

ON SOME SEPARATION AXIOMS IN BITOPOLOGICAL SPACES

NIPAPORN CHUTIMAN¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,3,*}

¹Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand ²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

³Mathematics and Applied Mathematics Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand *Corresponding author: chawalit.b@msu.ac.th

Received Jan. 22, 2024

ABSTRACT. This paper deals with some separation axioms in bitopological spaces. Firstly, we characterize some new low separation axioms in bitopological spaces. Secondly, we introduce the concepts of (τ_1, τ_2) - \mathscr{D}_0 spaces, (τ_1, τ_2) - \mathscr{D}_1 spaces and (τ_1, τ_2) - \mathscr{D}_2 spaces by utilizing (τ_1, τ_2) - \mathscr{D} -sets. Furthermore, some characterizations of (τ_1, τ_2) - \mathscr{D}_0 spaces, (τ_1, τ_2) - \mathscr{D}_1 spaces and (τ_1, τ_2) - \mathscr{D}_2 spaces are established. Finally, we introduce and investigate the notions of (τ_1, τ_2) - $T_{\frac{1}{4}}$ spaces, (τ_1, τ_2) - $T_{\frac{3}{8}}$ spaces and weak (τ_1, τ_2) - R_0 spaces. 2020 Mathematics Subject Classification. 54D10; 54E55.

Key words and phrases. (τ_1, τ_2) - \mathscr{D}_0 space; (τ_1, τ_2) - \mathscr{D}_1 space; (τ_1, τ_2) - \mathscr{D}_2 space; (τ_1, τ_2) - $T_{\frac{1}{4}}$ space; (τ_1, τ_2) - $T_{\frac{3}{8}}$ space; weak (τ_1, τ_2) - R_0 space.

1. INTRODUCTION

Separation axioms are one among the most common, important and interesting ideas in topology. Some separation axioms were introduced using generalized open sets. The concept of R_0 topological spaces was first introduced by Shanin [21]. Davis [10] introduced the concept of a separation axiom called R_1 . Murdeshwar and Naimpally [17] and Dube [12] studied some of the fundamental properties of the class of R_1 topological spaces. As natural generalizations of the separation axioms R_0 and R_1 , the concept of semi- R_0 and semi- R_1 were introduced and studied by Maheshwari and Prasad [16] and Dorsett [11]. Caldas et al. [6] introduced and studied two new weak separation axioms called Λ_{θ} - R_0 and Λ_{θ} - R_1 by using the notions of (Λ, θ) -open sets and (Λ, θ) -closure operators. Thongmoon and Boonpok [23] introduced and investigated the concept of (Λ, p) - R_1 topological spaces. In [1], the present authors introduced and studied the notions of $\delta_s(\Lambda, s)$ - R_0 spaces and $\delta_s(\Lambda, s)$ - R_1 spaces.

DOI: 10.28924/APJM/11-41

Furthermore, several characterizations of Λ_p - R_0 spaces and (Λ, s) - R_0 spaces were established in [3] and [2], respectively. Recently, Thongmoon and Boonpok [22] introduced and studied the notion of sober $\delta p(\Lambda, s)$ - R_0 spaces. Sarsak [20] introduced and studied weak separation axioms in generalized topological spaces, namely, μ - D_0 spaces, μ - D_1 spaces, μ - D_2 spaces, μ - T_0 spaces, μ - T_1 spaces, μ - T_2 spaces, μ - R_0 spaces, μ - R_1 spaces and weakly μ - D_1 spaces. Moreover, Sarsak [19] introduced and studied new separation axioms in generalized topological spaces, namely, μ - $T_{\frac{1}{4}}$ spaces are strictly placed between μ - T_0 spaces and μ - $T_{\frac{1}{2}}$ spaces are strictly placed between μ - T_0 spaces and μ - $T_{\frac{1}{2}}$ spaces are strictly placed between μ - $T_{\frac{1}{2}}$ spaces are strictly placed between μ - $T_{\frac{1}{2}}$ spaces are strictly placed between μ - $T_{\frac{1}{2}}$ spaces. Cammaroto and Noiri [7] defined a weak separation axioms m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [15]. In 2006, Noiri [18] introduced the concept of m- R_1 spaces. In this paper, we introduce the concepts of (τ_1, τ_2) - \mathcal{D}_0 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces, (τ_1, τ_2) - $\mathcal{T}_{\frac{1}{4}}$ spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces and weak (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces and (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces and (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces, (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) - \mathcal{D}_2 spaces and weak (τ_1, τ_2) - \mathcal{D}_1 spaces, (τ_1, τ_2) -

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [5] of A and is denoted by $\tau_1 \tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ open [24] (resp. $(\tau_1, \tau_2)s$ -open [4], $(\tau_1, \tau_2)p$ -open [4], $(\tau_1, \tau_2)\beta$ -open [4]) if $A = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)), $A \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)), $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A))))).

