

ON (τ_1, τ_2) - R_0 **BITOPOLOGICAL SPACES**

BUTSAKORN KONG-IED¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,3,*}

¹Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand ²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

³Mathematics and Applied Mathematics Research Unit, Mahasarakham University, Maha Sarakham, 44150, Thailand *Corresponding author: chawalit.b@msu.ac.th

Received Jan. 22, 2024

Abstract. This paper is concerned with the concept of (τ_1, τ_2) - R_0 bitopological spaces. Furthermore, some characterizations of (τ_1, τ_2) - R_0 bitopological spaces are considered.

 $2020\ Mathematics\ Subject\ Classification.\ 54D10;\ 54E55.$

Key words and phrases. $\tau_1\tau_2$ -open set; $\tau_1\tau_2$ -closed set; (τ_1, τ_2) - R_0 space.

1. INTRODUCTION

In 1943, Shanin [18] introduced the notion of R_0 topological spaces. Davis [8] introduced the concept of a separation axiom called R_1 . These concepts are further investigated by Naimpally [16], Dube [12] and Dorsett [9]. Murdeshwar and Naimpally [15] and Dube [11] studied some of the fundamental properties of the class of R_1 topological spaces. As natural generalizations of the separations axioms R_0 and R_1 , the concepts of semi- R_0 and semi- R_1 spaces were introduced and studied by Maheshwari and Prasad [14] and Dorsett [10]. In 2004, Caldas et al. [7] introduced and studied two new weak separation axioms called Λ_{θ} - R_0 and Λ_{θ} - R_1 by using the notions of (Λ , θ)-open sets and the (Λ , θ)-closure operator. In 2005, Cammaroto and Noiri [6] defined a weak separation axiom m- R_0 in m-spaces which are equivalent to generalized topological spaces due to Lugojan [13]. Noiri [17] introduced the notion of m- R_1 spaces and investigated several characterizations of m- R_0 spaces and m- R_1 spaces. In [1], the present authors introduced and studied the notions of $\delta s(\Lambda, s)$ - R_0 spaces and $\delta s(\Lambda, s)$ - R_1 spaces. Furthermore, several characterizations of Λ_p - R_0 spaces and (Λ, s)- R_0 spaces were established in [3] and [2], respectively. Recently, Thongmoon and Boonpok [19] introduced and studied the notion of

DOI: 10.28924/APJM/11-43

sober $\delta p(\Lambda, s)$ - R_0 spaces. In this paper, we introduce the concept of (τ_1, τ_2) - R_0 bitopological spaces. Moreover, some characterizations of (τ_1, τ_2) - R_0 bitopological spaces are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [5] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [5] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [5] of A and is denoted by $\tau_1 \tau_2$ -Int(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ open [21] (resp. $(\tau_1, \tau_2)s$ -open [4], $(\tau_1, \tau_2)p$ -open [4], $(\tau_1, \tau_2)\beta$ -open [4]) if $A = \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)), $A \subseteq \tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A))), $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int $(\tau_1 \tau_2$ -Cl(A)))).

Lemma 1. [5] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -Cl(A) and $\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Cl(A)) = $\tau_1 \tau_2$ -Cl(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2$ -Cl(A) is $\tau_1 \tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

Lemma 2. For a subset A of a bitopological space (X, τ_1, τ_2) , $x \in \tau_1 \tau_2$ -Cl(A) if and only if $U \cap A \neq \emptyset$ for every $\tau_1 \tau_2$ -open set U of X containing x.

Definition 1. [5] Let A be a subset of a bitopological space (X, τ_1, τ_2) . The set $\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{-open} \}$ is called the $\tau_1 \tau_2$ -kernel of A and is denoted by $\tau_1 \tau_2$ -ker(A).

Lemma 3. [5] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

3. Characterizations of (τ_1, τ_2) - R_0 spaces

In this section, we introduce the concept of (τ_1, τ_2) - R_0 spaces. Moreover, some characterizations of (τ_1, τ_2) - R_0 spaces are discussed.

Definition 2. A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_0 if for each $\tau_1\tau_2$ -open set U and each $x \in U, \tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$.

Lemma 4. Let (X, τ_1, τ_2) be a bitopological space and x, y be any points of X. Then, the following properties *hold*:

(1) $y \in \tau_1 \tau_2$ -ker({x}) if and only if $x \in \tau_1 \tau_2$ -Cl({y}).

