood V of y such that V −1 ⊆ B. This implies that V ⊆ B−1. Thus y−1 ∈ Inth(B−1)

and hence the proof. �

Corollary 3.1. Let G be an h-topological group and A ∈ τ . Then for any subset B of G, we have A ∗ B and

B ∗A h-open.

Note 3.4. The conclusion that the Sorgenfrey line is not an h-topological group can be easily drawn using the

preceding theorem as B = [4, 5) is open in this topology but −B = (−5,−4] is not h-open. Thus Sorgenfrey

line is an example that is neither a topological group nor an h-topological group.

Theorem 3.8. Consider a closed set B in an h-topological group G. Then the following holds:

(1) i ∗B is h-closed, ∀ i ∈ G;

(2) B ∗ i is h-closed, ∀ i ∈ G;
(3) B−1 is h-closed.

Proof. (1): We have to show that i ∗ B = Clh(i ∗ B). For this, let p ∈ Clh(i ∗ B) and V be an open
neighborhood of q = i−1 ∗ p. Since G is given to be an h-topological group, there exists h-open sets
V1 and V2 in G containing i−1 and p respectively, such that V1 ∗ V2 ⊆ V . Also, intersection of h-open
neighborhood V2 and i ∗ B is non-empty as p ∈ Clh(i ∗ B). Suppose r belongs to V2 ∩ (i ∗ B). Then
i−1 ∗ r ∈ B ∩ (V1 ∗ V2) ⊆ B ∩ V . This implies that B ∩ V 6= φ⇒ q ∈ B ⇒ p ∈ i ∗B. Hence, the proof.
(2) Proof is similar to the previous part.
(3) Straightforward. �

Theorem 3.9. Consider an h-topological group G. Let B be any subset of G, then ∀ i ∈ G, we have:

(1) Clh(i ∗B) ⊆ i ∗ Cl(B);

(2) i ∗ Clh(B) ⊆ Cl(i ∗B);

(3) i ∗ Int(B) ⊆ Inth(i ∗B);

(4) Int(i ∗B) ⊆ i ∗ Inth(B).

Proof. (1) Consider an element p of Clh(i ∗ B). Suppose q = i−1 ∗ p. By given hypothesis, for every
open set U in G containing q, there exists h-open sets U1 and U2 in G containing i−1 and p respectively
such that U1 ∗ U2 ⊆ U . As p ∈ Clh(i ∗B), we have r ∈ i ∗B ∩ U2. Thus, r ∈ i ∗B and r ∈ U2. Clearly,
i−1 ∗ r ∈ B and i−1 ∗ r ∈ U1 ∗ U2. This implies that i−1 ∗ r ∈ B ∩ (U1 ∗ U2) ⊆ B ∩ U . Therefore,
q ∈ Cl(B)⇒ p ∈ i ∗ Cl(B).
(2) Consider an element p of Clh(B). Suppose q = i ∗ p and U be an open set containing q. By given
hypothesis, ∃ h-open sets U1 and U2 in G containing i and p respectively such that U1 ∗ U2 ⊆ U . As
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p ∈ Clh(B), we have B ∩ U2 non-empty. Let r ∈ B ∩ U2 ⇒ r ∈ B and r ∈ U2. Now i ∗ r ∈ i ∗ B and
i ∗ r ∈ U1 ∗U2. Therefore, i ∗ r ∈ i ∗B ∩ (U1 ∗U2) ⊆ i ∗B ∩U . This implies that i ∗B ∩U is non-empty
and we have p ∈ Cl(i ∗B).
(3) Follows from Theorem 3.7.
(4) Let p ∈ Int(i ∗ B) and p = i ∗ q, where q ∈ B. Since G is a h-topological group, there exists
h-open sets U1 and U2 in G containing i and p respectively such that U1 ∗ U2 ⊆ Int(i ∗ B). Now
i∗U2 ⊆ U1∗U2 ⊆ Int(i∗B) ⊆ i∗B. Consequently, i∗U2 ⊆ i∗Inth(B). This results in p ∈ i∗Inth(B). �

Theorem 3.10. Consider an h-topological group G and any two subsets D and E of G. Then

(1) Clh(D) ∗ Clh(E) ⊆ Cl(D ∗ E);

(2) (Clh(D))−1 ⊆ Cl(D−1)

Proof. (1)Let a ∈ Clh(D) ∗ Clh(E). Then a = b ∗ c for some b ∈ Clh(D) and c ∈ Clh(E). Let U be an
open neighborhood in G containing a. Then by h-continuity of ∗, there exists h-open sets U1 and U2

containing d and e respectively such that U1 ∗ U2 ⊆ U . Clearly, D ∩ U1 and E ∩ U2 are non-empty. Let
u ∈ D ∩U1 and v ∈ E ∩U2. We can see that u ∗ v ∈ (D ∗E)∩U , thus (D ∗E)∩U is non-empty. Hence,
the proof.
(2) Let a ∈ (Clh(D))−1. Then a = b−1, where b ∈ Clh(D). Now consider an open neighborhood V of
b−1. Then by given hypothesis, there exists an h-open setW of b such thatW−1 ⊆ V . Also, b ∈ Clh(D)

implies thatW intersects with C and contains d, say. Clearly, d−1 ∈ V ∩D−1, which completes the
proof. �

Theorem 3.11. Let G be an h-topological group. Then the following holds:

(1) Every left and right translation mapping on G is h-homeomorphism;

(2) Every inverse mapping is h-homeomorphism.

Proof. (1)We shall prove the theorem for the left translationmapping only. Proof for the right translation
mapping follows along similar lines. For this, let i ∈ G and define left translation mapping ci : G→ G

as ci(p) = i ∗ p, where p is an arbitrary element of G. Since every left translation mapping is bijective
and h-continuous. We claim that ci is h-open as well. Let B be an open set in G. Then by Theorem 3.7,
ci(B) = i ∗B = {i} ∗B is h-open in G. Hence, the claim.
(2) Straightforward. �

Definition 3.2. Let X be a topological space. Then X is said to be h-homogeneous if there exists a h-

homeomorphism g : X → X such that g(p) = q ∀ p, q ∈ X .

Theorem 3.12. Every h-topological group is an h-homogeneous space.
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Proof. Let p, q ∈ G and r = p−1 ∗ q. Then left translation mapping is a h-homoeomorphism such that
cr(p) = r ∗ p = q. �

Theorem 3.13. Consider an h-topological group G and a subgroupK of G containing a non-empty open set V

of G, thenK is h-open in G.

Proof. By given hypothesis and Theorem 3.7, b ∗ V is h-open in G for each b inK. Thus,K =
⋃
b∈K

b ∗ V

is h-open in G. �

Theorem 3.14. Consider an h-topological group G and an open subgroupK of G, thenK is h-closed. Also,K

is an h-topological group.

Proof. Since K is an open subgroup of G, the family A = {bi ∗ K : bi ∈ G} of all left cosets of K is
h-open covering of G. Also, G =

⋃
bi∈G

bi ∗ K and so for each bi ∈ G, bi ∗ K is both h-open as well
as h-closed. This implies that K = e ∗K is h-open as well as h-closed. Next, we shall show that K
is an h-topological group. For this, let x1, x2 ∈ K and U be an open neighborhood of x1 ∗ x2. Now
x1, x2 ∈ K ⊆ G and G is an h-topological group, there exists h-open sets V1 and V2 in G containing
x1 and x2 respectively such that V1 ∗ V2 ⊆ U . Since K is open, there exists h-open neighborhoods
U1 = K ∩ V1 and U2 = K ∩ V2 in K containing x and y respectively such that U1 ∗ U2 ⊆ V1 ∗ V2 ⊆ U .
Thus, ∗ is h-continuous. Similarly, we can prove continuity of inverse of ∗. Hence, the proof follows. �

Now we shall introduce the concept of h-regular spaces in the same sense p-regular spaces [5] were
introduced.