Lemma 1. [5] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*($\tau_1 \tau_2$ -*Cl*(*A*)) = $\tau_1 \tau_2$ -*Cl*(*A*).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

3. CHARACTERIZATIONS OF SOME NEW LOW SEPARATION AXIOMS

In this section, we investigate some characterizations of (τ_1, τ_2) - T_0 spaces, (τ_1, τ_2) - T_1 spaces, (τ_1, τ_2) - T_2 spaces, (τ_1, τ_2) - R_0 spaces and (τ_1, τ_2) - R_1 spaces.

Definition 1. [8] A bitopological space (X, τ_1, τ_2) is said to be:

- (i) (τ_1, τ_2) - T_0 if for any pair of distinct points in X, there exists a $\tau_1\tau_2$ -open set of X containing one of the points but not the other.
- (ii) (τ_1, τ_2) - T_1 if for any pair of distinct points x, y in X, there exist $\tau_1 \tau_2$ -open sets U and V of X such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Theorem 1. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 if and only if $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$ for any pair of distinct points x and y of X.

Proof. Suppose that $x, y \in X$, $x \neq y$ and $\tau_1 \tau_2$ -Cl($\{x\}$) $\neq \tau_1 \tau_2$ -Cl($\{y\}$). Let z be a point of X such that $z \in \tau_1 \tau_2$ -Cl($\{x\}$) but $z \notin \tau_1 \tau_2$ -Cl($\{y\}$). We claim that $x \notin \tau_1 \tau_2$ -Cl($\{y\}$). If $x \in \tau_1 \tau_2$ -Cl($\{y\}$), then

$$\tau_1\tau_2\operatorname{-Cl}(\{x\}) \subseteq \tau_1\tau_2\operatorname{-Cl}(\{y\}).$$

This contradicts the fact that $z \notin \tau_1 \tau_2$ -Cl({y}). Thus, x belongs to the $\tau_1 \tau_2$ -open set $X - \tau_1 \tau_2$ -Cl({y}) to which y does not belong. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 .

Conversely, let (X, τ_1, τ_2) be (τ_1, τ_2) - T_0 and x, y be any two distinct points of X. There exists a $\tau_1\tau_2$ open set U containing x or y, say x but not y. Then, X - U is a $\tau_1\tau_2$ -closed set which does not contain xbut contains y. Since $\tau_1\tau_2$ -Cl($\{y\}$) is the smallest $\tau_1\tau_2$ -closed set containing $y, \tau_1\tau_2$ -Cl($\{y\}$) $\subseteq X - U$ and so $x \notin \tau_1\tau_2$ -Cl($\{y\}$). Thus, $\tau_1\tau_2$ -Cl($\{x\}$) $\neq \tau_1\tau_2$ -Cl($\{y\}$).

Theorem 2. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 if and only if the singletons are $\tau_1\tau_2$ -closed sets.

Proof. Suppose that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 and x be any point of X. Let $y \in X - \{x\}$. Then, $x \neq y$ and so there exists a $\tau_1\tau_2$ -open set U_y such that $y \in U_y$ but $x \notin U_y$. Thus, $y \in U_y \subseteq X - \{x\}$ and hence $X - \{x\} = \bigcup_{y \in X - \{x\}} U_y$ which is $\tau_1\tau_2$ -open.

Conversely, suppose that $\{z\}$ is $\tau_1\tau_2$ -closed for each $z \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X - \{x\}$. Thus, $X - \{x\}$ is a $\tau_1\tau_2$ -open set containing y but not containing x. Similarly, we have $X - \{y\}$ is a $\tau_1\tau_2$ -open set containing x but not containing y. This means that (X, τ_1, τ_2) is a (τ_1, τ_2) - T_1 space.