(2) $\tau_1 \tau_2$ -ker $(\{x\}) = \tau_1 \tau_2$ -ker $(\{y\})$ if and only if $\tau_1 \tau_2$ -Cl $(\{x\}) = \tau_1 \tau_2$ -Cl $(\{y\})$.

Proof. (1) Let $x \notin \tau_1 \tau_2$ -Cl({y}). Then, there exists a $\tau_1 \tau_2$ -open set U such that $x \in U$ and $y \notin U$. Thus, $y \notin \tau_1 \tau_2$ - $ker({x})$. The converse is similarly shown.

(2) Suppose that $\tau_1\tau_2$ - $ker(\{x\}) = \tau_1\tau_2$ - $ker(\{y\})$ for any points x, y. Since $x \in \tau_1\tau_2$ - $ker(\{x\})$, $x \in \tau_1\tau_2$ - $ker(\{y\})$ and by (1), $y \in \tau_1\tau_2$ - $Cl(\{x\})$. By Lemma 1, we have $\tau_1\tau_2$ - $Cl(\{y\}) \subseteq \tau_1\tau_2$ - $Cl(\{x\})$. Similarly, we have $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq \tau_1\tau_2$ - $Cl(\{y\})$ and hence $\tau_1\tau_2$ - $Cl(\{x\}) = \tau_1\tau_2$ - $Cl(\{y\})$. Next, suppose that $\tau_1\tau_2$ - $Cl(\{x\}) = \tau_1\tau_2$ - $Cl(\{y\})$. Since $x \in \tau_1\tau_2$ - $Cl(\{x\})$, we have $x \in \tau_1\tau_2$ - $Cl(\{y\})$ and by (1), $y \in \tau_1\tau_2$ - $ker(\{x\})$. By Lemma 3, $\tau_1\tau_2$ - $ker(\{y\}) \subseteq \tau_1\tau_2$ - $ker(\tau_1\tau_2$ - $ker(\{x\})) = \tau_1\tau_2$ - $ker(\{x\})$. Similarly, we have $\tau_1\tau_2$ - $ker(\{x\}) \subseteq \tau_1\tau_2$ - $ker(\{y\})$ and hence $\tau_1\tau_2$ - $ker(\{x\}) = \tau_1\tau_2$ - $ker(\{y\})$.

Theorem 1. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -R₀.
- (2) For each $\tau_1\tau_2$ -closed set F and each $x \in X F$, there exists a $\tau_1\tau_2$ -open set U such that $F \subseteq U$ and $x \notin U$.
- (3) For each $\tau_1\tau_2$ -closed set F and each $x \in X F$, $\tau_1\tau_2$ -Cl $(\{x\}) \cap F = \emptyset$.

(4) For any distinct points
$$x, y$$
 in $X, \tau_1\tau_2$ - $Cl(\{x\}) = \tau_1\tau_2$ - $Cl(\{y\})$ or $\tau_1\tau_2$ - $Cl(\{x\}) \cap \tau_1\tau_2$ - $Cl(\{y\}) = \emptyset$.

Proof. (1) \Rightarrow (2): Let *F* be a $\tau_1\tau_2$ -closed set and $x \in X - F$. Since X - F is $\tau_1\tau_2$ -open and by (1), $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq X - F$. Let $U = X - \tau_1\tau_2$ -Cl($\{x\}$). Then, we have *U* is $\tau_1\tau_2$ -open, $F \subseteq U$ and $x \notin U$.

(2) \Rightarrow (3): Let *F* be a $\tau_1\tau_2$ -closed set and $x \in X - F$. There exists a $\tau_1\tau_2$ -open set *U* such that $F \subseteq U$ and $x \notin U$. By Lemma 2, $\tau_1\tau_2$ -Cl($\{x\}$) $\cap U = \emptyset$ and hence $\tau_1\tau_2$ -Cl($\{x\}$) $\cap F = \emptyset$.

 $(3) \Rightarrow (4)$: Let *x*, *y* be distinct points of *X*. Suppose that

$$\tau_1\tau_2\operatorname{-Cl}(\{x\}) \cap \tau_1\tau_2\operatorname{-Cl}(\{y\}) \neq \emptyset.$$

By (3), $x \in \tau_1 \tau_2$ -Cl({*y*}) and $y \in \tau_1 \tau_2$ -Cl({*x*}). By Lemma 1,

$$\tau_1\tau_2\operatorname{-Cl}(\{x\}) \subseteq \tau_1\tau_2\operatorname{-Cl}(\{y\}) \subseteq \tau_1\tau_2\operatorname{-Cl}(\{x\}).$$

Thus, $\tau_1 \tau_2$ -Cl({x}) = $\tau_2 \tau_2$ -Cl({y}).

