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Abstract. This research focuses on the development of a Susceptible-Infectious-Recovered (SIR) model to
study the spread of the disease using stochastic approaches. Specifically, the emphasis is on the stochastic
perspective, employing a Discrete Markov Chain as the stochastic model for the SIR model. Furthermore,
the quasi-birth-death (QBD) process is used to formulate the stochastic model for the SIR model. The
SIR model consists of three compartments representing susceptible (S), infected (I), and recovered (R)
individuals. Initially formulated as a set of differential equations, the SIR model is then transformed into a
probabilistic model. To proceed with the QBD process, the transition matrix and state space are constructed,
forming the P matrix. Within the QBD process, a P matrix is prepared containing submatrices derived
from the transition matrix. Furthermore, steady-state analysis is performed on the P matrix using the QBD
process. This approach enables a probabilistic perspective for studying disease spread through the SIR
model, allowing for a deeper understanding of the dynamics and potential outcomes.
2020 Mathematics Subject Classification. 60J20, 92D30.
Key words and phrases. SIR model; stochastic approaches; discrete Markov chain; quasi-birth-death
process; disease spread.

1. Introduction

In recent years, there has been a growing diversity in mathematical research, especially in modeling
a problem in real life. An example of modeling using a mathematical model is the disease case model.
In recent years, infectious diseases caused by viruses and bacteria have infected and plagued human
life. Many diseases last a long time, and there are also diseases that spread only temporarily, such as
dengue fever (DHF), influenza, to the disease that has become a recent pandemic, namely COVID-19.
In various studies, epidemic diseases have been discussed to have a negative impact on society in
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various sectors, including education, tourism, and especially socioeconomic aspects in areas where
disease outbreaks spread throughout the world [1].

The spread of disease occurs due to viruses and bacteria that infect human pathogenic cells. The
spread of epidemic diseases can occur through physical contact with infected people, the environment,
bites, and attacks from animals contaminated with viruses and bacteria that can cause the spread of
disease, as well as the consumption of food and drink containing viruses or bacteria. There are many
cases of epidemic diseases that occur in densely populated cities, and the spread occurs very quickly,
so epidemic diseases often cause many cases of death [2].

The spread of infected diseases according to their proportions can be divided into three options,
namely endemic, epidemic, and pandemic diseases, depending on the extent of the area contaminated
with viruses or bacteria [3]. Many impacts resulted from the three types of disease spread. Starting
from the economic aspect, education, and even social life for developed and developing countries.
Therefore, a mathematical model was formed that served to interpret how the effects of disease spread
in a population [4]. Incidence, prevention, infection rates, and deaths can be predicted and interpreted
by mathematical models.

Predictions in the case of mathematical modeling are helpful in understanding the extent of disease
infecting a population, the effects of widespread disease, and how long the disease will last [4]. By
analyzing the effect and extent of disease spread using a mathematical model, accurate predictions can
be made regarding how the infection will spread, so that preventive and treatment measures can be
taken against the spread of the disease in a population [5].

The mathematical model that will be studied in this paper is an SIR model (Susceptible-Infected-
Recovery). The SIR model can be solved using deterministic and stochastic models. Numerous studies
have been conducted to develop deterministic models for the SIR model. Research related to the
mathematical model of SIR began with research conducted by Daniel Bernoulli, who examined the
effect of cowpox inoculation on the spread of smallpox in 1760 [6], then research carried out byMeghan
related to a simple mathematical model that was implemented for the number of people infected with
infectious diseases such as chickenpox in a closed population [7]. Some of the following studies are
studies conducted with a deterministic model. However, there have been limited studies in exploring
stochastic modeling for the SIR model.

The deterministic model assumes that the parameters of susceptible individuals who come into
contact with infected individuals and the parameters of individuals who have recovered are fixed
and do not change periodically. However, in reality, the numbers on these parameters differ from
one individual to another. Thus, it is necessary to identify the randomness of the parameter numbers
obtained from one individual and another. The stochastic model is used to overcome the randomness
of the model parameters.
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The disease model that will be studied in this study is the SIR model with an addition of the birth-
and-death rate with reference to the SIR model with a constant population [8]. The model to be studied
in this study is a discrete Markov chain SIR model in which the stability of the system will be sought
using the Quasi-Birth-Death (QBD) process. The QBD process on non-negative integers is a Markov
process in which transitions in the system are only allowed from state n to the next higher state n+ 1

for every n ≥ 0 and from n to n− 1 for every n ≥ 1 [9].
Based on the description that has been explained, a model of epidemic SIR will be formed as a

Discrete Time Markov Chain (DTMC). The transition probabilities and transition matrix of the DTMC
SIR model will be sought, and the stability of the system will be sought using numerical simulations
generated from the QBD process using the rate matrix. In the end, from the QBD process that has been
made, further studies can be made on the steady-state analysis of the DTMC SIR model.

