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1. Introduction

In 1943, Shanin [18] introduced the notion ofR0 topological spaces. Davis [8] introduced the concept
of a separation axiom called R1. These concepts are further investigated by Naimpally [16], Dube [12]
and Dorsett [9]. Murdeshwar and Naimpally [15] and Dube [11] studied some of the fundamental
properties of the class ofR1 topological spaces. As natural generalizations of the separations axiomsR0

and R1, the concepts of semi-R0 and semi-R1 spaces were introduced and studied by Maheshwari and
Prasad [14] andDorsett [10]. In 2004, Caldas et al. [7] introduced and studied two newweak separation
axioms called Λθ-R0 and Λθ-R1 by using the notions of (Λ, θ)-open sets and the (Λ, θ)-closure operator.
In 2005, Cammaroto and Noiri [6] defined a weak separation axiom m-R0 in m-spaces which are
equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of
m-R1 spaces and investigated several characterizations ofm-R0 spaces andm-R1 spaces. Thongmoon
and Boonpok [20] introduced and investigated the concept of (Λ, p)-R1 topological spaces. In [1],
the present authors introduced and studied the notions of δs(Λ, s)-R0 spaces and δs(Λ, s)-R1 spaces.
Furthermore, several characterizations of Λp-R0 spaces and (Λ, s)-R0 spaces were established in [3]
and [2], respectively. Recently, Thongmoon and Boonpok [19] introduced and studied the notion of
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sober δp(Λ, s)-R0 spaces. In this paper, we introduce the concept of (τ1, τ2)-R0 bitopological spaces.
Moreover, some characterizations of (τ1, τ2)-R0 bitopological spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [5] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. The intersection of all τ1τ2-closed sets ofX containingA is called the τ1τ2-closure [5] ofA and
is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets ofX contained inA is called the τ1τ2-interior [5]
of A and is denoted by τ1τ2-Int(A). A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-

open [21] (resp. (τ1, τ2)s-open [4], (τ1, τ2)p-open [4], (τ1, τ2)β-open [4]) ifA = τ1τ2-Int(τ1τ2-Cl(A)) (resp.
A ⊆ τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))).

Lemma 1. [5] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

Lemma 2. For a subset A of a bitopological space (X, τ1, τ2), x ∈ τ1τ2-Cl(A) if and only if U ∩A 6= ∅ for every

τ1τ2-open set U of X containing x.

Definition 1. [5] LetA be a subset of a bitopological space (X, τ1, τ2). The set∩{G | A ⊆ G and G is τ1τ2-open}

is called the τ1τ2-kernel of A and is denoted by τ1τ2-ker(A).

Lemma 3. [5] For subsets A,B of a bitopological space (X, τ1, τ2), the following properties hold:

(1) A ⊆ τ1τ2-ker(A).

(2) If A ⊆ B, then τ1τ2-ker(A) ⊆ τ1τ2-ker(B).

(3) If A is τ1τ2-open, then τ1τ2-ker(A) = A.

(4) x ∈ τ1τ2-ker(A) if and only if A ∩H 6= ∅ for every τ1τ2-closed set H containing x.

3. Characterizations of (τ1, τ2)-R0 spaces

In this section, we introduce the concept of (τ1, τ2)-R0 spaces. Moreover, some characterizations of
(τ1, τ2)-R0 spaces are discussed.
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Definition 2. A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-R0 if for each τ1τ2-open set U and each

x ∈ U , τ1τ2-Cl({x}) ⊆ U .

Lemma 4. Let (X, τ1, τ2) be a bitopological space and x, y be any points of X . Then, the following properties

hold:

(1) y ∈ τ1τ2-ker({x}) if and only if x ∈ τ1τ2-Cl({y}).
(2) τ1τ2-ker({x}) = τ1τ2-ker({y}) if and only if τ1τ2-Cl({x}) = τ1τ2-Cl({y}).

Proof. (1) Let x 6∈ τ1τ2-Cl({y}). Then, there exists a τ1τ2-open set U such that x ∈ U and y 6∈ U . Thus,
y 6∈ τ1τ2-ker({x}). The converse is similarly shown.