Definition 3.3. Let (X, τ) be topological space. ThenX is said to be h-regular if for each closed setK ofX not

containing p, there exists disjoint h-open sets U1 and U2 such thatK ⊂ U1 and U2 contains p.

Remark 3.2. The definition makes it clear that any regular space is an h-regular space. Yet the opposite need not

be true.

Example 3.5. LetX = {1, 2, 3} and τ = {φ,X, {2}}, τh = {φ,X, {2}, {1, 3}}. Then (X, τ) is an example of

an h-regular space that is not regular.

Theorem 3.15. Let (X, τ) be topological space. Then the following are equivalent:

(1) X is h-regular.

(2) For every element p of X and every W ∈ τ containing p, there exists an h-open set U satisfying

p ∈ U ⊂ Clh(U) ⊂W .

(3) For each closed setK of X ,
⋂
{Clh(U) : K ⊂ U ∈ HO(X)} = K.

(4) For each B ⊆ X and eachW ∈ τ such that B intersectsW , there exists h-open set U such that B also

intersects U and Clh(U) ⊂W .
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(5) For eachB ⊆ X , whereB 6= φ and each closed setK ofX such thatB ∩K is empty, there exists h-open

sets U, V such that B intersects U ,K ⊂ V and U ∩ V is empty.

Proof. (1)⇒ (2): LetW ∈ τ contains p. ThenA = X \W is closed inX and p /∈ A. By given hypothesis,
∃ disjoint h-open sets U and V such that p ∈ U and A ⊂ V . By Proposition 2.12 [?], Clh ∩ V is empty,
since if q ∈ V ∩ Clh(U), then there is an h-open set V containing q whose intersection with U is empty.
Thus, x ∈ U ⊂ Clh(U) ⊂ U .

(2) ⇒ (3): Let K be a closed set of X . Clearly, K is h-closed. Thus K ⊂ ⋂{Clh(U) : K ⊂ U ∈

HO(X)}. To prove reverse inclusion, suppose p /∈ K. Then X \K ∈ τ and p ∈ X \K. By (2), there
exists an h-open setsW such that p ∈W ⊂ Clh(W ) ⊂ X \K. Suppose U = {Clh(W )}c. Then U is an
h-open set containingK such that Clh(U) does not contain p. Thus, the proof follows.

(3)⇒ (4): LetB ⊆ X andB intersectsW , whereW ∈ τ . Suppose p ∈ B ∩W . Clearly,W c is a closed
set not containing p. Thus, there exists an h-open set V containingW c and Clh(V ) does not contain p.
Now U = {Clh(V )}c is an h-open set and U ∩B contains p. Also, Clh(U) ⊂ Clh(X \ V ) = X \ V ⊂W .

(4)⇒ (5): Let B ⊆ X does not intersectK, whereK is closed in X and B 6= φ. Clearly,Kc ∈ τ and
B is non-empty. Thus there exists an h-open set U such that B intersects U and Clh(U) ⊆ Kc. Put
V = {Clh(U)}c. Then V is an h-open set containingK and disjoint from U .

(5)⇒ (1): Straightforward. �

Note 3.5. In the succeeding theorem, γe will be the notation used for base at the identity element e.

Theorem 3.16. Consider an h-topological group G. Suppose for each elementW of γe, ∃ an open neighborhood

U of e such that U = U−1 and U2 ⊂W . Then G is h-regular at identity element e.

