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Abstract. In this article, we prove the existence of a renormalised solution to the problem of the nonlinear
elliptic equation:  −div (a(x, u,Du)) = f in Ω,

u = 0 on ∂Ω.

Where a(x, u,Du) is below-up for a finite valuem of the unknown u and the data f ∈ L1(Ω).
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1. Introduction

Recently, interest in variable exponent Sobolev spaces has grown rapidly because they have many
physical applications such image processing (underline the borders, eliminate the noise) and electro-
rheological fluids, for more detail, we invite the reader to see( [17,18]).

Our objective in this paper is to establish that a renormalized solution exists for a class of elliptic-type
problems with the following form. −div (a(x, u,Du)) = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is an open bounded subset of RN (N ≥ 2), and the data f in L1 (Ω) . The operator
−div (a(x, u,Du)) is a Leray-Lions operator defined on the variable exponent Sobolev space and
below-up when u→ m−, withm is strictly positive real number.

Whenwe look at the problem (1.1), we comeup against two kinds of difficulties. First the assumptions
f ∈ L1 (Ω) . To overcome this difficulty, we are using the framework of renormalised solutions. This
concept was presented by DiPerna and Lions [8], to study of Boltzmann equation see also Lions [10] for
a few applications to fluid mechanics models. We invite the reader to see [6,11,12] for elliptic problems
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and to [3, 4] for parabolic equations. The second dificulty due to the function a(x, s, ξ) below up when
s→ m−, this makes the task of giving meaning to this function in the set {x ∈ Ω; u(x) = m} difficult.

The problem (1.1), has been investigated in a few cases by several authors. In the case where the
operator a is replaced by a symmetric matrix, the existence of renormalized solutions has been proved
for elliptic problem in (see [4]). Next, If the flux defined on the weighted sobolev spaces , the existence
of renormalized solutions have been proved in [14].

This paper is broken down as follows: section 2, we present the variable exponent Sobolev space
and some of its properties. Section 3, we make assumptions and provide the main result. Section 3, we
provide the main result and we etablish the proof of main result.

2. Preliminaries

Let p :
−
Ω → [1,∞] be a measurable function, where Ω is a domain of Rn, satisfy the log-Hölder

continuity condition

|p(x)− p(y)| ≤ A

log 1
|x−y|

, for all x, y ∈ Ω with |x− y| < r, (2.1)

where A > 0 and 0 < r < 1, and 1 < p− < p+ < N,where

p− = min

x∈
−
Ω

p(x) and p+ = max

x∈
−
Ω

p(x)

We define the variable exponent Lebesgue space by

Lp(x)(Ω) = {u : Ω→ R : u is measurable in Ω and
∫

Ω
|u(x)|p(x)dx <∞ }.

The space Lp(x)(Ω) equipped with the Luxemburg-type norm

‖u‖p(x) = inf
{
λ > 0 :

∫
Ω
|u(x)

λ
|p(x)dx ≤ 1

}
becomes a Banach space [15]. The relation between the modular ∫Ω |f |

p(x) dx and the norm follows
from

min(‖f‖p
−

p(x), ‖f‖
p+

p(x)) ≤
∫

Ω
|f |p(x) dx ≤ max(‖f‖p

−

p(x), ‖f‖
p+

p(x)).

For all f ∈ Lp(x)(Ω), g ∈ Lp′(x)(Ω) with

p(x) ∈ (1,∞), p′(x) =
p(x)

p(x)− 1
,

the generalized Hölder inequality holds,∫
Ω
|f g| dx ≤

( 1

p−
+

1

p′−
)
‖f‖p(x)‖g‖p′(x) ≤ 2‖f‖p(x)‖g‖p′(x) .

The variable exponent Sobolev space is defined by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : ∇u exists and |∇u| ∈ Lp(x)(Ω)},
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with respect to the norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x).

The spaceW 1,p(x)
0 (Ω) is defined as the closure ofC∞0 (Ω) inW 1,p(x)(Ω) with respect to the norm ‖u‖1,p(x).

In addition the spaces W 1,p(x)(Ω) and W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces. For

u ∈W 1,p(x)
0 (Ω), we can define an equivalent norm

‖u‖1,p(x) = ‖∇u‖p(x).

