ON $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ BITOPOLOGICAL SPACES

BUTSAKORN KONG-IED ${ }^{1}$, SUPANNEE SOMPONG ${ }^{2}$, CHAWALIT BOONPOK ${ }^{1,3, *}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand
${ }^{2}$ Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand
${ }^{3}$ Mathematics and Applied Mathematics Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand
*Corresponding author: chawalit.b@msu.ac.th

Received Jan. 22, 2024

Abstract

This paper is concerned with the concept of $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ bitopological spaces. Furthermore, some characterizations of $\left(\tau_{1}, \tau_{2}\right)$ - R_{0} bitopological spaces are considered.

2020 Mathematics Subject Classification. 54D10; 54E55.
Key words and phrases. $\tau_{1} \tau_{2}$-open set; $\tau_{1} \tau_{2}$-closed set; $\left(\tau_{1}, \tau_{2}\right)$ - R_{0} space.

1. Introduction

In 1943, Shanin [18] introduced the notion of R_{0} topological spaces. Davis [8] introduced the concept of a separation axiom called R_{1}. These concepts are further investigated by Naimpally [16], Dube [12] and Dorsett [9]. Murdeshwar and Naimpally [15] and Dube [11] studied some of the fundamental properties of the class of R_{1} topological spaces. As natural generalizations of the separations axioms R_{0} and R_{1}, the concepts of semi- R_{0} and semi- R_{1} spaces were introduced and studied by Maheshwari and Prasad [14] and Dorsett [10]. In 2004, Caldas et al. [7] introduced and studied two new weak separation axioms called $\Lambda_{\theta}-R_{0}$ and $\Lambda_{\theta}-R_{1}$ by using the notions of (Λ, θ)-open sets and the (Λ, θ)-closure operator. In 2005, Cammaroto and Noiri [6] defined a weak separation axiom m - R_{0} in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of $m-R_{1}$ spaces and investigated several characterizations of $m-R_{0}$ spaces and $m-R_{1}$ spaces. Thongmoon and Boonpok [20] introduced and investigated the concept of $(\Lambda, p)-R_{1}$ topological spaces. In [1], the present authors introduced and studied the notions of $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces. Furthermore, several characterizations of $\Lambda_{p}-R_{0}$ spaces and ($\left.\Lambda, s\right)$ - R_{0} spaces were established in [3] and [2], respectively. Recently, Thongmoon and Boonpok [19] introduced and studied the notion of

DOI: 10.28924/APJM/11-43
sober $\delta p(\Lambda, s)$ - R_{0} spaces. In this paper, we introduce the concept of $\left(\tau_{1}, \tau_{2}\right)$ - R_{0} bitopological spaces. Moreover, some characterizations of $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ bitopological spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces $\left(X, \tau_{1}, \tau_{2}\right)$ and $\left(Y, \sigma_{1}, \sigma_{2}\right)$ (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. The closure of A and the interior of A with respect to τ_{i} are denoted by $\tau_{i}-\mathrm{Cl}(A)$ and $\tau_{i}-\operatorname{Int}(A)$, respectively, for $i=1,2$. A subset A of a bitopological space (X, τ_{1}, τ_{2}) is called $\tau_{1} \tau_{2}$-closed [5] if $A=\tau_{1}-\mathrm{Cl}\left(\tau_{2}-\mathrm{Cl}(A)\right)$. The complement of a $\tau_{1} \tau_{2}$-closed set is called $\tau_{1} \tau_{2}$-open. The intersection of all $\tau_{1} \tau_{2}$-closed sets of X containing A is called the $\tau_{1} \tau_{2}$-closure [5] of A and is denoted by $\tau_{1} \tau_{2}-\mathrm{Cl}(A)$. The union of all $\tau_{1} \tau_{2}$-open sets of X contained in A is called the $\tau_{1} \tau_{2}$-interior [5] of A and is denoted by $\tau_{1} \tau_{2}-\operatorname{Int}(A)$. A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be $\left(\tau_{1}, \tau_{2}\right) r$ open [21] (resp. $\left(\tau_{1}, \tau_{2}\right)$ s-open [4], $\left(\tau_{1}, \tau_{2}\right)$ p-open [4], $\left(\tau_{1}, \tau_{2}\right) \beta$-open [4]) if $A=\tau_{1} \tau_{2}-\operatorname{Int}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(A)\right)$ (resp. $\left.A \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}\left(\tau_{1} \tau_{2}-\operatorname{Int}(A)\right), A \subseteq \tau_{1} \tau_{2}-\operatorname{-nt}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(A)\right), A \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}\left(\tau_{1} \tau_{2}-\operatorname{Int}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(A)\right)\right)\right)$.