Proof. By using preceding theorem, it suffices to show that Clh(U) is contained inW . For this, consider
an element p of Clh(U). Clearly, p ∗ U intersects U . Thus, there exists x, y ∈ U such that p = y ∗ x−1 ∈

U ∗ U−1 = U ∗ U ⊂W . Hence, the required proof. �

4. h-irresolute topological groups

Definition 4.1. Let (G, ∗) be a group endowed with topology τ on it. Then (G, ∗, τ) is said to be an h-irresolute

topological group if group operation ∗ as well as the inverse operation −1 are h-irresolute. Equivalently,

(1) for each h-open neighborhoodW of p ∗ q, there exists h-open neighborhoods U and V containing p and

q respectively such that U ∗ V ⊆W,

(2) for each h-open neighborhoodW of p−1, there exists an h-open neighborhood U containing p such that

U−1 ⊆W .

It is evident from the definition that every h-irresolute topological group is h-topological group but
converse need not be true.
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• Consider Klein’s groupK4 = {e, a, b, ab} endowed with the topology τ = {φ, {a, b}, K4} and
τh = {φ, {a, b}, {e, ab}, {e, a, ab}, {e, b, ab}, K4}. This is an example of h-topological group
that is not h-irresolute topological group.
• Example 3.3 is an example of h-topological group that is not an h-irresolute topological group.

Remark 4.1. It should be noted that the notion of topological group and h-irresolute topological group are

independent of each other.

Example 4.1. (1) Any group with discrete topology is an example of topological group as well as h-irresolute

topological group.

(2) Any group with Sierpinski topology is an example of h-irresolute topological group that is not a topological

group.

(3) Example 3.3 is neither a topological group nor an h-irresolute topological group.

Theorem 4.1. Consider an h-irresolute topological group and an h-open set B in G. Then i ∗B, B ∗ i, B−1

are h-open for all i ∈ G.

Proof. First, we shall prove i ∗B ∈ τh. Let r ∈ i ∗B. Then there exists h-open neighborhoods U1 and U2

of i−1 and r respectively such that U1 ∗U2 ⊆ B. Thus, r ∈ Inth(i∗B). Similarly, we can proveB ∗ i ∈ τh.
Next, let j = i−1 ∈ B−1, for some i ∈ B. Clearly, there exists an h-open neighborhood U of j such that
U ⊆ B−1. Thus, j ∈ Inth(B−1) and B−1 is h-open. �

Theorem 4.2. Consider an h-irresolute topological group and any subset B of G. Then for all i ∈ G, we have

(1) Clh(i ∗B) = i ∗ Clh(B);

(2) Clh(B−1) = (Clh(B))−1.

Proof. (1)Let p ∈ Clh(i ∗ B) and q = i−1 ∗ p. Suppose U be an h-open neighborhood of q. Then
there exists h-open neighborhoods U1 and U2 of i−1 and p respectively such that U1 ∗ U2 ⊆ U . Also,
i−1 ∗U2 ⊆ U . As p ∈ Clh(i ∗B), i ∗B intersects U2 and hence, intersects i ∗U . This results inB ∩U 6= φ.
Thus, Clh(i ∗B) ⊆ i ∗Clh(B). To prove reverse inclusion, let q ∈ Clh(B) and an open neighborhood V
of i ∗ q. Then there exists h-open neighborhoods V1 and V2 of i and q respectively such that V1 ∗ V2 ⊆ V .
Clearly, B intersects V2 and hence i ∗B intersects V . This completes the proof.
(2) Let p ∈ Clh(B−1) and U be an h-open neighborhood of p−1. Then there exists an h-open neighbor-
hood V of p such that V 1 ⊆ U . Also, we haveB−1∩V 6= φ. Thereby it follows thatB intersects V −1 and
hence B ∩ U 6= φ. Thus, p ∈ (Clh(B))−1. Next, let q ∈ (Clh(B))−1 and U be an h-open neighborhood
of q. Then q = p−1 for some p ∈ Clh(B). By assumption, there exists an h-open neighborhood V
containing p such that V −1 ⊆ U . Since p ∈ Clh(B), B intersects V . Also, B−1 intersects V −1 which
implies that B−1 intersects V . Hence, the proof. �
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Theorem 4.3. Consider an h-irresolute topological group and any subset B of G. Then for all i ∈ G, we have

(1) Inth(i ∗B) = i ∗ Inth(B);

(2) Inth(B−1) = (Inth(B))−1.

