
Asia Pac. J. Math. 2024 11:9

WIENER-HOSOYA ENERGY OF NON-COMMUTING GRAPH FOR DIHEDRAL GROUPS

M. U. ROMDHINI1,∗, A. NAWAWI2, F. AL-SHARQI3,4, A. AL-QURAN5, S. R. KAMALI6

1Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram 83125, Indonesia
2Department of Mathematics and Statistics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Department of Mathematics, College of Education for Pure Sciences, University Of Anbar, Iraq
4College of Engineering, National University of Science and Technology, Dhi Qar, Iraq

5Basic Sciences Department, Preparatory Year Deanship, King Faisal University, Al-Ahsa, Saudi Arabia
6Department of Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Mataram, Mataram 83125,

Indonesia
∗Corresponding author: mamika@unram.ac.id

Received Dec. 8, 2023

Abstract. Spectral graph theory studies the connection between graph theory and algebra throughmatrices
representation. This research is devoted to the spectrum of the non-commuting graph for the dihedral
group. Thematrix representation is theWiener-Hosoyamatrix which is a squarematrix and the eigenvalues
corresponding to the matrix are determined. The result shows that the energy is always similar to twice its
spectral radius.
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1. Introduction

A branch of mathematics referred to as chemical graph theory applies graph theory to the mathe-
matical modeling of chemical compounds discussed in [1], which then discusses graph energies as
presented in [2], which determines the electron energy of a chemical molecule by considering it as a
graph.

As part of spectral graph theory, certainmatrices provide information about graphs, such as adjacency
matrices, Laplacian matrices, and signless Laplacian matrices. It is possible to describe a graph based
on the spectrum of one of these matrices. Spectrum of these various matrices can provide useful
information concerning the graph in general. This work aims to describe the behavior of a non-
commuting graph, one of the finite groups that a graph can represent.
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Let G be a group and Z(G) be a center of G. The non-commuting graph of G, denoted by ΓG,
has vertex set G\Z(G) and two distinct vertices vp, vq in ΓG are connected by an edge whenever
vpvq 6= vqvp [3]. This work considers the non-abelian dihedral group of order 2n as the vertex set for
non-commuting graph, where n ≥ 3, denoted byD2n =

〈
a, b : an = b2 = e, bab = a−1

〉 [4]. Throughout
this paper, the discussion focuses on ΓG for D2n, denoted by ΓD2n .

On the other hand, the Hosoya index is an important molecular descriptor in chemical graph theory.
Several results of this tree topic can be found in [5, 6]. The Hosoya matrix was first introduced by
Randic in 1994 [7], then Ibrahim et al. [8] defined the formal definition of the Wiener-Hosoya matrix of
a graph.

Let dp be the degree of a vertex vp, and dpq be the distance between vertex vp and vq. The following
results are the degree of every vertex and the distance between two vertices in ΓD2n .

Theorem 1.1. [9] Let ΓD2n be the non-commuting graph on D2n. Then

(1) dai = n,

(2) daib =

 2(n− 1), if n is odd

2(n− 2), if n is even.

Theorem 1.2. [10] Let ΓD2n be the non-commuting graph on D2n. For two distinct vertices vp, vq ∈ ΓD2n ,

then the distance between vp and vq

(1) for the odd n, dpq =

 2, if vp, vq ∈ G1

1, otherwise,
,

(2) for the even n, dpq =


2, if vp, vq ∈ G1

2, vp ∈ G2, vq ∈
{
a

n
2

+ib
}

1, otherwise.

Furthermore, the transmission of a vertex vp, denoted by τp, is defined as the sum of distances
between vp and any other vertices in a graph [8]. The Wiener-Hosoya (WH) matrix of order n × n
corresponding to ΓD2n is given byWH (ΓD2n) = [whpq] whose (p, q)-th entry is

whpq =


τp

2dp
+

τq
2dq
, if vp 6= vq and they are adjacent

0, otherwise.
The energy of ΓD2n , E(ΓD2n), is calculated by adding all the absolute values of its eigenvalues [2].