Definition 2. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - T_2 if for any pair of distinct points x, y in X, there exist disjoint $\tau_1 \tau_2$ -open sets U and V of X containing x and y, respectively.

Remark 1. Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_1, τ_2) is (τ_1, τ_2) - T_i , then (X, τ_1, τ_2) is (τ_1, τ_2) - T_{i-1} , i = 1, 2.

Definition 3. [13] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_0 if for each $\tau_1\tau_2$ -open set U and each $x \in U$, $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$.

Definition 4. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -symmetric if for each $x, y \in X$, $x \in \tau_1 \tau_2$ - $Cl(\{y\})$ implies $y \in \tau_1 \tau_2$ - $Cl(\{x\})$.

Theorem 3. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) -symmetric if and only if for each $x \in X$, $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$ whenever $x \in U$ and U is $\tau_1\tau_2$ -open.

Proof. Suppose that $x \in \tau_1\tau_2$ -Cl($\{y\}$) but $y \notin \tau_1\tau_2$ -Cl($\{x\}$). This means that the complement of $\tau_1\tau_2$ -Cl($\{x\}$) contains y. Therefore, the set $\{y\}$ is a subset of the complement of $\tau_1\tau_2$ -Cl($\{x\}$). This implies that $\tau_1\tau_2$ -Cl($\{y\}$) is a subset of the complement of $\tau_1\tau_2$ -Cl($\{x\}$). Now the complement of $\tau_1\tau_2$ -Cl($\{x\}$) contains x which is a contradiction.

Conversely, suppose that $\{x\} \subseteq U$ and U is $\tau_1\tau_2$ -open in X but $\tau_1\tau_2$ -Cl($\{x\}$) is not a subset of U. This mean that $\tau_1\tau_2$ -Cl($\{x\}$) and the complement of U are not disjoint. Let y belongs to their intersection. Now we have $x \in \tau_1\tau_2$ -Cl($\{y\}$) which is a subset of the complement of U and $x \notin U$. This is a contradiction.

Theorem 4. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if (X, τ_1, τ_2) is (τ_1, τ_2) -symmetric.

Proof. Suppose that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 . Let $x \in \tau_1 \tau_2$ - $Cl(\{x\})$ and U be any $\tau_1 \tau_2$ -open set such that $y \in U$. By the hypothesis, $\tau_1 \tau_2$ - $Cl(\{y\}) \subseteq U$ and hence $x \in U$. Therefore, every $\tau_1 \tau_2$ -open set which contains y contain x. Thus, $y \in \tau_1 \tau_2$ - $Cl(\{x\})$.

Conversely, let *U* be a $\tau_1\tau_2$ -open set and $y \in U$. If $y \notin U$, then $x \notin \tau_1\tau_2$ -Cl($\{y\}$) and by the hypothesis, $y \notin \tau_1\tau_2$ -Cl($\{x\}$). Thus, $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U$ and hence (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Theorem 5. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 if and only if (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 and (τ_1, τ_2) - R_0 .

Proof. Follows from Remark 1 and Theorem 2.

Conversely, let $x, y \in X$ and $x \neq y$. Since (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 , we may assume without loss of generality that $x \in U \subseteq X - \{y\}$ for some $\tau_1\tau_2$ -open set U. Thus, $x \notin \tau_1\tau_2$ - $Cl(\{y\})$ and by Theorem 4, $y \notin \tau_1\tau_2$ - $Cl(\{x\})$. Therefore, $X - \tau_1\tau_2$ - $Cl(\{x\})$ is a $\tau_1\tau_2$ -open set containing y but not x. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 .

Definition 5. [14] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_1 if for each points x and y in X with $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$, there exist disjoint $\tau_1\tau_2$ -open sets U and V such that $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$ and $\tau_1\tau_2$ - $Cl(\{y\}) \subseteq V$.

Lemma 2. If a bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 , then it is (τ_1, τ_2) - R_0 .

Theorem 6. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₂;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁ and (τ_1, τ_2) -R₁;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀ and (τ_1, τ_2) -R₁.

Proof. $(1) \Rightarrow (2)$: Follows from Remark 1 and Theorem 2.

(2) \Rightarrow (3): Follows from Remark 1.