2. Modelling Formulation

The next section will discuss the form of the Susceptible-Infected-Recovered (SIR) model in the form
of a Markov chain and will look for the stability of the discrete Markov chain SIR model system. The
simple epidemiological model was first proposed by Kermack and McKendrick [10]. The method used
to find stability from the Discrete Markov Chain SIR model is to form a rate matrix which will be used
to analyze steady state using the QBD process in order to obtain stability from the system.

2.1. The Stochastic SIR Model. In this section, the formation of an SIR model will be discussed. First,
a SIR model will be formed with three compartments, namely susceptible individuals (Susceptible),
infected individuals (Infected), and recovered individuals (Recovered). Then, from the three compart-
ments formed, the deterministic SIR model compartment is described, which consists of the variables
S, I , and R as described in Figure 1.

Figure 1. SIR Mathematical Model

The SIR model described has parameters µ, β, and γ each of which shows the birth or death rate
with the assumption that the birth and death rates are equal, the contact rate of disease spread, and
disease cure rate, respectively.

2.2. Discrete Time Markov Chain (DTMC) SIR Model. Furthermore, from the SIR epidemic model,
a discrete Markov model will be formulated with the population in the system denoted by the variables
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S(t), I(t), and R(t) with t ∈ T = {0,∆t, 2∆t, . . . } and S(t), I(t), R(t) ∈ {0, 1, 2, . . . N}. The recov-
ered individual is no longer susceptible and immune to the infection that spreads the disease. The
assumptions made for a constant population produce a value of N at time t as follows,

N = S(t) + I(t) +R(t) (1)

so that

dN

dt
=
dS(t)

dt
+
dI(t)

dt
+
dR(t)

dt
= 0. (2)

Two states, i.e., S and I , are used to construct probabilities in the Markov process, with the number
of recovered individuals depending on the susceptible and infected individuals, so that it applies

R(t) = N − S(t)− I(t). (3)

It is assumed that every time there is a transition, there will be a movement for each individual, both
susceptible, infected, and cured. For each ∆t, the possible transitions that occur between individuals
are:

(1) (s, i)
∆t−→ (s− 1, i+ 1) for each susceptible individual that switches to an infected individual.

(2) (s, i)
∆t−→ (s+ 1, i) for each individual born, the birth rate is assumed to be constant.

(3) (s, i)
∆t−→ (s− 1, i) for each susceptible individual who dies, it is assumed that the death rate is

constant and equal to the birth rate.
(4) (s, i)

∆t−→ (s, i − 1) for each infected individual who has recovered or dies, the death rate is
assumed to be constant and equal to the birth rate.

(5) (s, i)
∆t−→ (s, i) if there are no individual transition changes.

For each change in time, there are six transitions in the system, namely infected individuals increase
by one from the infected susceptible population, susceptible individuals increase by one with births,
susceptible individuals also decrease by one due to natural death, infected individuals recover and
cannot return to susceptible individuals, so that one less infected individual, and no change in the
number of infected cases in the population. In the case of the SIR model, trajectory is defined as the set
of U from state s and i formed on the Markov system

U = ((s0, i0),∆t, (s∆t,, i∆t),∆t, . . . , (s, i),∆t, (k, j)). (4)

Equation (4) represents the system starts at (s0, i0). After a unit time period ∆t, the system switches
to state (s∆t, i∆t). The system remains in state (s∆t, i∆t) until the next unit time period ∆t the system
switches back and forth until state (k, j). Figure 2 shows the trajectory of the Discrete Time Markov
Chain SIR model.
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Figure 2. DTMC SIR Model Trajectory

2.3. Transition Probability. Next, the transition pro-babilities of the DTMC SIR model will be formu-
lated from the transitions that have been obtained. The transitional change in a susceptible individual
at time t is given as follows

dS(t)

dt
= µ− βS(t)I(t)

N
− µS(t). (5)

