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Abstract. In this paper, the notion of S-topological transformation group is defined and studied. S-
topological transformation group results when a topological transformation group is weakened by semi
totally continuity in lieu of continuity. For a map Ψh : X → X given by Ψh(x) = Ψ(h, x), it is ascertained
that Ψh and Ψh−1 are semi totally continuous and the collection of all semi totally continuous functions of
X onto itself, denoted by STCG(X) constitutes a paratopological group under composition. The extremally
disconnectedness property of STCG(X) creates a Moscow topological group structure on STCG(X) and
it contains an open boolean subgroup. Some basic properties of the S-topological transformation group
are explored and we show that a S-topological transformation group implies topological transformation
group but the converse is not necessarily true.
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Key words and phrases. topological group; paratopological group; topological transformation group; semi
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1. Introduction and Preliminaries

The exploration of topological transformation group was sparked by Montogomery and Zippin,
which includes Hilbert’s fifth problem [16]. Topological transformation group is a structure moulded
by interconnecting topological group and topological space with a continuous action. In 1966, William
J. Gray [8] discussed a topological transformation group having an end (fixed) point. J. De Vries [6]
described a universal topological transformation group in terms of the actions of any infinite locally
compact group. Dimension of a topological transformation group was given by Hsu-Tung Ku and
Mei-Chin Ku [11]. In 1990, David B. Ellis [7] analyzed the suspensions of topological transformation
group. R. A. Alsabeh and E. Y. Abdullah [2] defined distal in topological transformation group and
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used the concept of automorphism to obtain strongly distal. In 2017, E. Y. Abdullah [1] established the
properties of extensive set by semi group of topological transformation group. G. Oguz [13] discussed
the soft topological transformation group in 2020. The class of Moscow spaces are introduced and their
characterisations based on pesudocompactness and extremally disconnectedness were established in
chapter 6 of [3]. Also the author proved that the class of locally pesudocompact topological group is a
subclass of Moscow topological group. p-topological group [9], β-ideal topological group [10] are
the structures which motivates us to undergone with an innovative topological transformation group
structure in the view of semi totally continuous function. A new generalization of M. Stone’s strong
continuous function is semi totally continuous, which is closed under composition and the relation
between semi totally continuous and totally continuous were established by S. S.Benchalli and Umadevi
I Neeli [4].

In this paper, a novel structure called S-topological transformation group has been induced by semi
totally continuous function. S-topological transformation group is a structure formed by concatenating
topological group and topological space with a semi totally continuous action. For a S-topological
transformation group, it is proved that the set of all semi totally continuous functions (Ψh

) onX forms
a group structure and is denoted by STCG(X). Later, the map Φ forms a homomorphism between
the topological group G and STCG(X). The kernel of homomorphism Φ from a topological group
to STCG(X) will be known as the kernel of the action Ψ : G × X → X and this kernel is a normal
subgroup of G. Subsequently, it is proved that the quotient map G/KerΨ is isomorphic to Φ(G). The
homomorphism Φ provokes a G-action Ψ

′
: G×X → X given by Ψ

′
(h, x) = Φ(h)(x). The existence of

semi totally continuous map Ψ
′ leads to have a continuous map from a topological group to a subset

of a mapping space and vice-versa. Furthermore, it is proved that for an abelian group G, the group
structure STCG(X) forms a paratopological group. Also it is established that STCG(X) is an extremally
disconnected space and proved that for a finite abelian group G, the structure STCG(X) is a Moscow
topological group. Finally, it is proved that the extremally disconnected topological group STCG(X)

contains an open boolean subgroup.

Definition 1.1. [14] A nonempty set G is said to be a topological group if G satisfies the following
conditions,
(1) G forms a group.
(2) G is a topological space.
(3) The maps ϕ : G×G→ G and α : G→ G defined by ϕ(g, h) = gh and α(g) = g−1 are continuous.

Definition 1.2. [5] A triplet (G, X , ζ) is called a topological transformation group in which G is a
topological group, X is a topological space, and ζ : G ×X → X is a continuous map satisfying the
following conditions,



Asia Pac. J. Math. 2024 11:5 3 of 11

(1) ζ (e, x) = x, for all x ∈ X , where e is the identity element of G.
(2) ζ(h2, ζ(h1, x)) = ζ(h2h1, x), for every h1, h2 ∈ G and x ∈ X. The spaceX , along with a given action
ζ of G, is called a G-space.

Definition 1.3. [12] Let X be a topological space and A the subset of X . If A ⊆ cl(intA), then A is
said to be semiopen.