Proof. (1) Let p ∈ Inth(i ∗ B). Then p = i ∗ b, for some b ∈ B and there exists h-open sets U1 and U2

containing i and b respectively such that U1 ∗ U2 ⊆ i ∗B. Thus p ∈ i ∗ Inth(B). Reverse inclusion can
be seen using Theorem 4.1.
(2) Let p ∈ Inth(B−1) and b ∈ B. Then there exists an h-open neighborhood V of b such that V −1 ⊆ B−1.
Now we can easily deduce Inth(B−1) ⊆ (Inth(B))−1. For reverse inclusion, see Theorem 4.1 . �

Theorem 4.4. LetG be an h-irresolute topological group andK be an h-open subgroup ofG. ThenK is h-closed

in G.

Proof. By assumption, K is an h-open subgroup of G. Clearly, G =
⋃
bi∈G

bi ∗ K. Now bi ∗ K =( ⋃
bj 6=bi∈G

bj ∗K

)c
. Thus, bi ∗ K is h-open as well as h-closed. In particular, K = e ∗ K is h-open

as well as h-closed in G. �

Theorem 4.5. Let G be an h-irresolute topological group andK be an open subgroup of G. ThenK is also an

h-irresolute topological group.

Proof. Let p1, p2 be any two arbitrary elements ofK and V be an h-open neighborhood containing p1∗p2.
SinceK ⊆ G, there exists h-open neighborhoods V1 and V2 in G containing p1 and p2 respectively such
that V1 ∗V2 ⊆ V . NowW1 = K ∩V1 andW2 = K ∩V2 are h-open inK containing p1 and p2 respectively
and satisfying W1 ∗W2 ⊆ V . This proves ∗ is h-irresolute. Now we shall prove h-irresoluteness of
inverse of ∗. Let q = p−1 ∈ K and U be an h-open neighborhood containing q. SinceK ⊆ G, there exists
an h-open neighborhood V in G containing p such that V −1 ⊆ U . Also,K is open impliesW = V ∩K

is h-open inK containing p such thatW−1 ⊆ V −1 ⊆ U . �

Note 4.1. From now onwards, we shall assume that G1 and G2 are two groups having binary operations ∗1
and ∗2 respectively and endowed with topologies τ1 and τ2 respectively. Further, e1 and e2 represents identity

elements of G1 and G2 respectively.

Theorem 4.6. Consider two h-irresolute topological groupsG1 andG2 and a group homomorphism g : G1 → G2.

If g is h-irresolute at e1, then g is h-irresolute on G.

Proof. Let p ∈ G and W be an h-open set containing g(p). By Theorem , W ∗2 (g(p))−1 is h-open in
G2 containing g(e1) = e2. Since g is h-irresolute at e1. Then there exists an h-open set V containing
e1 such that g(V ) ⊆W ∗2 (g(p))−1 ⇒ g(V ) ∗2 g(p) ⊆W . Since g is given to be group homomorphism
g(V ∗1 p) = g(V ) ∗2 g(p) ⊆W . As V ∗ p is h-open set in G containing p. Thus g is h-irresolute onG. �
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Corollary 4.1. LetG1 andG2 be two h-irresolute topological groups and g : G1 → G2 be a group homomorphism.

If g is h-irresolute at e1, then g is h-continuous on G.

Corollary 4.2. Consider two h-irresolute topological groups G1 and G2 and a group homomorphism g : G1 →

G2. If g is h-totally continuous at e1, then g is h-continuous on G.

Theorem 4.7. Consider an h-irresolute topological group G and a subgroup K of G. Then Clh(K) is also a

subgroup of G. Further, ifK is a normal subgroup of G, then Clh(K) is also a normal subgroup of G.