Lemma 1. [5] Let A and B be subsets of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. For the $\tau_{1} \tau_{2}$-closure, the following properties hold:
(1) $A \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(A)$ and $\tau_{1} \tau_{2}-\mathrm{Cl}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(A)\right)=\tau_{1} \tau_{2}-\mathrm{Cl}(A)$.
(2) If $A \subseteq B$, then $\tau_{1} \tau_{2}-C l(A) \subseteq \tau_{1} \tau_{2}-C l(B)$.
(3) $\tau_{1} \tau_{2}-\mathrm{Cl}(A)$ is $\tau_{1} \tau_{2}$-closed.
(4) A is $\tau_{1} \tau_{2}$-closed if and only if $A=\tau_{1} \tau_{2}-\mathrm{Cl}(A)$.
(5) $\tau_{1} \tau_{2}-\operatorname{Cl}(X-A)=X-\tau_{1} \tau_{2}-\operatorname{Int}(A)$.

Lemma 2. For a subset A of a bitopological space (X, τ_{1}, τ_{2}), $x \in \tau_{1} \tau_{2}-C l(A)$ if and only if $U \cap A \neq \emptyset$ for every $\tau_{1} \tau_{2}$-open set U of X containing x.

Definition 1. [5] Let A be a subset of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$. The set $\cap\left\{G \mid A \subseteq G\right.$ and G is $\tau_{1} \tau_{2}$-open $\}$ is called the $\tau_{1} \tau_{2}$-kernel of A and is denoted by $\tau_{1} \tau_{2}-\operatorname{ker}(A)$.

Lemma 3. [5] For subsets A, B of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following properties hold:
(1) $A \subseteq \tau_{1} \tau_{2}-k e r(A)$.
(2) If $A \subseteq B$, then $\tau_{1} \tau_{2}-\operatorname{ker}(A) \subseteq \tau_{1} \tau_{2}-\operatorname{ker}(B)$.
(3) If A is $\tau_{1} \tau_{2}$-open, then $\tau_{1} \tau_{2}-\operatorname{ker}(A)=A$.
(4) $x \in \tau_{1} \tau_{2}$-ker (A) if and only if $A \cap H \neq \emptyset$ for every $\tau_{1} \tau_{2}$-closed set H containing x.

3. Characterizations of $\left(\tau_{1}, \tau_{2}\right)$ - R_{0} spaces

In this section, we introduce the concept of $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ spaces. Moreover, some characterizations of $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ spaces are discussed.

Definition 2. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be $\left(\tau_{1}, \tau_{2}\right)$ - R_{0} if for each $\tau_{1} \tau_{2}$-open set U and each $x \in U, \tau_{1} \tau_{2}-C l(\{x\}) \subseteq U$.

Lemma 4. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and x, y be any points of X. Then, the following properties hold:
(1) $y \in \tau_{1} \tau_{2}-k e r(\{x\})$ if and only if $x \in \tau_{1} \tau_{2}-C l(\{y\})$.
(2) $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\})=\tau_{1} \tau_{2}-k e r(\{y\})$ if and only if $\tau_{1} \tau_{2}-C l(\{x\})=\tau_{1} \tau_{2}-C l(\{y\})$.

Proof. (1) Let $x \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Then, there exists a $\tau_{1} \tau_{2}$-open set U such that $x \in U$ and $y \notin U$. Thus, $y \notin \tau_{1} \tau_{2}-k e r(\{x\})$. The converse is similarly shown.
(2) Suppose that $\tau_{1} \tau_{2}-k e r(\{x\})=\tau_{1} \tau_{2}-k e r(\{y\})$ for any points x, y. Since $x \in \tau_{1} \tau_{2}-k e r(\{x\})$, $x \in \tau_{1} \tau_{2}-k e r(\{y\})$ and by $(1), y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. By Lemma 1, we have $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Similarly, we have $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Next, suppose that $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Since $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$, we have $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and by (1), $y \in \tau_{1} \tau_{2}-k e r(\{x\})$. By Lemma 3, $\tau_{1} \tau_{2}-k e r(\{y\}) \subseteq \tau_{1} \tau_{2}-k e r\left(\tau_{1} \tau_{2}-k e r(\{x\})\right)=\tau_{1} \tau_{2}-k e r(\{x\})$. Similarly, we have $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \subseteq \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$ and hence $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\})=\tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$.