(4) \Rightarrow (1): Let *U* be a $\tau_1\tau_2$ -open set and $x \in U$. For any $y \notin U$, by Lemma 2, $\tau_1\tau_2$ -Cl($\{y\}$) $\cap U = \emptyset$ and hence $x \notin \tau_1\tau_2$ -Cl($\{y\}$). Therefore, $\tau_1\tau_2$ -Cl($\{x\}$) $\neq \tau_1\tau_2$ -Cl($\{y\}$). By (4), for each $y \notin U$,

$$\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap \tau_1 \tau_2 \operatorname{-Cl}(\{y\}) = \emptyset.$$

Since X - U is $\tau_1 \tau_2$ -closed, $y \in \tau_1 \tau_2$ -Cl $(\{y\}) \subseteq X - U$ and

$$\bigcup_{y \in X - U} \tau_1 \tau_2 \text{-} \operatorname{Cl}(\{y\}) = X - U.$$

Thus,

$$\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap (X - U) = \tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap [\cup_{y \in X - U} \tau_1 \tau_2 \operatorname{-Cl}(\{y\})]$$
$$= \cup_{y \in X - U} [\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \cap \tau_1 \tau_2 \operatorname{-Cl}(\{y\})]$$
$$= \emptyset$$

and hence $\tau_1 \tau_2$ -Cl({x}) $\subseteq U$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Corollary 1. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if for each points x and y in X, $\tau_1\tau_2$ - $Cl(\{x\}) \neq \tau_1\tau_2$ - $Cl(\{y\})$ implies $\tau_1\tau_2$ - $Cl(\{x\}) \cap \tau_1\tau_2$ - $Cl(\{y\}) = \emptyset$.

Proof. This is obvious by Theorem 1 (4).

Conversely, let U be a $\tau_1\tau_2$ -open set and $x \in U$. If $y \notin U$, then $\tau_1\tau_2$ -Cl($\{y\}$) $\cap U = \emptyset$. Therefore, $x \notin \tau_1\tau_2$ -Cl($\{y\}$) and $\tau_1\tau_2$ -Cl($\{x\}$) $\neq \tau_1\tau_2$ -Cl($\{y\}$). By the hypothesis, $\tau_1\tau_2$ -Cl($\{x\}$) $\cap \tau_1\tau_2$ -Cl($\{y\}$) $= \emptyset$ and hence $y \notin \tau_1\tau_2$ -Cl($\{x\}$). Thus, $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) -R₀. \Box

Theorem 2. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if for each points x and y in X, $\tau_1\tau_2$ -ker $(\{x\}) \neq \tau_1\tau_2$ -ker $(\{y\})$ implies $\tau_1\tau_2$ -ker $(\{x\}) \cap \tau_1\tau_2$ -ker $(\{y\}) = \emptyset$.

Proof. Let (X, τ_1, τ_2) be (τ_1, τ_2) - R_0 . Suppose that

$$\tau_1\tau_2\text{-}ker(\{x\}) \cap \tau_1\tau_2\text{-}ker(\{y\}) \neq \emptyset.$$

Let $z \in \tau_1 \tau_2$ - $ker(\{x\}) \cap \tau_1 \tau_2$ - $ker(\{y\})$. Then, $z \in \tau_1 \tau_2$ - $ker(\{x\})$ and by Lemma 4, $x \in \tau_1 \tau_2$ - $Cl(\{z\})$. Thus, $x \in \tau_1 \tau_2$ - $Cl(\{z\}) \cap \tau_1 \tau_2$ - $Cl(\{x\})$ and by Corollary 1, $\tau_1 \tau_2$ - $Cl(\{z\}) = \tau_1 \tau_2$ - $Cl(\{x\})$. Similarly, we have $\tau_1 \tau_2$ - $Cl(\{z\}) = \tau_1 \tau_2$ - $Cl(\{y\})$ and hence $\tau_1 \tau_2$ - $Cl(\{x\}) = \tau_1 \tau_2$ - $Cl(\{y\})$. By Lemma 4, $\tau_1 \tau_2$ - $ker(\{x\}) = \tau_1 \tau_2$ - $ker(\{y\})$.