The spectral radius of ΓD2n is the maximum of absolute eigenvalues [11]
A detailed discussion of dihedral groups as a vertex set that is spectral problems for commuting and

non-commuting graphs involving several degree-based matrices can be found in [12–16]. Meanwhile,
Romdhini et al. [17] discussed the signless Laplacian energy. In addition, readers can also see the
graph matrix extension in [18]. Therefore, this work discusses the energy of non-commuting graphs
corresponding with the Wiener-Hosoya matrix.
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Moreover, to formulate the characteristic polynomial of ΓD2n , we need the determinant properties. If
a square matrix has a large order, we will have difficulty finding its eigenvalues. To simplify it, we will
use two results from the literature as follows.

Lemma 1.3. [19] If a, b, c, and d are real numbers, then the determinant of∣∣∣∣∣∣(λ+ a)In1 − aJn1 −cJn1×n2

−dJn2×n1 (λ+ b)In2 − bJn2

∣∣∣∣∣∣
can be simplified as

(λ+ a)n1−1(λ+ b)n2−1 ((λ− (n1 − 1)a)(λ− (n2 − 1)b)− n1n2cd) ,

where 1 ≤ n1, n2 ≤ n and n1 + n2 = n.

Theorem 1.4. [20] LetM =

 A B

C D

 is a partitioned matrix with A is a non-singular, then

|M | =

∣∣∣∣∣∣ A B

O D − CA−1B

∣∣∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
If the form of the matrix is not similar to the above lemma, row and column operations need to be

performed to get the characteristic polynomial of ΓD2n . Let Ri and Ci be the i−th row and column of
the matrix. Suppose now R′i and C ′i are the new i−th row and column of the matrix obtained from Ri

and Ci, respectively.

2. Main Results

To construct the Wiener-Hosoya matrix of ΓD2n , by the definition, we need the transmission of every
vertex in ΓD2n . The result is given below:

Theorem 2.1. Let ΓD2n be the non-commuting graph on D2n, then the transmission of vertex vp

(1) for the odd n, τp =

 3n− 4, if vp ∈ G1

2(n− 1), if vp ∈ G2,
, and

(2) for the even n, τp =

 3(n− 2), if vp ∈ G1

2(n− 1), if vp ∈ G2,

Proof. (1) For the odd n case, let G1 = {a, a2, . . . an−1} and G2 = {b, ab, a2b, . . . an−1b}. There are
n− 1 vertices in G1 and n vertices in G2. We know from Theorem 1.2 that dpq = 2 if vp, vq ∈ G1

and dpq = 1, otherwise. Then the transmission of vp ∈ G1 is

τp = 2(n− 2) + n = 3n− 4.
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Meanwhile, the transmission of vp ∈ G2 is

τp = (n− 1) + (n− 1) = 2(n− 1).

(2) While for the even n case, let G1 = {a, a2, . . . , a
n
2
−1, a

n
2

+1, . . . , an−1} and G2 =

{b, ab, a2b, . . . , an−1b}. There are n − 2 vertices in G1 and n vertices in G2. We know from
Theorem 1.2 that dpq = 2 if vp, vq ∈ G1 or vp ∈ G2, vq ∈

{
a

n
2

+ib
}
and dpq = 1, otherwise. Then

the transmission of vp ∈ G1 is

τp = 2(n− 3) + n = 3(n− 2).

Meanwhile, the transmission of vp ∈ G2 is

τp = (n− 2) + (n− 2) + 2 = 2(n− 1).

�

Theorem 2.2. Let ΓD2n be the non-commuting graph on D2n, then the characteristic polynomial ofWH(ΓD2n)

is

(1) for odd n

PWH(ΓD2n
)(λ) = (λ)n−2 (λ+ 1)n−1

(
λ2 − (n− 1)λ− 4(n− 1)3

n

)
,

(2) for even n,

PWH(ΓD2n
)(λ) = (λ)

3(n−2)
2

(
λ+ 2

(
n− 1

n− 2

))n
2
−1 (

λ2 − (n− 1)λ−
(4n2 − 13n+ 12)2

4n(n− 2)

)
.