(2) Suppose that τ1τ2-ker({x}) = τ1τ2-ker({y}) for any points x, y. Since x ∈ τ1τ2-ker({x}),
x ∈ τ1τ2-ker({y}) and by (1), y ∈ τ1τ2-Cl({x}). By Lemma 1, we have τ1τ2-Cl({y}) ⊆ τ1τ2-Cl({x}).
Similarly, we have τ1τ2-Cl({x}) ⊆ τ1τ2-Cl({y}) and hence τ1τ2-Cl({x}) = τ1τ2-Cl({y}). Next, suppose
that τ1τ2-Cl({x}) = τ1τ2-Cl({y}). Since x ∈ τ1τ2-Cl({x}), we have x ∈ τ1τ2-Cl({y}) and by (1),
y ∈ τ1τ2-ker({x}). By Lemma 3, τ1τ2-ker({y}) ⊆ τ1τ2-ker(τ1τ2-ker({x})) = τ1τ2-ker({x}). Similarly,
we have τ1τ2-ker({x}) ⊆ τ1τ2-ker({y}) and hence τ1τ2-ker({x}) = τ1τ2-ker({y}). �

Theorem 1. For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-R0.

(2) For each τ1τ2-closed set F and each x ∈ X − F , there exists a τ1τ2-open set U such that F ⊆ U and

x 6∈ U .

(3) For each τ1τ2-closed set F and each x ∈ X − F , τ1τ2-Cl({x}) ∩ F = ∅.

(4) For any distinct points x, y in X , τ1τ2-Cl({x}) = τ1τ2-Cl({y}) or τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅.

Proof. (1) ⇒ (2): Let F be a τ1τ2-closed set and x ∈ X − F . Since X − F is τ1τ2-open and by (1),
τ1τ2-Cl({x}) ⊆ X − F . Let U = X − τ1τ2-Cl({x}). Then, we have U is τ1τ2-open, F ⊆ U and x 6∈ U .

(2)⇒ (3): Let F be a τ1τ2-closed set and x ∈ X − F . There exists a τ1τ2-open set U such that F ⊆ U
and x 6∈ U . By Lemma 2, τ1τ2-Cl({x}) ∩ U = ∅ and hence τ1τ2-Cl({x}) ∩ F = ∅.

(3)⇒ (4): Let x, y be distinct points of X . Suppose that

τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) 6= ∅.

By (3), x ∈ τ1τ2-Cl({y}) and y ∈ τ1τ2-Cl({x}). By Lemma 1,

τ1τ2-Cl({x}) ⊆ τ1τ2-Cl({y}) ⊆ τ1τ2-Cl({x}).

Thus, τ1τ2-Cl({x}) = τ2τ2-Cl({y}).
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(4) ⇒ (1): Let U be a τ1τ2-open set and x ∈ U . For any y 6∈ U , by Lemma 2, τ1τ2-Cl({y}) ∩ U = ∅

and hence x 6∈ τ1τ2-Cl({y}). Therefore, τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}). By (4), for each y 6∈ U ,

τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅.

Since X − U is τ1τ2-closed, y ∈ τ1τ2-Cl({y}) ⊆ X − U and

∪y∈X−Uτ1τ2-Cl({y}) = X − U.

Thus,

τ1τ2-Cl({x}) ∩ (X − U) = τ1τ2-Cl({x}) ∩ [∪y∈X−Uτ1τ2-Cl({y})]

= ∪y∈X−U [τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y})]

= ∅

and hence τ1τ2-Cl({x}) ⊆ U . This shows that (X, τ1, τ2) is (τ1, τ2)-R0. �

Corollary 1. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only if for each points x and y in X ,

τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}) implies τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅.