Conversely, we show that sufficiency by using Corollary 1. Suppose that $\tau_1 \tau_2$ -Cl({x}) $\neq \tau_1 \tau_2$ -Cl({y}). By Lemma 4,

$$\tau_1\tau_2\text{-}ker(\{x\}) \neq \tau_1\tau_2\text{-}ker(\{y\})$$

and hence $\tau_1\tau_2$ - $ker(\{x\}) \cap \tau_1\tau_2$ - $ker(\{y\}) = \emptyset$. Therefore,

$$\tau_1\tau_2\text{-}\mathrm{Cl}(\{x\})\cap\tau_1\tau_2\text{-}\mathrm{Cl}(\{y\})=\emptyset.$$

In fact, assume $z \in \tau_1 \tau_2$ -Cl($\{x\}$) $\cap \tau_1 \tau_2$ -Cl($\{y\}$). Then, $z \in \tau_1 \tau_2$ -Cl($\{x\}$) implies $x \in \tau_1 \tau_2$ -ker($\{z\}$) and hence

$$x \in \tau_1 \tau_2 \text{-} ker(\{z\}) \cap \tau_1 \tau_2 \text{-} ker(\{x\}).$$

By the hypothesis, $\tau_1\tau_2$ - $ker(\{z\}) = \tau_1\tau_2$ - $ker(\{x\})$ and by Lemma 4, $\tau_1\tau_2$ - $Cl(\{z\}) = \tau_1\tau_2$ - $Cl(\{x\})$. Similarly, we have

$$\tau_1 \tau_2$$
-Cl({z}) = $\tau_1 \tau_2$ -Cl({y})

and hence $\tau_1\tau_2$ -Cl({x}) = $\tau_1\tau_2$ -Cl({y}). This contradicts that

$$\tau_1\tau_2\text{-}\mathrm{Cl}(\{x\}) \neq \tau_1\tau_2\text{-}\mathrm{Cl}(\{y\})$$

Therefore, $\tau_1 \tau_2$ -Cl($\{x\}$) $\cap \tau_1 \tau_2$ -Cl($\{y\}$) = \emptyset . Thus, (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Theorem 3. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -R₀.
- (2) $x \in \tau_1 \tau_2$ -*Cl*({*y*}) *if and only if* $y \in \tau_1 \tau_2$ -*Cl*({*x*}).

Proof. (1) \Rightarrow (2): Suppose that $x \in \tau_1 \tau_2$ -Cl($\{y\}$). By Lemma 4, $y \in \tau_1 \tau_2$ -ker($\{x\}$) and hence $\tau_1 \tau_2$ -ker($\{x\}$) $\cap \tau_1 \tau_2$ -ker($\{y\}$) $\neq \emptyset$. By Theorem 2, $\tau_1 \tau_2$ -ker($\{x\}$) $= \tau_1 \tau_2$ -ker($\{y\}$) and hence $x \in \tau_1 \tau_2$ -ker($\{y\}$). By Lemma 4, $y \in \tau_1 \tau_2$ -Cl($\{x\}$). The converse is similarly shown.

(2) \Rightarrow (1): Let U be a $\tau_1\tau_2$ -open set and $x \in U$. If $y \notin U$, then $\tau_1\tau_2$ -Cl($\{y\}$) $\cap U = \emptyset$. Thus, $x \notin \tau_1\tau_2$ -Cl($\{y\}$) and $y \notin \tau_1\tau_2$ -Cl($\{x\}$). This implies that $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U$. Therefore, (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Theorem 4. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -R₀.
- (2) For each nonempty set A of X and each $\tau_1\tau_2$ -open set U such that $U \cap A \neq \emptyset$, there exists a $\tau_1\tau_2$ -closed set F such that $A \cap F \neq \emptyset$ and $F \subseteq U$.
- (3) $F = \tau_1 \tau_2$ -ker(F) for each $\tau_1 \tau_2$ -closed set F.
- (4) $\tau_1 \tau_2 Cl(\{x\}) \subseteq \tau_1 \tau_2 ker(\{x\}).$

Proof. (1) \Rightarrow (2): Let *A* be a nonempty set of *X* and *U* be a $\tau_1\tau_2$ -open set such that $A \cap U \neq \emptyset$. Then, there exists $x \in A \cap U$ and hence $\tau_1\tau_2$ -Cl($\{x\}$) $\subseteq U$. Put $F = \tau_1\tau_2$ -Cl($\{x\}$), then *F* is $\tau_1\tau_2$ -closed, $A \cap F \neq \emptyset$ and $F \subseteq U$.