Definition 1.4. [4] A semi-totally continuous function f is a map from a topological space X into a
topological space Y such that the inverse image of all semi-open subset of Y is clopen in X.

Definition 1.5. [3] A group G is said to be a paratopological group if G is a topological space and the
map ϕ : G×G→ G defined by ϕ(g, h) = gh is continuous.

Theorem 1.6. [4] Semi-totally continuous function is closed under a composition.

Definition 1.7. [3] A space X is extremally disconnected if the closure of any open subset of X is
open.

Proposition 1.8. [3] Every discrete space is extremally disconnected.

Proposition 1.9. [3] A space X which is extremally disconnected is Moscow.

Theorem 1.10. [15] Let X be an extremally disconnected Hausdorff space and let γ : X → X be a
homeomorphism. Then the set C = {x ∈ X|γ(x) = x} of all fixed points of γ is clopen.

Lemma 1.11. [15] Let H be a topological group. If B(H) = {h ∈ H|h2 = 1} is a neighborhood of 1,
then H contains an open boolean subgroup.

2. S-Topological Transformation Group

S-Topological Transformation Group is defined and some of its basic properties are studied. This
section aims to obtain a group structure on the set of all semi totally continuous functions on X .

Definition 2.1. A triplet (G,X ,Ψ) called S-topological transformation group when G is a topological
group, X be a topological space and Ψ : G × X → X a semi totally continuous map and it satisfies the
following conditions,
(1) Ψ (e, x) = x, for every x ∈ X , where e represents the identity element of G.
(2) Ψ(h2,Ψ(h1, x)) = Ψ(h2h1, x), for every h1, h2 ∈ G and x ∈ X.

Remark 2.2. Any group G with discrete topology acts on itself under group operation forms a S-
topological transformation group.
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Example 2.3. Let G = Z2 = {[0], [1]} be a topological group equipped with a discrete topology. Let U
be the disconnected graph equipped with a discrete topology with two components A1 and A2 each of
them is a 2-simplex, whereAi = (Vi, Ei) such that Vi =

{
vi1, vi2, vi3

}, i = 1,2 and Ei =
{
ei1, ei2, ei3

}, i =
1,2. Then the map Ψ : Z2×U → U defined by Ψ([0], vi1) = vi1, Ψ([0], vi2) = vi2 , Ψ([0], vi3) = vi3, where
i = 1, 2. and Ψ([1], v11) = v21 , Ψ([1], v12) = v22, Ψ([1], v13) = v23, Ψ([1], v21) = v11 , Ψ([1], v22) = v12,
Ψ([1], v23) = v13 forms a S-topological transformation group.

Proposition 2.4. Every S-topological transformation group is a topological transformation group.

Proof. Since every semitotally continuous function is continuous, Ψ is continuous. Hence (G,X ,Ψ) is a
topological transformation group. �

The converse of the above proposition need not be true, which is provided in the following example.

Example 2.5. Let G = R be the set of real numbers and it forms a topological group under addition.
Let X = R is a topological space equipped with standard topology. Then the map Ψ : R × R→ R be
given by Ψ(x, y) = x+ y is continuous. Thus (R,R,Ψ) forms a topological transformation group. Since
Ψ−1(R) is not clopen, (R,R,Ψ)is not a S-topological transformation group.

Theorem 2.6. For S-topological transformation group (G,X,Ψ), h ∈ G, let a map Ψh : X → X be
defined by Ψh(x) = Ψ(h, x). Then Ψh and its inverse are semi totally continuous.

Proof. Given h ∈ G, let ih : X → G × X be the map defined by ih(x) = (h, x). According to the
definition of product topology, ih is continuous. Let Ψh = Ψ ◦ ih and V be a semiopen set in X , then
(Ψ ◦ ih)−1(V) = (ih)−1(Ψ−1(V)) and Ψ−1(V) is clopen, as Ψ is semi totally continuous. Since ih is
continuous, (ih)−1(Ψ−1(V)) is clopen and thus Ψh is semi totally continuous. Let Ψh : X → X be given
by Ψh(x) = Ψ(h, x) = hx. Now we show that Ψh is bijective.

(i) The Injectivity condition : Let x, y ∈ X,

Ψh(x) = Ψh(y)

h−1(hx) = h−1(hy)

(h−1h)x = (h−1h)y

x = y.

Therefore Ψh is injective.
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(ii) The Surjectivity condition : Let x ∈ X,

x = ex

= (hh−1)x

= h(h−1x)

= hy

= Ψh(y)

Therefore, Ψh is surjective.
=⇒ Ψh is bijective and inverse exists, (Ψh)−1= Ψh−1 .