In susceptible individuals, the population will increase from the birth of individuals and decrease from
natural death and disease infection. Based on Equation (5), the number of susceptible individuals
will increase or decrease over time. This means that when susceptible individuals decrease due to
infection, then infected individuals increase. Three transitions are obtained in vulnerable populations,
namely, (s, i) to (s− 1, i+ 1), (s, i) to (s+ 1, i), or (s, i) to (s− 1, i). The probability of each vulnerable
population transition is

p(s,i)→(s−1,i+1)(∆t) =
βsi

N
∆t (6)

p(s,i)→(s+1,i)(∆t) = µN∆t (7)

p(s,i)→(s−1,i)(∆t) = µs∆t. (8)

Next, individuals in the infected compartment experience a transition, namelywhen infected individuals
recover or die naturally. Changes that occur in infected individuals at time t are

dI(t)

dt
= βS(t)I(t)− (γ + µ)I(t) + ωR(t). (9)

The transition that occurs in infected individuals who recover or die is (s, i) to (s, i − 1). The
probability of an infected individual recovering or an infected individual experiencing a natural death
is

p(s,i)→(s,i−1)(∆t) = (γ + µ)i∆t. (10)

Further, because it is assumed that the population is constant, a transition is obtained that the
susceptible and infected populations do not experience compartmentalization so that the probability of
the population remains constant as given below.

p(s,i)→(s,i)(∆t) = 1− [βsi+ µN + µs+ (γ + µ)i] ∆t. (11)
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From Equation (6)-(8), (10), and (11), the transition probability of the DTMC SIR model is obtained
as follows

p(s,i)→(s+k,i+j)(∆t) =



βsi
N ∆t, (k, j) = (s− 1, i+ 1)

µ∆t, (k, j) = (s+ 1, i)

µs∆t, (k, j) = (s− 1, i)

(γ + µ)i∆t, (k, j) = (s, i− 1)

1−
[
βsi
N + µ+ µs+ (γ + µ)i

]
∆t, (k, j) = (s, i)

0, (k, j) otherwise.

(12)

From the transition probability and state used, it is obtained that set of {(S(t), I(t))|t ≥ 0} is a
two-dimensional discrete Markov process with state space {(s, i)|0 ≤ s, i ≤ N, s+ i ≤ N}. Next, we
will discuss the state space transition matrix of the DTMC SIR model.

2.4. Transition Matrix and Diagram. The P (∆t) matrix is defined as the transition matrix and the
transition diagram used to describe the transitions that occur in the DTMC SIR model is given below.

Figure 3. DTMC SIR Model Transition Diagram

Based on the state space diagram shown in Figure 3 the transition in the model shown vertically
starts from level zero, denoted by `(0) to `(N). The arrows on state starting from state (s, i) = (0, 0)

indicate the transitions that occur in that state.
Next, the transition matrixPwhere the transition matrix with size (N+1)(N+2)

2 describe the transition
probability that happen from the susceptible and infected population (s, i) to (k, j) will be formulated
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in which the elements of the matrix are tridiagonal block matrix with submatrices, namely A00, A01,
A10, . . . , on the level `(0), `(1), . . . , `(N). The transition matrix P is given as follow.

P =



A00 A01 0 0 . . . 0 0 0

A10 A11 A12 0 . . . 0 0 0

0 A20 A21 A22 . . . 0 0 0
... ... ... ... . . . ... ... ...
0 0 0 0 . . . AN−1,N−2 AN−1,N−1 AN−1,N

0 0 0 0 . . . 0 AN,N−1 AN,N


, (13)

where

A00 =



1− b(0, 0)∆t 0 0 . . . 0

d(0, 1)∆t 1− [b(0, 1) + d(0, 1)] 0 . . . 0

0 d(0, 2)∆t 1− [b(0, 2) . . . 0

+d(0, 2)]∆t
... ... ... . . . ...
0 0 0 . . . 1− [b(0, N)

+d(0, N)]∆t


,

A01 =



b(0, 0)∆t 0 0 . . . 0

0 b(0, 1)∆t 0 . . . 0

0 0 b(0, 2)∆t . . . 0
... ... ... . . . ...
0 0 0 . . . b(0, N − 1)∆t

0 0 0 . . . 0


,

A10 =



c(1, 0)∆t a(1, 0)∆t 0 . . . 0

0 c(1, 1)∆t a(1, 1)∆t . . . 0

0 0 c(1, 2)∆t . . . 0
... ... ... . . . ...
0 0 0 . . . a(1, N − 1)∆t


,
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A11 =



1− [a(1, 0) 0 0 . . . 0

+b(1, 0)

+c(1, 0)]∆t

d(1, 1)∆t 1− [a(1, 1) 0 . . . 0

+b(1, 1)

+c(1, 1)

+d(1, 1)]∆t

0 d(1, 2)∆t 1− [a(1, 2) + b(1, 2) . . . 0

+c(1, 2) + d(1, 2)]∆t
... ... ... . . . ...
0 0 0 . . . 1− [a(1, N − 1)

+c(1, N − 1)

+d(1, N − 1)]∆t



,

A12 =



b(1, 0)∆t 0 0 . . . 0

0 b(1, 1)∆t 0 . . . 0

0 0 b(1, 2)∆t . . . 0
... ... ... . . . ...
0 0 0 . . . b(1, N − 1)∆t

0 0 0 . . . 0


,

...