Proof. (1) Let n is odd with Z(D2n) = {e} which implies that there are 2n − 1 vertices for ΓD2n .
It can be seen that Z(D2n) = {e} for odd n implies that ΓD2n has 2n − 1 vertices. We label
the set G1 as {a, a2, . . . an−1} and G2 as {b, ab, a2b, . . . an−1b}. Considering the degree of every
vertex and in Theorem 1.1 and the transmission of every vertex in Theorem 2.1, also using the
definition ofWH-matrix, then the (2n− 1)× (2n− 1) Weiner-Hosoya matrix for ΓD2n is

WH(ΓD2n
) =

a a2 . . . an−1 b ab . . . an−1b



a 0 0 . . . 0 2(n−1)
n

2(n−1)
n . . . 2(n−1)

n

a2 0 0 . . . 0 2(n−1)
n

2(n−1)
n . . . 2(n−1)

n

... ... ... . . . ... ... ... . . . ...
an−1 0 0 . . . 0 2(n−1)

n
2(n−1)

n . . . 2(n−1)
n

b 2(n−1)
n

2(n−1)
n . . . 2(n−1)

n 0 1 . . . 1

ab 2(n−1)
n

2(n−1)
n . . . 2(n−1)

n 1 0 . . . 1

... ... ... . . . ... ... ... . . . ...
an−1b 2(n−1)

n
2(n−1)

n . . . 2(n−1)
n 1 1 . . . 0

.
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Here theWH-matrix of ΓD2n can be obtained as the block matrices as follows:

WH(ΓD2n) =

 0n−1
2(n−1)
n J(n−1)×n

2(n−1)
n Jn×(n−1) (J − I)n

 ,

and the determinant below is the characteristic polynomial forWH(ΓD2n),

PWH(ΓD2n
)(λ) =

∣∣∣∣∣∣ λIn−1 −2(n−1)
n J(n−1)×n

−2(n−1)
n Jn×(n−1) (λ+ 1)In − Jn)

∣∣∣∣∣∣ .
Repeated application of Lemma 1.3, with a = 0, b = 1, c = d = 2(n−1)

n , n1 = n− 1 and n2 = n,
the desired result is obtained.

(2) Suppose now n is even. We write the set G1 as
{a, a2, . . . , a

n
2
−1, a

n
2

+1, . . . , an−1} and G2 as {b, ab, a2b, . . . , an−1b}. Again considering the de-
gree of every vertex and in Theorem 1.1 and the transmission of every vertex in Theorem 2.1,
also using the definition of WH-matrix, which implies WH(ΓD2n) being the matrix of size
(2n− 2)× (2n− 2) as follows,

a . . . an−1 b . . . a
n
2
−1b a

n
2 b . . . an−1b



a 0 . . . 0 4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

...
... . . . ...

... . . . ...
... . . . ...

an−1 0 . . . 0 4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

b 4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

0 . . . n−1
n−2

0 . . . n−1
n−2

...
... . . . ...

... . . . ...
... . . . ...

a
n
2
−1b 4n2−13n+12

2n(n−2)
. . . 4n2−13n+12

2n(n−2)
n−1
n−2

. . . 0 n−1
n−2

. . . 0

a
n
2 b 4n2−13n+12

2n(n−2)
. . . 4n2−13n+12

2n(n−2)
0 . . . n−1

n−2
0 . . . n−1

n−2

...
... . . . ...

... . . . ...
... . . . ...

an−1b 4n2−13n+12
2n(n−2)

. . . 4n2−13n+12
2n(n−2)

n−1
n−2

. . . 0 n−1
n−2

. . . 0

.

Now we provide nine block matrices ofWH(ΓD2n) as follows:

WH(ΓD2n) =


0n−2

4n2−13n+12
2n(n−2) J(n−2)×n

2

4n2−13n+12
2n(n−2) J(n−2)×n

2

4n2−13n+12
2n(n−2) Jn

2
×(n−2)

n−1
n−2(Jn

2
− In

2
) n−1

n−2(J − I)n
2

4n2−13n+12
2n(n−2) Jn

2
×(n−2)

n−1
n−2(J − I)n

2

n−1
n−2(J − I)n

2

 .