Proof. This is obvious by Theorem 1 (4).
Conversely, let U be a τ1τ2-open set and x ∈ U . If y 6∈ U , then τ1τ2-Cl({y}) ∩ U = ∅. Therefore,

x 6∈ τ1τ2-Cl({y}) and τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}). By the hypothesis, τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅

and hence y 6∈ τ1τ2-Cl({x}). Thus, τ1τ2-Cl({x}) ⊆ U . This shows that (X, τ1, τ2) is (τ1, τ2)-R0. �

Theorem 2. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only if for each points x and y in X ,

τ1τ2-ker({x}) 6= τ1τ2-ker({y}) implies τ1τ2-ker({x}) ∩ τ1τ2-ker({y}) = ∅.

Proof. Let (X, τ1, τ2) be (τ1, τ2)-R0. Suppose that

τ1τ2-ker({x}) ∩ τ1τ2-ker({y}) 6= ∅.

Let z ∈ τ1τ2-ker({x}) ∩ τ1τ2-ker({y}). Then, z ∈ τ1τ2-ker({x}) and by Lemma 4, x ∈ τ1τ2-Cl({z}).
Thus, x ∈ τ1τ2-Cl({z}) ∩ τ1τ2-Cl({x}) and by Corollary 1, τ1τ2-Cl({z}) = τ1τ2-Cl({x}). Similarly, we
have τ1τ2-Cl({z}) = τ1τ2-Cl({y}) and hence τ1τ2-Cl({x}) = τ1τ2-Cl({y}). By Lemma 4, τ1τ2-ker({x}) =

τ1τ2-ker({y}).
Conversely, we show that sufficiency by using Corollary 1. Suppose that τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).

By Lemma 4,

τ1τ2-ker({x}) 6= τ1τ2-ker({y})

and hence τ1τ2-ker({x}) ∩ τ1τ2-ker({y}) = ∅. Therefore,

τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅.
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In fact, assume z ∈ τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}). Then, z ∈ τ1τ2-Cl({x}) implies x ∈ τ1τ2-ker({z}) and
hence

x ∈ τ1τ2-ker({z}) ∩ τ1τ2-ker({x}).

By the hypothesis, τ1τ2-ker({z}) = τ1τ2-ker({x}) and by Lemma 4, τ1τ2-Cl({z}) = τ1τ2-Cl({x}). Simi-
larly, we have

τ1τ2-Cl({z}) = τ1τ2-Cl({y})

and hence τ1τ2-Cl({x}) = τ1τ2-Cl({y}). This contradicts that

τ1τ2-Cl({x}) 6= τ1τ2-Cl({y}).

Therefore, τ1τ2-Cl({x}) ∩ τ1τ2-Cl({y}) = ∅. Thus, (X, τ1, τ2) is (τ1, τ2)-R0. �

Theorem 3. For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-R0.

(2) x ∈ τ1τ2-Cl({y}) if and only if y ∈ τ1τ2-Cl({x}).

Proof. (1)⇒ (2): Suppose that x ∈ τ1τ2-Cl({y}). By Lemma 4, y ∈ τ1τ2-ker({x}) and hence
τ1τ2-ker({x}) ∩ τ1τ2-ker({y}) 6= ∅. By Theorem 2, τ1τ2-ker({x}) = τ1τ2-ker({y}) and hence
x ∈ τ1τ2-ker({y}). By Lemma 4, y ∈ τ1τ2-Cl({x}). The converse is similarly shown.

(2) ⇒ (1): Let U be a τ1τ2-open set and x ∈ U . If y 6∈ U , then τ1τ2-Cl({y}) ∩ U = ∅. Thus,
x 6∈ τ1τ2-Cl({y}) and y 6∈ τ1τ2-Cl({x}). This implies that τ1τ2-Cl({x}) ⊆ U . Therefore, (X, τ1, τ2) is
(τ1, τ2)-R0. �

Theorem 4. For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-R0.

(2) For each nonempty set A of X and each τ1τ2-open set U such that U ∩A 6= ∅, there exists a τ1τ2-closed

set F such that A ∩ F 6= ∅ and F ⊆ U .

(3) F = τ1τ2-ker(F ) for each τ1τ2-closed set F .

(4) τ1τ2-Cl({x}) ⊆ τ1τ2-ker({x}).