AN−1,N−2 =

a(N − 1, N − 2)∆t c(N − 1, N − 2)∆t 0

0 a(N − 1, N − 1)∆t c(N − 1, N − 1)∆t

 ,

AN−1,N−1 =


1− [a(N − 1, N − 2) + b(N − 1, N − 2) 0

+c(N − 1, N − 2) + d(N − 1, N − 2)]∆t

0 1− [a(N − 1, N − 1)

+c(N − 1, N − 1)]∆t

 ,

AN−1,N =

b(N − 1, 0)∆t

0

 ,
AN,N−1 =

[
c(N, 0)∆t a(N, 0)∆t

]
,

AN,N =
[
1− [a(N, 0) + c(N, 0)]∆t

]
.
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It is clear that {X(t), t ≥ 0} = {(S(t), I(t))|t ≥ 0} is a non-homogeneous QBD process. The following
section will focus on examining the steady-state distribution of the process.

3. Steady-State Analysis

Assume that the matrix P in Equation (13) is irreducible and {X(t), t ≥ 0} is ergodic, so that
the non-homogeneous QBD processes of the DTMC SIR model have a stationary distribution. The
stationary probability vector is denoted by π, where π is a unique solution to the balance equation
π = πP and ∑

πe = 1, where πsi is given as follow.

πsi = (π00, π01, . . . ) (14)

3.1. Steady-State Analysis. The stationary probability vector π of theMarkov chain {(S(t), I(t)), t ≥ 0}

satisfies the following equations

πsiP = πsi, (15)∑
πsie = 1, (16)

where s, i = 0, . . . , N and e is a (N+1)(N+2)
2 column vector of 1.

The vector πsi represents the stationary probability of the DTMC SIR model of susceptible and
infected individuals at level s and phase i, where 0 ≤ s, i ≤ N and s + i ≤ N . Based on the form of
transition matrix P as given in Equation (13), then for every 0 ≤ s, i, k ≤ N and 0 ≤ s + i ≤ N , the
vector π can be expressed as

π = (π(0), π(1), . . . , π(N)), where π(k) = (π
(k)
si ). (17)

For k = 1, 2, . . . , N − 1, the stationary probability π(k) can be expressed as follow.

π(0) = (π
(0)
00 , π

(0)
01 , . . . , π

(0)
0,N−1, π

(0)
0N )

π(1) = (π
(1)
10 , π

(1)
11 , . . . , π

(1)
1,N−1)

...

π(N) = (π
(N)
N0 ).

Refer to Ramaswami [9], the stationary distribution of a non-homogeneous discrete time Markov
chain can be expressed as

π(k) = π(k+1)R(k), k = 1, 2, . . . , N − 1, (18)

where the rate matrix R(k) = {R(k)
si } is the expected value of the number of visits to (k, j) before

returning to level `(k + 1) ∪ · · · ∪ `(N) and the process starts from (k + 1, i). On one hand, by applying
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the balance equation which are πP = π and ∑
πe = 1 it yields

π(0)A00 + π(1)A10 = π(0) (19)

π(0)A01 + π(1)A11 + π(2)A21 = π(1) (20)

π(1)A12 + π(2)A22 + π(3)A32 = π(2)

...

π(N−1)AN−1,N + π(N)ANN = π(N)

and
∞∑
i=0

π(i)e = 1. (21)

From Equation (19) we have

π(0) = π(1)A10(I −A00)−1

π(0) = π(1)R(0), (22)

where R(0) = A10(I −A00)−1. By substituting Equation (18) into the Equation (20), it yields

π(0)A01 + π(1)A11 + π(2)A21 = π(1)

π(2)R(1)R(0)A01 + π(2)R(1)A11 + π(2)A21 = π(2)R(1)

π(2)(R(1)R(0)A01 +R(1)A11 +A21) = π(2)(R(1))

R(1)R(0)A01 +R(1)A11 +A21 = R(1). (23)