Theorem 1. For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following properties are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.
(2) For each $\tau_{1} \tau_{2}$-closed set F and each $x \in X-F$, there exists a $\tau_{1} \tau_{2}$-open set U such that $F \subseteq U$ and $x \notin U$.
(3) For each $\tau_{1} \tau_{2}$-closed set F and each $x \in X-F, \tau_{1} \tau_{2}-C l(\{x\}) \cap F=\emptyset$.
(4) For any distinct points x, y in $X, \tau_{1} \tau_{2}-C l(\{x\})=\tau_{1} \tau_{2}-C l(\{y\})$ or $\tau_{1} \tau_{2}-C l(\{x\}) \cap \tau_{1} \tau_{2}-C l(\{y\})=\emptyset$.

Proof. (1) $\Rightarrow(2)$: Let F be a $\tau_{1} \tau_{2}$-closed set and $x \in X-F$. Since $X-F$ is $\tau_{1} \tau_{2}$-open and by (1), $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq X-F$. Let $U=X-\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Then, we have U is $\tau_{1} \tau_{2}$-open, $F \subseteq U$ and $x \notin U$.
$(2) \Rightarrow(3):$ Let F be a $\tau_{1} \tau_{2}$-closed set and $x \in X-F$. There exists a $\tau_{1} \tau_{2}$-open set U such that $F \subseteq U$ and $x \notin U$. By Lemma 2, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap U=\emptyset$ and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap F=\emptyset$.
$(3) \Rightarrow(4)$: Let x, y be distinct points of X. Suppose that

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \neq \emptyset
$$

By (3), $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and $y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. By Lemma 1,

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})
$$

Thus, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{2} \tau_{2}-\mathrm{Cl}(\{y\})$.
$(4) \Rightarrow(1)$: Let U be a $\tau_{1} \tau_{2}$-open set and $x \in U$. For any $y \notin U$, by Lemma $2, \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \cap U=\emptyset$ and hence $x \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Therefore, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \neq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By (4), for each $y \notin U$,

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=\emptyset
$$

Since $X-U$ is $\tau_{1} \tau_{2}$-closed, $y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \subseteq X-U$ and

$$
\cup_{y \in X-U} \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=X-U .
$$

Thus,

$$
\begin{aligned}
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap(X-U) & =\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap\left[\cup_{y \in X-U} \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})\right] \\
& =\cup_{y \in X-U}\left[\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})\right] \\
& =\emptyset
\end{aligned}
$$

and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq U$. This shows that $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.
Corollary 1. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ if and only if for each points x and y in X, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \neq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ implies $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=\emptyset$.

Proof. This is obvious by Theorem 1 (4).
Conversely, let U be a $\tau_{1} \tau_{2}$-open set and $x \in U$. If $y \notin U$, then $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \cap U=\emptyset$. Therefore, $x \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \neq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By the hypothesis, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=\emptyset$ and hence $y \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Thus, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq U$. This shows that $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.

Theorem 2. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ if and only if for each points x and y in X, $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \neq \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$ implies $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})=\emptyset$.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $\left(\tau_{1}, \tau_{2}\right)-R_{0}$. Suppose that

$$
\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{y\}) \neq \emptyset
$$

Let $z \in \tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$. Then, $z \in \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$ and by Lemma $4, x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{z\})$. Thus, $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{z\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$ and by Corollary $1, \tau_{1} \tau_{2}-\mathrm{Cl}(\{z\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Similarly, we have $\tau_{1} \tau_{2}-\mathrm{Cl}(\{z\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By Lemma 4, $\tau_{1} \tau_{2}-k e r(\{x\})=$ $\tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$.

Conversely, we show that sufficiency by using Corollary 1 . Suppose that $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \neq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By Lemma 4,

$$
\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \neq \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})
$$

and hence $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})=\emptyset$. Therefore,

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=\emptyset .
$$

In fact, assume $z \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Then, $z \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$ implies $x \in \tau_{1} \tau_{2}-\operatorname{ker}(\{z\})$ and hence

$$
x \in \tau_{1} \tau_{2}-\operatorname{ker}(\{z\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) .
$$

By the hypothesis, $\tau_{1} \tau_{2}-\operatorname{ker}(\{z\})=\tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$ and by Lemma $4, \tau_{1} \tau_{2}-\mathrm{Cl}(\{z\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Similarly, we have

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{z\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})
$$

and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. This contradicts that

$$
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \neq \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})
$$

Therefore, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})=\emptyset$. Thus, $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.
Theorem 3. For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following properties are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.
(2) $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ if and only if $y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$.