 $(2) \Rightarrow (3)$: Let *F* be a $\tau_1\tau_2$ -closed set of *X*. By Lemma 3, we have $F \subseteq \tau_1\tau_2$ -ker(F). Next, we show $F \supseteq \tau_1\tau_2$ -ker(F). Let $x \notin F$. Then, $x \in X - F$ and X - F is $\tau_1\tau_2$ -open. By (2), there exists a $\tau_1\tau_2$ -closed set *K* such that $x \in K$ and $K \subseteq X - F$. Now, put U = X - K. Then, *U* is $\tau_1\tau_2$ -open, $F \subseteq U$ and $x \notin U$. Thus, $x \notin \tau_1\tau_2$ -ker(F) and hence $F \supseteq \tau_1\tau_2$ -ker(F).

 $(3) \Rightarrow (4): \text{Let } x \in X \text{ and } y \notin \tau_1 \tau_2 \text{-} ker(\{x\}). \text{ There exists a } \tau_1 \tau_2 \text{-} \text{open set } U \text{ such that } x \in U \text{ and } y \notin U.$ Thus, $\tau_1 \tau_2 \text{-} \text{Cl}(\{y\}) \cap U = \emptyset$. By (3), $\tau_1 \tau_2 \text{-} ker(\tau_1 \tau_2 \text{-} \text{Cl}(\{y\})) \cap U = \emptyset$. Since $x \notin \tau_1 \tau_2 \text{-} ker(\tau_1 \tau_2 \text{-} \text{Cl}(\{y\}))$, there exists a $\tau_1 \tau_2$ -open set G such that $\tau_1 \tau_2 \text{-} \text{Cl}(\{y\}) \subseteq G$ and $x \notin G$. Therefore, $\tau_1 \tau_2 \text{-} \text{Cl}(\{x\}) \cap G = \emptyset$. Since $y \in G$, we have $y \notin \tau_1 \tau_2 \text{-} \text{Cl}(\{x\})$ and hence $\tau_1 \tau_2 \text{-} \text{Cl}(\{x\}) \subseteq \tau_1 \tau_2 \text{-} ker(\{x\})$. Moreover,

$$\tau_1 \tau_2 \operatorname{-Cl}(\{x\}) \subseteq \tau_1 \tau_2 \operatorname{-ker}(\{x\})$$
$$\subseteq \tau_1 \tau_2 \operatorname{-ker}(\tau_1 \tau_2 \operatorname{-Cl}(\{x\}))$$
$$= \tau_1 \tau_2 \operatorname{-Cl}(\{x\}).$$

This shows that $\tau_1 \tau_2$ -Cl($\{x\}$) = $\tau_1 \tau_2$ -ker($\{x\}$).

 $(4) \Rightarrow (5)$: This is obvious.

 $(5) \Rightarrow (1)$: Let U be a $\tau_1\tau_2$ -open set and $x \in U$. If $y \notin U$, then $\tau_1\tau_2$ -Cl $(\{y\}) \cap U = \emptyset$ and $x \notin \tau_1\tau_2$ -Cl $(\{y\})$. By Lemma 4, $y \notin \tau_1\tau_2$ -ker $(\{x\})$ and by $(5), y \notin \tau_1\tau_2$ -Cl $(\{x\})$. Thus, $\tau_1\tau_2$ -Cl $(\{x\}) \subseteq U$ and hence (X, τ_1, τ_2) is (τ_1, τ_2) -R₀.

Corollary 2. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if $\tau_1 \tau_2$ -ker $(\{x\}) \subseteq \tau_1 \tau_2$ - $Cl(\{x\})$ for each $x \in X$.

Proof. This is obvious by Theorem 4.