Lemma 2.1. Let g ∈ Lp(x)(Ω) and gn ∈ Lp(x)(Ω) with ‖gn‖p(x) < C. If

gn → g a.e. in Ω,

then

gn ⇀ g in Lp(x)(Ω).

For more detail, we invite the reader to see [13,15, 16].

3. Assumptions on the Data and Notations

Let Ω be a bounded open set of RN (N ≥ 2), and

a : Ω× R× RN −→ RN (3.1)

is a Carathéodory function, such that there exists a positive function b ∈ C0((−∞,m)) which satisfies

bp(x)−1 (s) ≥ α > 0 ∀s ∈ (−∞,m) ; lim
s−→m−

b(s) = +∞, (3.2)

∫ m

0
b(s)ds < +∞, (3.3)

and

a(x, s, ξ).ξ ≥ b(s)p(x)−1 |ξ|p(x) , a(x, s, 0) = 0. (3.4)

|a(x, s, ξ)| ≤ β
[
L(x) + b(s)p(x)−1 |ξ|p(x)−1

]
, (3.5)

[
a(x, s, ξ)− a(x, s, ξ′)

] [
ξ − ξ′

]
≥ 0,

where L is a non negative function in Lp
′
(x)(Ω), and β > 0, for almost every x ∈ Ω, for every s ∈ Ω and

ξ ∈ RN . Finally the data

f is an element of L1(Ω). (3.6)
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Definition 3.1. A mesuarble function u defined on Ω is a renormalized solution of problem (1.1) if

Tk(u) ∈W 1,p(x)
0 (Ω), (3.7)

u ≤ m a.e. in Ω, (3.8)

a(x, T km(u), DT km(u))χ{u<m} ∈ (Lp
′(x)(Ω))N , (3.9)

lim
s→+∞

∫
{−s−1≤u(x)≤−s}

a(x, u,Du)Dudx = 0, (3.10)

lim
δ→0

1

δ

∫
{m−2δ≤u(x)≤m−δ}

a(x, u,Du)Dudx =

∫
{u(x)=m}

fdx, (3.11)

and, for every function S inW 1,∞(R) such that supp(S) is compact and S(m) = 0, u satisfies∫
Ω

a(x, u,Du)D(S(u)ϕ)dx =

∫
Ω

fS(u)ϕdx, (3.12)

for every ϕ ∈W 1,p(x)
0 (Ω) ∩ L∞ (Ω) .

Remark 3.2. Conditions (3.7) and (3.9) to show that all term in (3.12) are well defined. The assumption
(3.11), has been establissed in [5].

The following notations will be used throughout the paper. For any k > 0 and ε > 0,we define

T kε (s) =


−k, if s ≤ −k,
r, if − k ≤ r ≤ ε,
ε, if r ≥ ε.

For l ≥ 1 fixed, we define
θl(s) = T1 (r − Tl(r))

and hl(s) = 1− |θl(s)| ,for all s ∈ R.

4. The existence theorem

Theorem 4.1. Assume that (3.1)-(3.6) hold true there existe a renormalized solution u of problem (1.1).

Proof of theorem

4.1. Step 1: Approximate problem and a priori estimates. Let us introduce the following regularisa-
tion of the data: for a fixed n ≥ 1. let

bn(r) = b(Tnm−1/n(r)),
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an(x, s, ξ) = a(x, Tnm−1/n(s), ξ),

fn ∈ L∞(Ω), such that fn → f strongly in L1(Ω), as n tends to +∞, (4.1)

Let us now consider the following regularized problem −div (an(x, un, Dun)) = fn in Ω,

un = 0 on ∂Ω,
(4.2)

As a result, demonstrating the existence of a weak solution un ∈W 1,p(.)
0 (Ω) of (4.2) is an easy task

(see [9]).
We choose Tk(un) as a test function in (4.2), we get∫

Ω
an(x, un, Dun)DTk(u

n)dx =

∫
Ω
fnTk(u

n)dx.