Proof. (1) \Rightarrow (2): Suppose that $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By Lemma 4, $y \in \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$ and hence $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{y\}) \neq \emptyset$. By Theorem 2, $\tau_{1} \tau_{2}-\operatorname{ker}(\{x\})=\tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$ and hence $x \in \tau_{1} \tau_{2}-\operatorname{ker}(\{y\})$. By Lemma $4, y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. The converse is similarly shown.
(2) \Rightarrow (1): Let U be a $\tau_{1} \tau_{2}$-open set and $x \in U$. If $y \notin U$, then $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \cap U=\emptyset$. Thus, $x \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$ and $y \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. This implies that $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq U$. Therefore, $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.

Theorem 4. For a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$, the following properties are equivalent:
(1) $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.
(2) For each nonempty set A of X and each $\tau_{1} \tau_{2}$-open set U such that $U \cap A \neq \emptyset$, there exists a $\tau_{1} \tau_{2}$-closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
(3) $F=\tau_{1} \tau_{2}-k e r(F)$ for each $\tau_{1} \tau_{2}$-closed set F.
(4) $\tau_{1} \tau_{2}-\operatorname{Cl}(\{x\}) \subseteq \tau_{1} \tau_{2}-k e r(\{x\})$.

Proof. (1) \Rightarrow (2): Let A be a nonempty set of X and U be a $\tau_{1} \tau_{2}$-open set such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq U$. Put $F=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$, then F is $\tau_{1} \tau_{2}$-closed, $A \cap F \neq \emptyset$ and $F \subseteq U$.
$(2) \Rightarrow(3)$: Let F be a $\tau_{1} \tau_{2}$-closed set of X. By Lemma 3, we have $F \subseteq \tau_{1} \tau_{2}-k e r(F)$. Next, we show $F \supseteq \tau_{1} \tau_{2}$ - $\operatorname{ker}(F)$. Let $x \notin F$. Then, $x \in X-F$ and $X-F$ is $\tau_{1} \tau_{2}$-open. By (2), there exists a $\tau_{1} \tau_{2}$-closed set K such that $x \in K$ and $K \subseteq X-F$. Now, put $U=X-K$. Then, U is $\tau_{1} \tau_{2}$-open, $F \subseteq U$ and $x \notin U$. Thus, $x \notin \tau_{1} \tau_{2}-\operatorname{ker}(F)$ and hence $F \supseteq \tau_{1} \tau_{2}-\operatorname{ker}(F)$.
$(3) \Rightarrow(4)$: Let $x \in X$ and $y \notin \tau_{1} \tau_{2}-k e r(\{x\})$. There exists a $\tau_{1} \tau_{2}$-open set U such that $x \in U$ and $y \notin U$. Thus, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \cap U=\emptyset$. By (3), $\tau_{1} \tau_{2}-\operatorname{ker}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})\right) \cap U=\emptyset$. Since $x \notin \tau_{1} \tau_{2}-k e r\left(\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})\right)$, there exists a $\tau_{1} \tau_{2}$-open set G such that $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \subseteq G$ and $x \notin G$. Therefore, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap G=\emptyset$. Since $y \in G$, we have $y \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$ and hence $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$. Moreover,

$$
\begin{aligned}
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) & \subseteq \tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \\
& \subseteq \tau_{1} \tau_{2}-\operatorname{ker}\left(\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})\right) \\
& =\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) .
\end{aligned}
$$

This shows that $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})=\tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$.
$(4) \Rightarrow(5)$: This is obvious.
(5) \Rightarrow (1): Let U be a $\tau_{1} \tau_{2}$-open set and $x \in U$. If $y \notin U$, then $\tau_{1} \tau_{2}-\mathrm{Cl}(\{y\}) \cap U=\emptyset$ and $x \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. By Lemma $4, y \notin \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$ and by (5), $y \notin \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Thus, $\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \subseteq U$ and hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.

Corollary 2. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ if and only if $\tau_{1} \tau_{2}-k e r(\{x\}) \subseteq \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$ for each $x \in X$.

Proof. This is obvious by Theorem 4.
Conversely, let $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. Then by Lemma 4, $y \in \tau_{1} \tau_{2}-k e r(\{x\})$ and hence $y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$. Similarly, if $y \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$, then $x \in \tau_{1} \tau_{2}-\mathrm{Cl}(\{y\})$. It follows from Theorem 3 that $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.