(3) \Rightarrow (1): It follows from Lemma 2 and Theorem 5 that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 . Since (X, τ_1, τ_2) is (τ_1, τ_2) - R_1 , by Theorem 2, (X, τ_1, τ_2) is (τ_1, τ_2) - T_2 .

Corollary 1. For a (τ_1, τ_2) - R_0 bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₂;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀.

4. $(\tau_1, \tau_2) \mathscr{D}$ -sets and associated separation axioms

In this section, we introduce the concepts of (τ_1, τ_2) - \mathscr{D}_0 spaces, (τ_1, τ_2) - \mathscr{D}_1 spaces and (τ_1, τ_2) - \mathscr{D}_2 spaces. Furthermore, several characterizations of (τ_1, τ_2) - \mathscr{D}_0 spaces, (τ_1, τ_2) - \mathscr{D}_1 spaces and (τ_1, τ_2) - \mathscr{D}_2 spaces are discussed.

Definition 6. A subset A of a bitopological space (X, τ_1, τ_2) is called a $(\tau_1, \tau_2)\mathscr{D}$ -set if there exist $\tau_1\tau_2$ -open sets U and V of X such that $U \neq X$ and A = U - V.

Remark 2. Let (X, τ_1, τ_2) be a bitopological space. Letting A = U and $V = \emptyset$ in the above definition, it is easy to see that every proper $\tau_1 \tau_2$ -open set U is a $(\tau_1, \tau_2) \mathscr{D}$ -set.

Definition 7. A subset A of a bitopological space (X, τ_1, τ_2) is said to be:

- (i) (τ_1, τ_2) - \mathscr{D}_0 if for any pair of distinct points x and y of X, there exists a (τ_1, τ_2) \mathscr{D} -set U of X such that $x \in U, y \notin U$ or $y \in U, x \notin U$;
- (ii) (τ_1, τ_2) - \mathscr{D}_1 if for any pair of distinct points x and y of X, there exist $(\tau_1, \tau_2)\mathscr{D}$ -sets U and V of X such that $x \in U, y \notin U$ and $y \in V, x \notin V$;
- (iii) (τ_1, τ_2) - \mathscr{D}_2 if for any pair of distinct points x and y of X, there exist disjoint $(\tau_1, \tau_2)\mathscr{D}$ -sets U and V of X containing x and y, respectively.

Remark 3. For a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If (X, τ_1, τ_2) is (τ_1, τ_2) -T_i, then (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_i , i = 0, 1, 2.
- (2) If (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_i , then (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_{i-1} , i = 1, 2.

Theorem 7. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

(1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀.

(2) (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_0 .

Proof. (1) \Rightarrow (2): Follows from Remark 3 (1).

 $(2) \Rightarrow (1)$: Let (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_0 . Then, for each distinct points $x, y \in X$, at least one of x, y, say x, belongs to a (τ_1, τ_2) \mathscr{D} -set V but $y \notin V$. Suppose that $V = U_1 - U_2$, where $U_1 \neq X$ and U_1, U_2 are $\tau_1 \tau_2$ -open sets of X. Then, $x \in U_1$ and for $y \notin V$ we have two cases: (i) $y \notin U_1$; (ii) $y \in U_1$ and $y \in U_2$. In case (i), U_1 contains x but does not contain y. In case (ii), U_2 contains y but does not contain x. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 .

Corollary 2. Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_1 , then (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 .

Proof. Follows from Remark 3 (2) and Theorem 7.

Recall that a subset N of a bitopological space (X, τ_1, τ_2) is said to be a $\tau_1\tau_2$ -neighborhood [5] of a point $x \in X$ if there exists a $\tau_1\tau_2$ -open set U such that $x \in U \subseteq N$.

Definition 8. Let (X, τ_1, τ_2) be a bitopological space. A point $x \in X$ which has X as the $\tau_1\tau_2$ -neighborhood is said to be $(\tau_1, \tau_2)\mathcal{D}$ -neat point.

Theorem 8. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_1 if and only if (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 and has no $(\tau_1, \tau_2)\mathscr{D}$ -neat points.