Since (3.2) and (3.4), we have ∫
Ω
|DTk(un)|p(x) dx < C, (4.3)

where C does not depend on n and k.
By a classical argument (see e.g [7]), for a subsequence still indexed by n, from (4.3), we have

un → u a.e. in Ω, (4.4)

and
Tk (un) ⇀ Tk (u) weakly inW 1,p(x)

0 (Ω). (4.5)

Taking now Zn =
∫ Tk

m(un)
0 bn(s)ds as a test function in (4.2), we give∫

Ω
an(x, un, Dun)DZn(un)dx =

∫
Ω
fnZ

n(un)dx. (4.6)

By the assumptions (3.4) of an and (3.2), we deduce that∫
Ω
|DZn(un)|p(x) dx < C. (4.7)

For every k > 0, we write∣∣∣an(x, T km(un), DT km(un))
∣∣∣ ≤ β [L(x) + |DZn(un)|p(x)−1

]
. (4.8)

Putting together (4.7) and (4.8), we deduce that

an(x, T km(un), DT km(un) is bounded in Lp′(x)(Ω),

then there exists a function ϕk ∈ Lp
′(x)(Ω) such that

an(x, T km(un), DT km(un) ⇀ ϕk weakly in Lp′(x)(Ω). (4.9)
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Using T+
2m(un)− T+

m(un) as a test function in (4.2) leads to∫
Ω
an(x, un, Dun).D

(
T+

2m(un)− T+
m(un)

)
dx =

∫
Ω
fn
(
T+

2m(un)− T+
m(un)

)
dx,

thanks to (3.4),we have

b(m− 1

n
)p(x)−1

∫
Ω

∣∣D (T+
2m(un)− T+

m(un)
)∣∣p(x)

dx ≤ C, (4.10)

we can pass to the limit in (4.10) as n tends to +∞, to deduce that

T+
2m(u)− T+

m(u) = 0 a.e. in Q,

u ≤ m a.e. in Q. (4.11)

Taking now Tk(v
n) as a test function in (4.2), with vn =

∫ un)
0 bn(s)ds. We obtain∫

Ω
an(x, un, Dun)DTk(v

n)dx ≤ C.

By (3.2) and (3.4), we have ∫
Ω
|DTk(vn)|p(x) dx ≤ C. (4.12)

By a classical argument (see e.g [7]), for a subsequence still indexed by n, from (4.12), we have

vn → v a.e. in Ω, (4.13)

and

Tk (vn) ⇀ Tk (v) weakly inW 1,p(x)
0 (Ω).

We choose θk(vn) as a test function in (4.2), it gives

lim
n→0

∫
Ω
an(x, un, Dun)D (θk(v

n)) dx =

∫
Ω
fnθk(v)dx.

Since f ∈ L1(Ω), Lebesgue’s convergence theorem, we have

lim
k→0

lim
n→0

∫
{n≤|vn|≤n+1}

an(x, un, Dun).Dvndx = 0. (4.14)

4.1.1. Step 2: the monotonicity estimate and the weak limit.

Lemma 4.2. For any k ≥ 0, we have

lim
n→0

∫
Ω

[
an(x, T km(un), DT km(un))

bn(un)p(x)−1
− an(x, T km(un), DT km(u))

bn(un)p(x)−1

]
×
(
DT km(un)−DT km(u)

)
dx = 0. (4.15)
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Proof. Let k ≥ 0 be fixed. Equality (4.15) is split into∫
Ω

[
an(x, T km(un), DT km(un))

bn(un)p(x)−1
− an(x, T km(un), DT km(u))

bn(un)p(x)−1

]
×
(
DT km(un)−DT km(u)

)
dx = In1 + In2 + In3 , (4.16)

where
In1 =

∫
Ω

an(x, T km(un), DT km(un))

bn(un)p(x)−1
DT km(un)dx,

In2 = −
∫

Ω

an(x, T km(un), DT km(un))

bn(un)p(x)−1
DT km(u)dx,

In3 = −
∫

Ω

an(x, T km(un), DT km(u))

bn(un)p(x)−1

(
DT km(un)−DT km(u)

)
dx.

In what follows we pass to the limit as n tends to +∞ in (4.16).
Limit of I n1
We choose hl(vn)

∫ Tk
m(u)

0
1

b(s)p(x)−1ds as a test function in (4.2) to obtain∫
Ω
hl(v

n)an(x, un, Dun)
DT km(u)

b(u)p(x)−1
dx+

∫
Ω
an(x, un, Dun)Dhl(v

n).