Proof. Let a, b ∈ Clh(K). Let U be an h-open neighborhood of a ∗ b. Then by hypothesis, there exists
h-open neighborhoods U1 and U2 of a and b respectively such that U1 ∗U2 ⊆ U . By definition of Clh(K),
U1 and U2 both intersects K and suppose x ∈ U1 ∩K and y ∈ U2 ∩K. Clearly, x ∗ y ∈ U1 ∗ U2 ⊆ U .
Since K is a subgroup , we have x ∗ y ∈ K. This implies that x ∗ y ∈ U ∩K ⇒ a ∗ b ∈ Clh(K). Thus,
Clh(K) ∗ Clh(K) ⊆ Clh(K). Next, we shall show that if a ∈ Clh(K), then a−1 ∈ Clh(K). For this,
let V be an h-open neighborhood of a−1. Then there exists an h-open neighborhood U of a such that
U−1 ⊆ V . By definition of Clh(K), U ∩K 6= φ and suppose x ∈ U ∩K. Again, sinceK is subgroup of
G, we have x−1 ∈ K. Also, x−1 ∈ V . Thus, V ∩K 6= φ. Thus, a−1 ∈ Clh(K). Further, letK be a normal
subgroup of G. Proof follows from the fact that Clh(gKg−1) = gClh(K)g−1 ∀ g ∈ G. �

Theorem 4.8. LetK 6= φ be a subgroup of an h-irresolute topological group G. Then, following are equivalent:

(1) K is h-open;

(2) Inth(K) 6= φ.

Proof. (1)⇒ (2) follows trivially. Conversely, suppose p ∈ Inth(K). Then there exists an h-open set U
such that p ∈ U ⊂ K. Clearly, p ∗ U ⊂ K. Now q ∗ U = q ∗ p−1 ∗ p ∗ U ⊂ K, for every element q ofK.
ThusK =

⋃
q∈H

q ∗ U is h-open as q ∗ U is h-open. �

Now we shall introduce h-Lindelof spaces and put forth some important results.

Definition 4.2. Let (X, τ) be a topological space. Then X is said to be h-Lindelof if every h-open cover has a

countable subcover.

Proposition 4.1. Countable union of h-Lindelof spaces is h-Lindelof.

Proof. Proof is simple, thus omitted. �

Proposition 4.2. h-irresolute image of h-Lindelof space is h-Lindelof.

Proof. Let g : X → Y be an h-irresolute mapping and B be h-Lindelof in X . We have to show that
g(B) is h-Lindelof in Y . For this, consider a cover {Hβ : β ∈ ∆} of h-open sets of g(B) in Y . Since g is
h-irresolute, g−1(Hβ) is h-open in X for each β ∈ ∆. Thus, {g−1(Hβ) : β ∈ ∆} is a cover of h-open sets
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of B in X . Now B being h-Lindelof implies that B ⊂
∞⋃
j=1

g−1(Hβj ) for some β1, β2, β3, ....... ∈ ∆. Thus,

g(B) ⊂
∞⋃
j=1

g(g−1(Hβj )) ⊂
∞⋃
j=1

Hβj . Hence, the proof. �

Theorem 4.9. Let G be an h-irresolute topological group and A,B be any two subsets of G. Then:

(1) If A is h-Lindelof, then A−1 is h-Lindelof.

(2) If A is h-Lindelof and B is countable, then A ∗B and B ∗A are h-Lindelof.

Proof. (1) Since the inverse mapping is h-irresolute and A is h-Lindelof, proof follows from the above
proposition.
(2) Let b ∈ B. Since A is h-Lindelof and left translation mapping is h-irresolute, b ∗A is h-Lindelof by
above Proposition. From Proposition 4.1, it follows that B ∗A is h-Lindelof as B ∗A can be written as a
countable union of h-Lindelof spaces. In the similar manner, we can prove A ∗B is h-Lindelof. �
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