Proof. Suppose that (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_1 . Since (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_1 , so each point x of X is contained in a (τ_1, τ_2) \mathscr{D} -set G = U - V and thus in U. By definition $U \neq X$. Thus, x is not a (τ_1, τ_2) \mathscr{D} -neat point. (X, τ_1, τ_2) being (τ_1, τ_2) - T_0 follows from Corollary 2.

Conversely, suppose that (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 and has no (τ_1, τ_2) \mathscr{D} -neat points. Since (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 , for each pair of distinct points $x, y \in X$, there exists a $\tau_1 \tau_2$ -open set U containing x, say but not y. By Remark 2, U is a (τ_1, τ_2) - \mathscr{D} -set. Since X has no (τ_1, τ_2) - \mathscr{D} -neat point, y is not a (τ_1, τ_2) - \mathscr{D} -neat point. Thus, there exists a $\tau_1 \tau_2$ -open set V containing y such that $V \neq X, y \in V - U, x \notin V - U$ and V - U is a (τ_1, τ_2) - \mathscr{D} -set. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_1 .

Theorem 9. For a (τ_1, τ_2) -symmetric bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_0 ;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_1 .

Proof. (1) \Leftrightarrow (2): Follows from Theorem 7.

(3) \Rightarrow (2): Follows from Remark 3.

 $(1) \Rightarrow (3)$: Let $x, y \in X$ and $x \neq y$. By (1), we may assume that $x \in U \subseteq X - \{y\}$ for some $\tau_1 \tau_2$ -open set U in X. Then, $x \notin \tau_1 \tau_2$ -Cl($\{y\}$) and hence $y \notin \tau_1 \tau_2$ -Cl($\{x\}$). Thus, there exists a $\tau_1 \tau_2$ -open set V

such that $y \in V \subseteq X - \{x\}$. Since every $\tau_1 \tau_2$ -open set is a (τ_1, τ_2) \mathscr{D} -set, we have that (X, τ_1, τ_2) is a (τ_1, τ_2) - \mathscr{D}_1 space.

Theorem 10. For a (τ_1, τ_2) - R_0 bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) - \mathcal{D}_1 .

Proof. $(1) \Rightarrow (2)$: Follows from Theorem 5.

- $(2) \Rightarrow (3)$: Follows from Remark 3.
- (3) \Rightarrow (1): Follows from Corollary 2.

Definition 9. A bitopological space (X, τ_1, τ_2) is said to be weakly $(\tau_1, \tau_2) \mathscr{D}_1$ if $\bigcap_{x \in X} \tau_1 \tau_2$ - $Cl(\{x\}) = \emptyset$.

Theorem 11. A bitopological space (X, τ_1, τ_2) is weakly (τ_1, τ_2) - \mathscr{D}_1 if and only if X has no (τ_1, τ_2) \mathscr{D} -neat points.

Proof. Let (X, τ_1, τ_2) be weakly (τ_1, τ_2) - \mathscr{D}_1 . Suppose that X has a (τ_1, τ_2) \mathscr{D} -neat point y. Then, we have $y \in \tau_1 \tau_2$ -Cl($\{x\}$) for each $x \in X$, which is a contradiction.

Conversely, suppose that (X, τ_1, τ_2) is not weakly (τ_1, τ_2) - \mathscr{D}_1 . Then, there exists $y \in \bigcap_{x \in X} \tau_1 \tau_2$ -Cl $(\{x\})$ and thus, every $\tau_1 \tau_2$ -open set containing y must be X, that is, y is a $(\tau_1, \tau_2)\mathscr{D}$ -neat point of X, which is a contradiction.

Corollary 3. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - \mathscr{D}_1 if and only if (X, τ_1, τ_2) is weakly (τ_1, τ_2) - \mathscr{D}_1 and (τ_1, τ_2) - T_0 .

Proof. Follows from Theorem 8 and 11.

Definition 10. [5] Let A be a subset of a bitopological space (X, τ_1, τ_2) . The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{-open}\}$ is called the $\tau_1 \tau_2$ -kernel of A and is denoted by $\tau_1 \tau_2$ -ker(A).