(∫ Tk
m(u)

0

1

b(s)p(x)−1
ds

)
dx (4.17)

=

∫
Ω
fnhl(v

n)

∫ Tk
m(u)

0

1

b(s)p(x)−1
dsdx.

Since hk have a compact support, we have for a large n

|an(x, un, Dun)hl(v
n)| ≤ β

[
L(x) + |DTl+1(vn)|p(x)−1

]
. (4.18)

From (4.18) and (4.12), we deduce that

an(x, T(l+1)/α (un) , DT(l+1)/α (un))hl(v
n) is bounded in Lp′(x)(Ω), (4.19)

for every large n.
We first use the estimate (4.19) to extract another subsequence, still indexed by l, such that

an(x, T(l+1)/α (un) , DT(l+1)/α (un))hl(v
n) ⇀ ψl weakly in Lp′(x)(Ω) , (4.20)

as n tends to +∞.

Now for max(k,m) ≤ l/α, we have

an(x, T(l+1)/α (un) , DT(l+1)/α (un))hl(v
n) χ{−k<un<m}

= hl(v
n)an(x, T km(un), DT km(un)) χ{−k<un<m}

a.e. in Ω. Ussing the covergences (4.20), (4.13), and (4.20) and letting n tends to +∞,we have for

ψlDT
k
m(u) = hl(v)ϕkDT

k
m(u) a.e.in Ω. (4.21)
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Letting now n tends to +∞ and l tends to +∞. The first term in (4.17) yeilds

lim
l→+∞

lim
n→+∞

∫
Ω
hl(v

n)an(x, un, Dun)
DT km(u)

b(u)p(x)−1
dx =

∫
Ω
ϕk

DT km(u)

b(u)p(x)−1
dx. (4.22)

The second term of (4.17)∣∣∣∣∣an(x, un, Dun)Dhl(v
n).

(∫ Tk
m(u)

0

1

b(s)p(x)−1
ds

)∣∣∣∣∣ ≤ max(m, k)

α
|an(x, un, Dun)Dvn| .

Since (4.14), we deduce that

lim
l→+∞

lim
n→+∞

∫
Ω
an(x, un, Dun)Dhl(v

n).

(∫ Tk
m(u)

0

1

b(s)p(x)−1
ds

)
dx = 0. (4.23)

Due to (4.22) and (4.23) ,we have∫
Ω
ϕk

DT km(u)

b(u)p(x)−1
dx =

∫
Ω
f

(∫ Tk
m(u)

0

1

b(s)p(x)−1
ds

)
dx. (4.24)

Take ∫ Tk
m(un)

0
1

bn(s)p(x)−1ds as a test fuction in (4.2), we get∫
Ω
an(x, un, Dun)

DT km(un)

bn(un)p(x)−1
dx =

∫
Ω
fn

∫ Tk
m(un)

0

1

bn(s)p(x)−1
dsdx. (4.25)

Passing to the limit as n tends to +∞ in (4.25), in view (4.24), we have

lim
n→+∞

In1 =

∫
Ω
ϕk

DT km(u)

b(u)p(x)−1
dx. (4.26)

Limit of I n2
By the assumptiom of bn, we remark

1

bn(un)p(x)−1
→ 1

bn(un)p(x)−1
a.e.in Ω, (4.27)

as n tends to +∞. Since (4.5), (4.9), and (4.27), we have

lim
n→+∞

In2 = −
∫

Ω
ϕk

DT km(u)

b(u)p(x)−1
dx. (4.28)

Limit of I n3
We notice (3.1), (3.2), and (4.5), we show

an(x, T km (un) , DT km (u))

bn(un)p(x)−1
→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
a.e.in Ω, (4.29)

as n tends to +∞, and∣∣∣∣an(x, T km (un) , DT km (u))

bn(un)p(x)−1

∣∣∣∣ ≤ 1

α

[
β

[
L(x) +

∣∣∣DT km (un)
∣∣∣p(x)−1

]]
a.e.in Ω, (4.30)

uniformly with respect to n. by (4.29), and (4.30), we deduce
an(x, T km (un) , DT km (u))

bn(un)p(x)−1
→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
weakly in Lp′(x)(Ω) , (4.31)

as n tends to +∞.
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From (4.5), we conclude

DT km (un)−DT km (u)→ 0 weakly in Lp(x)(Ω). (4.32)

Due to (4.31), and (4.32) imply that
lim

n→+∞
In3 = 0. (4.33)

Combining (4.16) with (4.26)–(4.33), we etablish 4.15
�

Lemma 4.3. For fixed k ≥ 0, one has

ϕk = a(x, T km (u) , DT km (u)) a.e.in {x ∈ Ω ; u(x) < m} . (4.34)

And

an(x, T km (un) , DT km (un))

bn(un)p(x)−1
DT km (un)

→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
DT km (u) weakly in L1(Ω), (4.35)

when n→ +∞.