Let V be a semiopen set in X , then (Ψ ◦ (ih−1)−1(V )) = (ih−1)−1(Ψ−1(V )) and Ψ−1(V ) is clopen, as Ψ

is semi totally continuous. Since ih is continuous, (ih−1)−1(Ψ−1(V)) is clopen and (Ψh)−1 is semi totally
continuous. Hence Ψh and (Ψh)−1 are semi totally continuous. �

Since, the semi totally continuous functions are closed under composition, the closure holds. Com-
position is always associative. Since Ψh ◦Ψh−1 = id, inverse and identity exists. This implies, STCG(X)

forms a group under composition.

Proposition 2.7. Let Φ : G→ STCG(X) defined by h 7→ Ψh. Then G is homomorphic to STCG(X).

Proof. For any h1, h2 ∈ G, we have

Φ(h1h2) = Φ(h1h2)(x)

= Ψh1h2(x)

= Ψ ◦ ih1h2(x)

= Ψ(h1,Ψ ◦ ih2)(x)

= (Ψh1 ◦Ψh2)(x)

= Φ(h1) ◦ Φ(h2).

Therefore G is homomorphic to STCG(X). �

Remark 2.8.

(i) The kernel of homomorphism Φ is the kernel of action Ψ.
(ii) Ker Ψ is a normal subgroup of G.
(iii) If Φ : G→ STCG(X) is a group homomorphism with P = KerΦ, thenG/P is isomorphic to Φ(G).



Asia Pac. J. Math. 2024 11:5 6 of 11

2.1. STCG(X) - a Paratopological group. This section is focused to obtain a paratopological and
Moscow topological group structure on STCG(X).

Proposition 2.9. Given a homomorphism Φ : G → STCG(X) defined by Φ(h)(x) = Ψ
′
(h, x) where

Ψ
′

: G×X → X . Then Ψ
′ is a G-action.

Proof. Straightforward. �

Corollary 2.10. Ψ
′ is a G-action if and only if Φ is a homomorphism of groups.

Proof. The proof follows from the Remark 2.8 (i) and Proposition 2.9. �

For a topological spaces X and Y , the set of semi totally continuous map f : X → Y is denoted by
the Map (X,Y ). The Map(X,Y ) is called a mapping space. Now, for a subset F ⊂Map(X,X), let
W (C, S) = {Ψ ∈ F/Ψ(C) ⊂ S}where C and S are the given clopen subset and a semiopen subset of
X . The clopen-semiopen topology on F has a sub-basis, the setsW (C, S) for C ⊂ X clopen and S ⊂ X
semiopen. It is possible to have a mapping space with the clopen-semiopen topology.

Theorem 2.11. Let F be a subset of Map (X,X) where X is a compact topological space. For a map Φ

from a topological group G into F , we define a map Ψ′ : G×X → X by Ψ′(h, x) = Φ(h)(x). Then Ψ′

is semi totally continuous if and only if Φ is continuous.

Proof. Given a semi totally continuous function Ψ′, for every (h, x) ∈ G × X and all semi open set
S ∈ X with Φ(h, x) ∈ S, we have a clopen set C in G × X such that (h, x) ∈ C and Φ(C) ⊂ S. For
each h ∈ G and for all open neighborhood S of Φ(h), we get an open neighborhood C of h such that
Φ(C) ⊂ S. For any clopen set C ofX and any semiopen set S ofX , we have to prove that Φ−1(W (C, S))

is open in G. For this, it is enough to show that for any point h of Φ−1(W (C, S)) there is a open
neighborhood U of Gwith Φ(U) ⊂W (C, S). Fix an arbitrary point h0 of Φ−1W (C, S). For x ∈ C, we
have Ψ′(h0, x) = Φ(h0)(c0) ∈ S. Since Ψ′ is semi totally continuous, we have a clopen set Ux containing
h0 and a clopen set Vx containing x such that Ψ′(Ux × Vx) ⊂ S. Since h0 is fixed and xmay vary, we
write Ux. If we consider this for each x ∈ C, we have trivially ⋃

x∈C
Vx ⊃ C. There exists a finite set

{x1, ..., xn} ⊂ C with
n⋃

r=1
Vxi ⊃ C as X is compact. Now we put, U =

n⋂
r=1

Uxr , V =
n⋃

r=1
Vxr . Then U is

an open neighborhood of h0 and V is an open set of x containing C. In the following, we show that
Ψ′(U × V ) ⊂ S. For any point (h′, x′) ∈ U × V , choose r with x′ ∈ Vxr . Since h′ ∈ U ⊂ Uxr , we have
Ψ′(h′, x′) ∈ Ψ′(Uxr × Vxr) ⊂ S. Hence Ψ′(U × C) ⊂ Ψ′(U × V ) ⊂ S and Φ(U) ⊂ W (C, S). Therefore,
Φ is continuous.