From Equation (18) vector π(0) can be formed recursively as

π(0) = πNR
(N−1) . . . R(0), (24)

then Equation (19) can be written as

π(0)A00 + π(1)A10 = π(0)

π(N)(R(N−1) . . . R(0)A00 +R(N−2) . . . R(1)A10 −R(N−1) . . . R(0)) = 0. (25)

Next, based on Equation (18) and (21) we obtain
∞∑
i=0

π(i)e = 1

(π(0) + π(1) + · · ·+ π(N))e = 1

π(N)(R(N−1) . . . R(0) +R(N−2) . . . R(1) + · · ·+ I)e = 1. (26)
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WLOG, based on Ramaswami [9] and Equations (23)-(26), the matrix P is positive recurrent if and
only if rate matrix R is a minimal and non-negative solution of the equation

R(k)R(k−1)Ak−1,k +R(k)Ak,k +Ak+1,k = R(k), for k = 1, 2, . . . , N − 1, (27)

and π(k) is the unique solution that satisfies

π(k)(R(k−1) . . . R(0)A00 +R(k−2) . . . R(1)A10 −R(k−1) . . . R(0)) = 0, (28)

π(N)(R(N−1) . . . R(0) +R(N−2) . . . R(1) + · · ·+R(N−1) + I)e = 1. (29)

3.2. Performance Analysis. Having acquired the steady-state distribution π, we now analyze the
performance of the DTMC SIR model. Here, we adapt a two-dimensional queueing system to assess
the model’s performance. The probability that there are s susceptible individuals in the system is

P{Ls = s} =

N∑
i=0

πsi, (30)

where 0 ≤ s ≤ N .
On other hand, denote P{Li = i} is the probability that an infected individual is in phase i, 0 ≤ i ≤ N .
Then, the probability that the environment is in the i phase is obtained

P{Li = i} =
N∑
s=0

πsi. (31)

Suppose E(Ls) andW (Ls) represent the average number of susceptible individuals at the system
and the average waiting time for susceptible individuals before entering infected compartment in the
system, respectively, then we have

E(Ls) =
∞∑
s=0

sP{Ls = s}

=
∞∑
s=0

s
N∑
i=0

π
(k)
si , (32)

and

W (Ls) =
E(Ls)∑N

i=0 P{Li = i}λi

=

∑∞
s=0 s

∑N
i=0 π

(k)
si∑N

i=0 λi
∑N

i=0 π
(k)
si

. (33)
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3.3. Numerical Example. In this numerical simulation, we assume that the number of population is
100. The parameter values of the DTMC SIR model are given in Table 1 based on research conducted
by [11], [12], [13], and [14].

Parameter Value
β 0.02

γ 0.08

µ 0.01

Table 1. Parameter values

Further, the steady-state probabilities π(k) presented in Table 2 were computed using R software.
Figure 4 and 5 represent the steady-state probability π(k) and cumulative steady-state probability∑k

s=0 π
(s) over s individuals, respectively.

k π(k)
∑k

s=0 π
(s)

0 0.0005177895 0.0005177895

1 0.0005177895 0.001035579

2 0.0007766842 0.001812263

3 0.0009492807 0.002761544

4 0.001143452 0.003904996

5 0.001333308 0.005238304

10 0.002285809 0.01476252

20 0.004190650 0.04809724

30 0.006095492 0.1004804

40 0.008000333 0.1719119

50 0.009905174 0.2623919

60 0.01181001 0.3719202

70 0.01371486 0.500497

80 0.01561970 0.6481222

90 0.01752454 0.8147958

100 0.01942938 1

Table 2. Some steady-state probabilities π(k)
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Figure 4. Steady-state probability over s individuals

Figure 5. Cumulative steady-state probability over s individuals

Moreover, by applying Equation (32) and (33), the average number of susceptible individuals in
the system and the average number of susceptible individuals entering the infectious compartment
are 1 and 100, respectively. It means that every susceptible individuals will enter i phase to infectious
compartment.
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4. Conclusions

The DTMC SIR model provides valuable insights into the dynamics of disease spread in populations.
It effectively captures the transitions among susceptible, infected, and recovered individuals, accounting
for the stochastic nature of disease transmission. Utilizing state transitions and transition probabilities,
this model aids in comprehending the progression of epidemics, including the initial exponential
growth, saturation of infections, and eventual decline as individuals recover and gain immunity. For
the DTMC SIR model featuring the compartments S, I, and R, non-homogeneous QBD processes offer
a suitable analytical tool. The stationary vector and rate matrix enable performance analysis based on
susceptible and infected individuals.
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