Lemma 3. [5] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

Lemma 4. Let (X, τ_1, τ_2) be a bitopological space and $A \subseteq X$. Then,

$$\tau_1\tau_2\text{-}ker(A) = \{x \in X \mid \tau_1\tau_2\text{-}Cl(\{x\}) \cap A \neq \emptyset\}.$$

Proof. Suppose that $\tau_1\tau_2$ -Cl({x}) $\cap A = \emptyset$. Then, $x \notin X - \tau_1\tau_2$ -Cl({x}) which is a $\tau_1\tau_2$ -open set containing A. Thus, $x \notin \tau_1\tau_2$ -ker(A) and hence $\tau_1\tau_2$ -ker(A) \subseteq { $x \in X \mid \tau_1\tau_2$ -Cl({x}) $\cap A \neq \emptyset$ }. Next, we show the opposite implication. Suppose that $x \notin \tau_1\tau_2$ -ker(A). Then, there exists a $\tau_1\tau_2$ -open set U containing A and $x \notin U$. Therefore, $\tau_1\tau_2$ -Cl({x}) $\cap U = \emptyset$. Thus, $\tau_1\tau_2$ -Cl({x}) $\cap A = \emptyset$ and hence

$$\tau_1 \tau_2 \text{-} ker(A) \supseteq \{ x \in X \mid \tau_1 \tau_2 \text{-} \operatorname{Cl}(\{x\}) \cap A \neq \emptyset \}.$$

Theorem 12. A bitopological space (X, τ_1, τ_2) is weakly (τ_1, τ_2) - \mathscr{D}_1 if and only if $\tau_1 \tau_2$ -ker $(\{x\}) \neq X$ for each $x \in X$.

Proof. Let (X, τ_1, τ_2) be weakly (τ_1, τ_2) - \mathscr{D}_1 . Suppose that there exists a point y in X such that $\tau_1 \tau_2$ - $ker(\{y\}) = X$. By Lemma 4,

$$y \in \bigcap_{x \in X} \tau_1 \tau_2 \text{-} \operatorname{Cl}(\{x\}),$$

which is a contradiction.

Conversely, let $\tau_1\tau_2$ - $ker(\{x\}) \neq X$ for each $x \in X$. Suppose that (X, τ_1, τ_2) is not weakly (τ_1, τ_2) - \mathscr{D}_1 . By Theorem 11, X has a (τ_1, τ_2) \mathscr{D} -neat point y. Thus, $\tau_1\tau_2$ - $ker(\{x\}) = X$, which is a contradiction. \Box

5. (τ_1, τ_2) - $T_{\frac{1}{4}}$ spaces and (τ_1, τ_2) - $T_{\frac{3}{8}}$ spaces

In this section, we introduce the concepts of (τ_1, τ_2) - $T_{\frac{1}{4}}$ spaces and (τ_1, τ_2) - $T_{\frac{3}{8}}$ spaces and weak (τ_1, τ_2) - R_0 spaces. Moreover, some characterizations of (τ_1, τ_2) - $T_{\frac{1}{4}}$ spaces and (τ_1, τ_2) - $T_{\frac{3}{8}}$ spaces and weak (τ_1, τ_2) - R_0 spaces are considered.

Definition 11. [8] A subset A of a bitopological space (X, τ_1, τ_2) is called a $\Lambda_{(\tau_1, \tau_2)}$ -set if $A = \tau_1 \tau_2$ -ker(A).

Definition 12. [9] A subset A of a bitopological space (X, τ_1, τ_2) is said to be \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed if $A = U \cap F$, where U is a $\Lambda_{(\tau_1, \tau_2)}$ -set and F is a $\tau_1 \tau_2$ -closed set of X.

Lemma 5. [8] For subsets A and $B_{\gamma}(\gamma \in \Gamma)$ of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $\tau_1 \tau_2$ -ker(A) is a $\Lambda_{(\tau_1, \tau_2)}$ -set.
- (2) If A is a $\tau_1 \tau_2$ -open set, then A is a $\Lambda_{(\tau_1,\tau_2)}$ -set.
- (3) If B_{γ} is a $\Lambda_{(\tau_1,\tau_2)}$ -set for each $\gamma \in \Gamma$, then $\cup_{\gamma \in \Gamma} B_{\gamma}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.
- (4) If B_{γ} is a $\Lambda_{(\tau_1,\tau_2)}$ -set for each $\gamma \in \Gamma$, then $\cap_{\gamma \in \Gamma} B_{\gamma}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

Lemma 6. [9] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) A is \mathscr{C} - $\Lambda_{(\tau_1,\tau_2)}$ -closed;
- (2) $A = \tau_1 \tau_2$ -Cl(A) $\cap U$, where U is a $\Lambda_{(\tau_1, \tau_2)}$ -set;
- (3) $A = \tau_1 \tau_2 Cl(A) \cap \tau_1 \tau_2 ker(A).$

Definition 13. A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) - $T_{\frac{1}{4}}$ if for every finite subset A of X and each $x \in X - A$, there exists a subset B_x of X containing A and disjoint from $\{x\}$ such that B_x is either $\tau_1\tau_2$ -open or $\tau_1\tau_2$ -closed.