Conversely, assume that Φ is continuous. On the contrary, assume that Ψ′ is not semi totally continu-
ous. For a clopen set C, there exists no semiopen set containing Ψ′(C). That is, there is no semiopen set
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containing Φ(g)(x), for every (g, x) ∈ C, which is a contradiction, as Φ is continuous, Φ(g)(x) contained
in a semiopen set. Therefore Ψ′ is semi totally continuous. �

Example 2.12. Let G = Z3 =
{

[0], [1], [2]
} be a topological group under addition modulo 3 with a

topology σ =
{
∅,Z3, {[0]}, {[1]}, {[0], [1]}, {[0], [2]}

}. Let X = {0, 1} equipped with sierpinski topology
and γ = {∅, X, {0}, {1}} denotes the semiopen collection. Now, let F = {C0, C1} such that C0(x) =

0, C1(x) = 1, ∀ x ∈ X and Φ([0]) = C0 = W (x, 0),Φ([1]) = C1 = W (x, 1),Φ([2]) = C0 = W (x, 0). Since
Ψ(g, x) = Φ(g)(x), we have Ψ(0, 0) = 0,Ψ(0, 1) = 0,Ψ(1, 0) = 1,Ψ(1, 1) = 1,Ψ(2, 0) = 0,Ψ(2, 1) = 0.

Therefore Ψ is semi totally continuous if and only if Φ is continuous.

Theorem 2.13. STCG(X) is a paratopological group.

Proof. Let the map α : STCG(X)× STCG(X)→ STCG(X) be defined by α(Ψg,Ψh) = Ψg ◦Ψh. Taking
anyW (C, S) containingΨg◦Ψh, we haveΨg◦Ψh(C) ⊂ S, whereC is a clopen set andS is a semiopen set.
Now there existsW (C1, S1) andW (C2, S2) containingΨg andΨh such thatα(W (C1, S1)×W (C2, S2)

)
⊂

W (C, S). Since Ψg ◦ Ψh(C) ⊂ S, Ψh(C) ⊂ Ψ−1
g (S). Since G is abelian, Ψh ◦ Ψg(C) ⊂ S. Therefore

Ψg(C) ⊂ Ψ−1
h (S). Thus there existsW (C,Ψ−1

h (S)
) andW (C,Ψ−1

g (S)
) containing Ψg and Ψh such that

α
(
W
(
C,Ψ−1

h (S)
)
×W

(
C,Ψ−1

g (S)
))
⊂W (C, S). Hence STCG(X) is a paratopological group. �

Proposition 2.14. For every subgroup H of G, there exists a subgroup STCH(X) in STCG(X) forms a
paratopological group under a subspace topology.

Proof. Let H be a subgroup of G. For h ∈ H , we have Ψh : X → X be defined by Ψh(x) = Ψ(h, x), a
semi totally continuous function and the collection of all semi totally continuous function is denoted by
STCH(X). Now, let Ψh, (Ψg)−1 ∈ STCH(X), then Ψh ◦Ψg−1 ∈ STCH(X) and this implies STCH(X) is
a subgroup of STCG(X). By subspace topology, STCH(X) forms a paratopological group. �

Proposition 2.15. For a finite topological group G of order n and h1 ∈ G, Ψh1 ∈ STCG(X). Then there
exist atleast one clopen set C and a semiopen set S such thatW (C, S) = {Ψh1}.

Proof. Since Ψh1 is semi totally continuous, for h1 ∈ G. Then there exists a clopen setC1 and a semiopen
set S1 such that Ψh1 ∈W (C1, S1). Assume thatW (C1, S1) = {Ψh1 ,Ψh2 , ...,Ψhi

}. Suppose Ψh1 6= Ψh2 ,
then there exists a clopen setC2 and a semiopen set S2 such that Ψh1 ∈W (C2, S2), Ψh2 /∈W (C2, S2) and
this implies Ψh1 ∈W (C1, S1) ∩W (C2, S2). Next, if Ψh3 ∈W (C1, S1) ∩W (C2, S2) and Ψh1 6= Ψh3 , then
there exists a clopen set C3 and a semiopen set S3 such that Ψh1 ∈W (C3, S3), Ψh3 /∈W (C3, S3) and so,
Ψh1 ∈W (C1, S1)∩W (C2, S2)∩W (C3, S3). Proceeding in the sameway, we haveW (C1, S1)∩W (C2, S2)

∩W (C3, S3) ∩ ... ∩W (Ci, Si) = {Ψh1}. �

Theorem 2.16. STCG(X) is a discrete space.
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Proof. The proof is obvious by the Proposition 2.15. �

Corollary 2.17. STCG(X) is extremally disconnected.