Proof. (1) ⇒ (2): Let A be a nonempty set of X and U be a τ1τ2-open set such that A ∩ U 6= ∅. Then,
there exists x ∈ A ∩ U and hence τ1τ2-Cl({x}) ⊆ U . Put F = τ1τ2-Cl({x}), then F is τ1τ2-closed,
A ∩ F 6= ∅ and F ⊆ U .

(2)⇒ (3): Let F be a τ1τ2-closed set of X . By Lemma 3, we have F ⊆ τ1τ2-ker(F ). Next, we show
F ⊇ τ1τ2-ker(F ). Let x 6∈ F . Then, x ∈ X −F andX −F is τ1τ2-open. By (2), there exists a τ1τ2-closed
setK such that x ∈ K andK ⊆ X − F . Now, put U = X −K. Then, U is τ1τ2-open, F ⊆ U and x 6∈ U .
Thus, x 6∈ τ1τ2-ker(F ) and hence F ⊇ τ1τ2-ker(F ).
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(3)⇒ (4): Let x ∈ X and y 6∈ τ1τ2-ker({x}). There exists a τ1τ2-open setU such that x ∈ U and y 6∈ U .
Thus, τ1τ2-Cl({y}) ∩ U = ∅. By (3), τ1τ2-ker(τ1τ2-Cl({y})) ∩ U = ∅. Since x 6∈ τ1τ2-ker(τ1τ2-Cl({y})),
there exists a τ1τ2-open set G such that τ1τ2-Cl({y}) ⊆ G and x 6∈ G. Therefore, τ1τ2-Cl({x}) ∩G = ∅.
Since y ∈ G, we have y 6∈ τ1τ2-Cl({x}) and hence τ1τ2-Cl({x}) ⊆ τ1τ2-ker({x}). Moreover,

τ1τ2-Cl({x}) ⊆ τ1τ2-ker({x})

⊆ τ1τ2-ker(τ1τ2-Cl({x}))

= τ1τ2-Cl({x}).

This shows that τ1τ2-Cl({x}) = τ1τ2-ker({x}).
(4)⇒ (5): This is obvious.
(5)⇒ (1): Let U be a τ1τ2-open set and x ∈ U . If y 6∈ U , then τ1τ2-Cl({y}) ∩ U = ∅ and

x 6∈ τ1τ2-Cl({y}). By Lemma 4, y 6∈ τ1τ2-ker({x}) and by (5), y 6∈ τ1τ2-Cl({x}). Thus,
τ1τ2-Cl({x}) ⊆ U and hence (X, τ1, τ2) is (τ1, τ2)-R0. �

Corollary 2. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only if τ1τ2-ker({x}) ⊆ τ1τ2-Cl({x}) for

each x ∈ X .

Proof. This is obvious by Theorem 4.
Conversely, let x ∈ τ1τ2-Cl({y}). Then by Lemma 4, y ∈ τ1τ2-ker({x}) and hence y ∈ τ1τ2-Cl({x}).

Similarly, if y ∈ τ1τ2-Cl({x}), then x ∈ τ1τ2-Cl({y}). It follows from Theorem 3 that (X, τ1, τ2) is
(τ1, τ2)-R0. �

Definition 3. Let (X, τ1, τ2) be a bitopological space and x ∈ X . Then, 〈x〉(τ1,τ2) is defined by 〈x〉(τ1,τ2) =

τ1τ2-Cl({x}) ∩ τ1τ2-ker({x}).

Corollary 3. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only if 〈x〉(τ1,τ2) = τ1τ2-Cl({x}) for each

x ∈ X .

Proof. Let x ∈ X . By Theorem 4, τ1τ2-ker({x}) = τ1τ2-Cl({x}).
Thus, 〈x〉(τ1,τ2) = τ1τ2-Cl({x}) ∩ τ1τ2-ker({x}) = τ1τ2-Cl({x}).

Conversely, let x ∈ X . By the hypothesis,

τ1τ2-Cl({x}) = 〈x〉(τ1,τ2)

= τ1τ2-Cl({x}) ∩ τ1τ2-ker({x})

⊆ τ1τ2-ker({x}).

It follows from Theorem 4 that (X, τ1, τ2) is (τ1, τ2)-R0. �
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