Proof. Let k ≥ 0 be fixed, by (4.4) and (4.31), we have

lim
n→+∞

∫
Ω

an(x, T km (un) , DT km (un))

bn(un)p(x)−1
DT km (un) dx =

∫
Ω

ϕk
b(u)p(x)−1

DT km (u) dx.

Since (4.27) and (3.2), we have for every ψ

0 ≤ lim
n→+∞

∫
Ω

[
an(x, T km (un) , DT km (un))

bn(un)p(x)−1
− an(x, T km (un) , ψ)

bn(un)p(x)−1

] [
DT km (un)− ψ

]
dx

= lim
n→+∞

∫
Ω

an(x, T km (un) , DT km (un))

bn(un)p(x)−1

[
DT km (un)− ψ

]
dx

− lim
n→+∞

∫
Ω

an(x, T km (un) , ψ)

bn(un)p(x)−1

[
DT km (un)− ψ

]
dx (4.36)

=

∫
Ω

(
ϕk

b(u)p(x)−1
− a(x, T km (u) , ψ)

b(u)p(x)−1

)[
DT km (un)− ψ

]
dx.

By Minty trick lemma, we conclude that for any
ϕk

b(u)p(x)−1
=
a(x, T km (u) , DT km (u))

b(u)p(x)−1
a.e.in Ω. (4.37)

Since (4.37) and (4.11), we deduce (4.34).
To prove (4.35), we observe that the monotone character of a and (4.15) give[

an(x, T km (un) , DT km (un))

bn(un)p(x)−1
− an(x, T km (un) , DT km (un))

bn(un)p(x)−1

]
×[

DT km (un)−DT km (un)
]
→ 0
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strongly in L1(Ω) as n tends to +∞. From (4.5), (4.9), (4.31), and (4.34), we conclude when n→ +∞

an(x, T km (un) , DT km (un))

bn(un)p(x)−1
DT km (u)→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
DT km (u) weakly in L1(Ω), (4.38)

and
an(x, T km (un) , DT km (u))

bn(un)p(x)−1
DT km (un)→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
DT km (u) weakly in L1(Ω), (4.39)

and
an(x, T km (un) , DT km (u))

bn(un)p(x)−1
DT km (u)→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
DT km (u) weakly in L1(Ω). (4.40)

By the convergences (4.38), (4.39), and (4.40), we obtain that for any k ≥ 0

an(x, T km (un) , DT km (un))

bn(un)p(x)−1
DT km (un)→ a(x, T km (u) , DT km (u))

b(u)p(x)−1
DT km (u) weakly in L1(Ω),

as n tends to +∞.

4.2. Step 5: End of the proof. Taking T s+1
m (un)− T sm (un) as a test function in (4.2) gives∫

Ω
an(x, un, Dun).D

(
T s+1
m (un)− T sm (un)

)
dx =

∫
Ω
fn
(
T s+1
m (un)− T sm (un)

)
dx. (4.41)

Since supp (T s+1
m (.)− T sm (.)

)
⊂ [−(s+ 1), s] ,we obtain∫
{−1−s≤|un|≤−s}

an(x, un, Dun).Dundx (4.42)

=

∫
Ω
an(x, un, Dun)D

(
T s+1
m (un)− T sm (un)

)
dx

=

∫
Ω

an(x, un, Dun)

bn(un)p(x)−1
D
(
T s+1
m (un)− T sm (un)

)
bn(T s+1

m−1 (un))p(x)−1dx

=

∫
Ω

an(x, T s+1
m (un) , DT s+1

m (un))

bn(T s+1
m (un))p(x)−1

D
(
T s+1
m (un)

)
bn(T s+1

m−1 (un))p(x)−1 (4.43)