Proof. Since every discrete space is extremally disconnected, STCG(X) is extremally disconnected. �

Corollary 2.18. STCG(X) is a Moscow space.

Proof. Proof follows from the Corollary 2.17. �

Corollary 2.19. STCG(X) is a topological group.

Proof. Since all discrete space are locally compact and every locally compact paratopological group is a
topological group. Hence STCG(X) is a topological group. �

Corollary 2.20. STCG(X) is a Moscow topological group.

Proof. By the Corollary 2.18 and Corollary 2.19, the proof follows. �

Proposition 2.21. Let Γ be a bijective function from a group G to a group G′ defined by Γ(h) = h
′ be a

continuous homomorphism and inverse is also continuous. Then Φ
′

: STCG(X)→ STCG′ (X) defined
by Φ

′
(Ψh) = ΨΓ(h) is also a bijective continuous homomorphism and inverse continuous.

Proof.

(i) The Injectivity condition : Let Ψh and Ψk ∈ STCG(X),

Φ
′
(Ψh) = Φ

′
(Ψk)

ΨΓ(h) = ΨΓ(k)

Ψ(Γ(h), x) = Ψ(Γ(k), x)

Γ(h)x = Γ(k)x

Ψh = Ψk.

Therefore Φ
′ is injective.

(ii) The Surjectivity condition : For every Ψ
h
′
i
∈ STCG′ (X), there exists Ψhi

∈ STCG(X) such that
Φ
′
(Ψhi

) = ΨΓ(hi) = Ψ
h
′
i
. Therefore, Φ

′ is surjective.
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(iii) Homomorphism: Let Ψh and Ψk ∈ STCG(X),

Φ
′
(Ψh ◦Ψk) = Φ

′
(Ψh ◦Ψk)(x)

= ΨΓ(hk)(x)

= ΨΓ(h)Γ(k)(x)

= Ψh′k′ (x)

= Φ
′
(Ψh) ◦ Φ

′
(Ψk).

Therefore Φ
′ is a homomorphism.

Now, the continuity of Φ
′ follows from the commutative diagram.

G STCG(X)

STCG′ (X)G
′

Φ

Γ ◦ γ
Φ
′Γ

γ

Since Γ and γ are continuous homomorphism, so is Γ ◦ γ and hence Φ
′ is continuous. The inverse

continuous of Φ
′ can be verified by the following commutative diagram.

G
′ STCG′ (X)

STCG(X)G

Ω

ζ ◦ δ
ηζ

δ

Since ζ and δ are continuous homomorphism, so is ζ ◦ δ and hence η is continuous. �

Proposition 2.22. Let Γ be a function from a topological group G to a topological group G′ defined by
Γ(h) = h

′ be a bijective continuous homomorphism and inverse continuous. Then Φ
′

: STCG(X) →

STCG′ (X) defined by Φ
′
(Ψh) = ΨΓ(h) gives an isomorphism of topological groups.

Proof. By the Proposition 2.21 and Corollary 2.19, the proof follows. �

Proposition 2.23. Let ς : STCG(X)→ STCG(X) defined by ς(Ψh) = Ψh−1 is a homeomorphism.
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Proof. Since Ψh is homeomorphism, so is ς . �

Theorem 2.24. STCG(X) contains an open boolean subgroup.

Proof. By Theorem 2.16, Corollary 2.17 and Corollary 2.19, STCG(X) is an extremally disconnected
topological group and discrete space. Since every discrete space is hausdorff, STCG(X) is hausdorff and
by Proposition 2.23, any map from STCG(X) to STCG(X) given by Ψh 7→ Ψh−1 is a homeomorphism.
Then H = {Ψh|ς(Ψh) = Ψh} is a clopen subset of STCG(X) and hence H is an open boolean subgroup
of STCG(X). �

Conclusion

We defined a new structure of topological transformation group called S-topological transformation
group and the relation between topological transformation group and S-topological transformation
group have been analyzed. Basic algebraic and topological properties of S-topological transformation
group have been discussed. Also, it is established that the set of all semi totally continuous func-
tions involved in S-topological transformation group acts as a group under composition as well as a
paratopological group and a Moscow topological group. By Proposition 2.22, we can conclude that the
isomorphism of groups defines an equivalence relation on the set of all STCG(X). Finally, it is shown
that STCG(X) has an open boolean subgroup. In a future work, we explore some other properties of
S-topological transformation groups.
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