Theorem 13. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{4}}$ if and only if for every finite subset of X is \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed.

Proof. Let *A* be a finite subset of *X*. Since (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{4}}$, for each $x \in X - A$, there exists a subset B_x of *X* containing *A* and disjoint from $\{x\}$ such that B_x is either $\tau_1\tau_2$ -open or $\tau_1\tau_2$ -closed. Let *U* be the intersection of all $\tau_1\tau_2$ -open sets B_x and *F* be the intersection of all $\tau_1\tau_2$ -closed sets B_x . Then, we have $A = U \cap F$, *U* is a $\Lambda_{(\tau_1, \tau_2)}$ -set and *F* is a $\tau_1\tau_2$ -closed set. Thus, *A* is \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed.

Conversely, let *A* be a finite subset of *X* and $x \in X - A$. By the hypothesis, $A = U \cap F$, where *U* is a $\Lambda_{(\tau_1,\tau_2)}$ -set and *F* is a $\tau_1\tau_2$ -closed set. If $x \notin F$, then we are done. If $x \in F$, then $x \notin U$ and thus $x \notin V$ for some $\tau_1\tau_2$ -open set *V* of *X* containing *A*. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}$.

The proof of the following theorem is similar to that of Theorem 13 and thus omitted.

Theorem 14. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 if and only if for every singleton of X is \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed.

Definition 14. A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) - $T_{\frac{3}{8}}$ if for every countable subset A of X and each $x \in X - A$, there exists a subset B_x of X containing A and disjoint from $\{x\}$ such that B_x is either $\tau_1\tau_2$ -open or $\tau_1\tau_2$ -closed.

The proof of the following theorem is similar to that of Theorem 13 and thus omitted.

Theorem 15. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{3}{8}}$ if and only if for every countable subset of X is \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed.

Definition 15. A bitopological space (X, τ_1, τ_2) is said to be weak (τ_1, τ_2) - R_0 if every \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed singleton is a $\Lambda_{(\tau_1, \tau_2)}$ -set.

Theorem 16. Let (X, τ_1, τ_2) be a bitopological space. If (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 , then (X, τ_1, τ_2) is weak (τ_1, τ_2) - R_0 .

Proof. Let $x \in X$ and $\{x\}$ be \mathscr{C} - $\Lambda_{(\tau_1,\tau_2)}$ -closed. By Lemma 6, $\{x\} = \tau_1\tau_2$ -Cl $(\{x\}) \cap \tau_1\tau_2$ -ker $(\{x\})$. If $\{x\}$ is not a $\Lambda_{(\tau_1,\tau_2)}$ -set, then there exists $y \in \tau_1\tau_2$ -ker $(\{x\}) - \{x\}$. Thus, $y \notin \tau_1\tau_2$ -Cl $(\{x\})$. Since (X, τ_1, τ_2) is (τ_1, τ_2) - $R_0, \tau_1\tau_2$ -Cl $(\{x\}) \cap \tau_1\tau_2$ -Cl $(\{y\}) = \emptyset$ and hence $x \notin \tau_1\tau_2$ -Cl $(\{y\})$. Then, there exists a $\tau_1\tau_2$ -open set U containing x but not y. This implies that $y \notin \tau_1\tau_2$ -ker $(\{x\})$, which is a contradiction. Thus, (X, τ_1, τ_2) is weak (τ_1, τ_2) - R_0 .

The following lemma can be verified.

Lemma 7. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁.
- (2) Every subset of X is a $\Lambda_{(\tau_1,\tau_2)}$ -set.
- (3) Every singleton of X is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

The following theorem is an improvement of Theorem 5.