Definition 3. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and $x \in X$. Then, $\langle x\rangle_{\left(\tau_{1}, \tau_{2}\right)}$ is defined by $\langle x\rangle_{\left(\tau_{1}, \tau_{2}\right)}=$ $\tau_{1} \tau_{2}-\operatorname{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})$.

Corollary 3. A bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$ if and only if $\langle x\rangle_{\left(\tau_{1}, \tau_{2}\right)}=\tau_{1} \tau_{2}-\operatorname{Cl}(\{x\})$ for each $x \in X$.

Proof. Let $x \in X$. By Theorem 4, $\tau_{1} \tau_{2}-k e r(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$.
Thus, $\langle x\rangle_{\left(\tau_{1}, \tau_{2}\right)}=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{x\})=\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\})$.
Conversely, let $x \in X$. By the hypothesis,

$$
\begin{aligned}
\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) & =\langle x\rangle_{\left(\tau_{1}, \tau_{2}\right)} \\
& =\tau_{1} \tau_{2}-\mathrm{Cl}(\{x\}) \cap \tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) \\
& \subseteq \tau_{1} \tau_{2}-\operatorname{ker}(\{x\}) .
\end{aligned}
$$

It follows from Theorem 4 that $\left(X, \tau_{1}, \tau_{2}\right)$ is $\left(\tau_{1}, \tau_{2}\right)-R_{0}$.

Acknowledgements

This research project was financially supported by Mahasarakham University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] C. Boonpok, J. Khampakdee, $\delta s(\Lambda, s)-R_{0}$ spaces and $\delta s(\Lambda, s)-R_{1}$ spaces, Int. J. Anal. Appl. 21 (2023), 99. https://doi. org/10.28924/2291-8639-21-2023-99.
[2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math. 16 (2023), 336-362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
[3] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15 (2022), 415-436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274..
[4] C. Boonpok, (τ_{1}, τ_{2}) δ-semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon. 2020.e05367.
[5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower $\left(\tau_{1}, \tau_{2}\right)$-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282-293. https://doi.org/10.22436/jmcs.018.03.04.
[6] F. Cammaroto, T. Noiri, On Λ_{m}-sets and related topological spaces, Acta Math. Hungar. 109 (2005), 261-279. https: //doi.org/10.1007/s10474-005-0245-4.
[7] M. Caldas, S. Jafari, T. Noiri, Characterizations of $\Lambda_{\theta}-R_{0}$ and $\Lambda_{\theta}-R_{1}$ topological spaces, Acta Math. Hungar. 103 (2004), 85-95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
[8] A.S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Mon. 68 (1961), 886-893. https://doi.org/10.1080/00029890.1961.11989785.
[9] C. Dorsett, R_{0} and R_{1} topological spaces, Mat. Vesnik, 2 (1978), 117-122.
[10] C. Dorsett, Semi- T_{2}, semi- R_{1} and semi- R_{0} topological spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143-150.
[11] K.K. Dube, A note on R_{1} topological spaces, Period Math. Hungar. 13 (1982), 267-271.
[12] K.K. Dube, A note on R_{0} topological spaces, Mat. Vesnik, 11 (1974), 203-208.
[13] S. Lugojan, Generalized topology, Stud. Cerc. Mat. 34 (1982), 348-360.
[14] S.N. Maheshwari, R. Prasad, On $\left(R_{0}\right)_{s}$-spaces, Portug. Math. 34 (1975), 213-217.
[15] M.G. Murdeshwar, S.A. Naimpally, R_{1}-topological spaces, Canad. Math. Bull. 9 (1966), 521-523.
[16] S.A. Naimpally, On R_{0} topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967),53-54.
[17] T. Noiri, Unified characterizations for modifications of R_{0} and R_{1} topological spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29-42.
[18] N.A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110-113.
[19] M. Thongmoon, C. Boonpok, Sober $\delta p(\Lambda, s)-R_{0}$ spaces, Int. J. Math. Comput. Sci. 18 (2023),761-765.
[20] M. Thongmoon, C. Boonpok, Characterizations of (Λ, p)- R_{1} topological spaces, Int. J. Math. Comput. Sci. 18 (2023), 99-103.
[21] C. Viriyapong, C. Boonpok, $\left(\tau_{1}, \tau_{2}\right) \alpha$-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.