−
∫

Ω

an(x, T sm (un) , DT sm (un))

bn(un)p(x)−1
D (T sm (un)) bn(T s+1

m−1 (un))p(x)−1

We deduce from (4.4) and (4.35) that

lim
n→+∞

∫
{−1−s≤|un|≤−s}

an(x, un, Dun).Dundx

=

∫
Ω
an(x, un, Dun)D

(
T s+1
m (un)− T sm (un)

)
dx

=

∫
Ω

a(x, T s+1
m (u) , DT s+1

m (u))

bn(T s+1
m (un))p(x)−1

D
(
T s+1
m (u)

)
bn(T s+1

m−1 (u))p(x)−1

−
∫

Ω

a(x, T sm (u) , DT sm (u))

b(u)p(x)−1
D (T sm (u)) bn(T s+1

m−1 (u))p(x)−1 (4.44)

=

∫
{−1−s≤|u|≤−s}

a(x, u,Du)Dudx.
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Taking the limit as s tends to +∞ in (4.41) and using the estimates (4.43) and (4.44) show that u
satisfies (3.8).

Choosing hl(vn)1
δ (T+

m−δ(u)− T+
m−2δ(u)) as a test function in (4.2), we have

1

δ

∫
Ω
an(x, un, Dun)D(hl(v

n)
(
T+
m−δ(u)− T+

m−2δ(u)
)
)dx

=
1

δ

∫
Ω
fnhl(v

n)(T+
m−δ(u)− T+

m−2δ(u))dx. (4.45)

Since supp (hl) ⊂ [−(l + 1), l + 1] ,we obtain
1

δ

∫
Ω
hl(v

n)an(x, un, Dun)D(T+
m−δ(u)− T+

m−2δ(u))dx =

1

δ

∫
Ω
hl(v

n)an(x, T(l+1)/α (un) , DT(l+1)/α (un))D(T+
m−δ(u)− T+

m−2δ(u))dx. (4.46)

In addition, using the same procedures as above, we deduce

lim
l→+∞

lim
n→+∞

1

δ

∫
Ω
hl(v

n)an(x, un, Dun)D(T+
m−δ(u)− T+

m−2δ(u))dx

=
1

δ

∫
{m−2δ≤|u|≤m−δ}

a(x, u,Du)Dudx. (4.47)

Taking the limit as s tends to +∞ in (4.45) and using the estimates (4.46) and (4.47) show that u
satisfies (3.8).

Let S be a function in W 1,∞ (R) such that S has a compact support and S(m) = 0 and let ϕ ∈
W

1,p(.)
0 (Ω) ∩ L∞ (Ω) . Take S(u) hl(v

n )ϕ as a test fuction in (4.2), we get∫
Ω
hl(v

n)an(x, un, Dun)D (S(u)ϕ) dx+

∫
Ω
S(u)ϕan(x, un, Dun)Dhl(v

n)dx (4.48)

=

∫
Ω
fnS(u)hl(v

n)ϕdx.

Taking the limit as n tends to +∞ and l tends to +∞ in (4.48).
Limit of first term in (4.48)

Since supp (hl) ⊂ [−(l + 1), l + 1] ,we obtain

an(x, T(l+1)/α (un) , DT(l+1)/α (un))hl(v
n)) = hl(v

n)an(x, un, Dun) a.e.in Ω.

From (4.11), (4.20), (4.21) and (4.34), we get

lim
l→+∞

lim
n→+∞

∫
Ω
hl(v

n)an(x, un, Dun)D (S(u)ϕ) dx

= lim
l→+∞

∫
Ω
hl(v)a(x, T km (un) , DT km (un))D (S(u)ϕ) dx

=

∫
Ω
a(x, u,Du)D (S(u)ϕ) dx.

Limit of second term in (4.48)
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As a consequence of (4.14), we conclude

lim
l→+∞

lim
n→+∞

∫
Ω
S(u)ϕan(x, un, Dun)Dhl(v

n)dx = 0.

Limit of the Right-Hand Side of (4.48)
From (4.1) and (4.13)

lim
l→+∞

lim
n→+∞

∫
Ω
fnS(u)hl(v

n)ϕdx =

∫
Ω
fS(u)ϕdx.

Then, u satisfies (3.12). �
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