Conversely, let $x \in \tau_1 \tau_2$ -Cl($\{y\}$). Then by Lemma 4, $y \in \tau_1 \tau_2$ -ker($\{x\}$) and hence $y \in \tau_1 \tau_2$ -Cl($\{x\}$). Similarly, if $y \in \tau_1 \tau_2$ -Cl($\{x\}$), then $x \in \tau_1 \tau_2$ -Cl($\{y\}$). It follows from Theorem 3 that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Definition 3. Let (X, τ_1, τ_2) be a bitopological space and $x \in X$. Then, $\langle x \rangle_{(\tau_1, \tau_2)}$ is defined by $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1 \tau_2$ - $Cl(\{x\}) \cap \tau_1 \tau_2$ -ker $(\{x\})$.

Corollary 3. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if $\langle x \rangle_{(\tau_1, \tau_2)} = \tau_1 \tau_2$ - $Cl(\{x\})$ for each $x \in X$.

Proof. Let $x \in X$. By Theorem 4, $\tau_1 \tau_2$ -ker $(\{x\}) = \tau_1 \tau_2$ -Cl $(\{x\})$. Thus, $\langle x \rangle_{(\tau_1,\tau_2)} = \tau_1 \tau_2$ -Cl $(\{x\}) \cap \tau_1 \tau_2$ -ker $(\{x\}) = \tau_1 \tau_2$ -Cl $(\{x\})$.

Conversely, let $x \in X$. By the hypothesis,

$$\tau_{1}\tau_{2}\text{-}\operatorname{Cl}(\{x\}) = \langle x \rangle_{(\tau_{1},\tau_{2})}$$
$$= \tau_{1}\tau_{2}\text{-}\operatorname{Cl}(\{x\}) \cap \tau_{1}\tau_{2}\text{-}ker(\{x\})$$
$$\subseteq \tau_{1}\tau_{2}\text{-}ker(\{x\}).$$

It follows from Theorem 4 that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Acknowledgements

This research project was financially supported by Mahasarakham University.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] C. Boonpok, J. Khampakdee, $\delta s(\Lambda, s)-R_0$ spaces and $\delta s(\Lambda, s)-R_1$ spaces, Int. J. Anal. Appl. 21 (2023), 99. https://doi.org/10.28924/2291-8639-21-2023-99.
- [2] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- [3] C. Boonpok, C. Viriyapong, On (Λ, p)-closed sets and the related notions in topological spaces, Eur. J. Pure Appl. Math., 15 (2022), 415–436. https://doi.org/10.29020/nybg.ejpam.v15i2.4274..
- [4] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [5] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2) -precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [6] F. Cammaroto, T. Noiri, On Λ_m -sets and related topological spaces, Acta Math. Hungar. 109 (2005), 261–279. https: //doi.org/10.1007/s10474-005-0245-4.
- [7] M. Caldas, S. Jafari, T. Noiri, Characterizations of Λ_{θ} - R_0 and Λ_{θ} - R_1 topological spaces, Acta Math. Hungar. 103 (2004), 85–95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
- [8] A.S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Mon. 68 (1961), 886–893. https://doi.org/10.1080/00029890.1961.11989785.
- [9] C. Dorsett, R₀ and R₁ topological spaces, Mat. Vesnik, 2 (1978), 117–122.
- [10] C. Dorsett, Semi- T_2 , semi- R_1 and semi- R_0 topological spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143–150.
- [11] K.K. Dube, A note on R₁ topological spaces, Period Math. Hungar. 13 (1982), 267–271.
- [12] K.K. Dube, A note on R_0 topological spaces, Mat. Vesnik, 11 (1974), 203–208.
- [13] S. Lugojan, Generalized topology, Stud. Cerc. Mat. 34 (1982), 348–360.
- [14] S.N. Maheshwari, R. Prasad, On (*R*₀)_s-spaces, Portug. Math. 34 (1975), 213–217.
- [15] M.G. Murdeshwar, S.A. Naimpally, R₁-topological spaces, Canad. Math. Bull. 9 (1966), 521–523.
- [16] S.A. Naimpally, On R₀ topological spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967), 53–54.
- [17] T. Noiri, Unified characterizations for modifications of R_0 and R_1 topological spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29–42.
- [18] N.A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
- [19] M. Thongmoon, C. Boonpok, Sober $\delta p(\Lambda, s)$ - R_0 spaces, Int. J. Math. Comput. Sci. 18 (2023), 761–765.
- [20] M. Thongmoon, C. Boonpok, Characterizations of (Λ, p) - R_1 topological spaces, Int. J. Math. Comput. Sci. 18 (2023), 99–103.
- [21] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.