Theorem 17. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁.
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀ and (τ_1, τ_2) -R₀.
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀ and weak (τ_1, τ_2) -R₀.

Proof. It suffices to show that $(3) \Rightarrow (1)$. To show that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 , it suffices to show by Lemma 7 that every singleton of X is a $\Lambda_{(\tau_1, \tau_2)}$ -set. Let $\{x\}$ be singleton of X. Since (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 , it follows from Theorem 14 that $\{x\}$ is \mathscr{C} - $\Lambda_{(\tau_1, \tau_2)}$ -closed. Since (X, τ_1, τ_2) is weak (τ_1, τ_2) - R_0 , $\{x\}$ is a $\Lambda_{(\tau_1, \tau_2)}$ -set.

Definition 16. A bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) - $T_{\frac{1}{2}}$ if every g- (τ_1, τ_2) -closed set of X is $\tau_1\tau_2$ -closed.

Corollary 4. For a weak (τ_1, τ_2) - R_0 bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₀;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}$;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{3}{2}}$;
- (4) (X, τ_1, τ_2) is (τ_1, τ_2) - $T_{\frac{1}{2}}$;
- (3) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁.

Acknowledgements

This research project was financially supported by Mahasarakham University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

^[1] C. Boonpok, J. Khampakdee, $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces, Int. J. Anal. Appl. 21 (2023), 99. https://doi.org/10.28924/2291-8639-21-2023-99.

- [2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- [3] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274..
- [4] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [6] M. Caldas, S. Jafari, T. Noiri, Characterizations of Λ_{θ} - R_0 and Λ_{θ} - R_1 topological spaces, Acta Math. Hungar. 103 (2004), 85–95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
- [7] F. Cammaroto, T. Noiri, On Λ_m -sets and related topological spaces, Acta Math. Hungar. 109 (2005), 261–279. https: //doi.org/10.1007/s10474-005-0245-4.
- [8] M. Chiangpradit, S. Sompong, C. Boonpok, $\Lambda_{(\tau_1,\tau_2)}$ -sets and related topological spaces, (submitted).
- [9] M. Chiangpradit, S. Sompong, C. Boonpok, *C*-Λ_(τ1,τ2)-sets in bitopological spaces, Int. J. Math. Comput. Sci. 19 (2004), 875–880.
- [10] A.S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Mon. 68 (1961), 886–893.
- [11] C. Dorsett, Semi- T_2 , semi- R_1 and semi- R_0 topological spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143–150.
- [12] K.K. Dube, A note on R₁ topological spaces, Period Math. Hungar. 13 (1982), 267–271.
- [13] B. Kong-ied, S. Sompong, C. Boonpok, On (τ_1, τ_2) - R_0 bitopological spaces, (accepted).
- [14] B. Kong-ied, S. Sompong, C. Boonpok, On (τ_1, τ_2) - R_1 bitopological spaces, Int. J. Math. Comput. Sci. 19 (2024), 827–832.
- [15] S. Lugojan, Generalized topology, Stud. Cerc. Mat. 34 (1982), 348–360.
- [16] S.N. Maheshwari, R. Prasad, On (*R*₀)_s-spaces, Portug. Math. 34 (1975), 213–217.
- [17] M.G. Murdeshwar, S.A. Naimpally, R1-topological spaces, Canad. Math. Bull. 9 (1966), 521–523.
- [18] T. Noiri, Unified characterizations for modifications of R_0 and R_1 topological spaces, Rend. Circ. Mat. Palermo (2), 55 (2006), 29–42.
- [19] M.S. Sarsak, New separation axioms in generalized topological spaces, Acta Math. Hungar. 132 (2011), 244–252. https://doi.org/10.1007/s10474-010-0066-y.
- [20] M.S. Sarsak, Weak separation axioms in generalized topological spaces, Acta Math. Hungar. 131 (2011), 110–121. https://doi.org/10.1007/s10474-010-0017-7.
- [21] N.A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
- [22] M. Thongmoon, C. Boonpok, Sober $\delta p(\Lambda, s)$ - R_0 spaces, Int. J. Math. Comput. Sci. 18 (2023), 761–765.
- [23] M. Thongmoon, C. Boonpok, Characterizations of (Λ, p) - R_1 topological spaces, Int. J. Math. Comput. Sci. 18 (2023), 99–103.
- [24] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.