The characteristic polynomial ofWH(ΓD2n), PWH(ΓD2n
)(λ) is as follows

∣∣∣∣∣∣∣∣∣
λIn−2 −

(
4n2−13n+12

2n(n−2)

)
J(n−2)×n

2
−
(

4n2−13n+12
2n(n−2)

)
J(n−2)×n

2

−
(

4n2−13n+12
2n(n−2)

)
Jn

2
×(n−2) (λ+ n−1

n−2)In
2
−
(
n−1
n−2

)
Jn

2
−
(
n−1
n−2

)
(J − I)n

2

−
(

4n2−13n+12
2n(n−2)

)
Jn

2
×(n−2) −

(
n−1
n−2

)
(J − I)n

2
(λ+ n−1

n−2)In
2
−
(
n−1
n−2

)
Jn

2

∣∣∣∣∣∣∣∣∣ . (2.1)
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According to the row operation R
′

n−2+n
2

+i = Rn−2+n
2

+i − Rn−2+i, followed by C ′n−2+i =

Cn−2+i + Cn−2+n
2

+i on Equation 2.1 for 1 ≤ i ≤ n
2 , then PWH(ΓD2n

)(λ) is∣∣∣∣∣∣∣∣∣
λIn−2 −2

(
4n2−13n+12

2n(n−2)

)
J(n−2)×n

2
−
(

4n2−13n+12
2n(n−2)

)
J(n−2)×n

2

−
(

4n2−13n+12
2n(n−2)

)
Jn

2
×(n−2)

(
λ+ 2

(
n−1
n−2

))
In

2
− 2

(
n−1
n−2

)
Jn

2
−
(
n−1
n−2

)
(J − I)n

2

0n
2
×(n−2) 0n

2
λIn

2

∣∣∣∣∣∣∣∣∣ . (2.2)

Consequently, Equation 2.2 can be written as

PWH(ΓD2n
)(λ) =

∣∣∣∣∣∣ An−2+n
2

B(n−2+n
2 )×n

2

Cn
2
×(n−2+n

2 ) Dn
2

∣∣∣∣∣∣ , (2.3)

where

A =

∣∣∣∣∣∣ λIn−2 −2
(

4n2−13n+12
2n(n−2)

)
J(n−2)×n

2

−
(

4n2−13n+12
2n(n−2)

)
Jn

2
×(n−2)

(
λ+ 2

(
n−1
n−2

))
In

2
− 2

(
n−1
n−2

)
Jn

2

∣∣∣∣∣∣,
B =

∣∣∣∣∣∣ −
(

4n2−13n+12
2n(n−2)

)
J(n−2)×n

2

−
(
n−1
n−2

)
(J − I)n

2

∣∣∣∣∣∣, C =
∣∣∣0n

2
×(n−2+n

2 )

∣∣∣, and D =
∣∣∣λIn

2

∣∣∣.
According to Theorem 1.4, since C = 0, we then obtain Equation 2.3 as PWH(ΓD2n

)(λ) =

|A| |D|. By applying Lemma 1.3 to |A|, with a = 0, b = 4
√

2(n − 2), c = 2
(

4n2−13n+12
2n(n−2)

)
,

d =
(

4n2−13n+12
2n(n−2)

)
, n1 = n− 2 and n2 = n

2 , and consideringD is a diagonal matrix, we then get

PWH(ΓD2n
)(λ) = (λ)

3(n−2)
2

(
λ+ 2

(
n− 1

n− 2

))n
2
−1(

λ2 − (n− 1)λ− (4n2 − 13n+ 12)2

4n(n− 2)

)
.

�

The following Theorem 2.3 and 2.4 present the Weiner-Hosoya spectral radius, and energy of ΓD2n .

Theorem 2.3. Let ΓD2n be the non-commuting graph on D2n, then theWH-spectral radius for ΓD2n is

(1) ρWH(ΓD2n) = n−1
2 + 1

2

√
(n−1)2(17n−16)

n , for odd n, and

(2) ρWH(ΓD2n) = n−1
2 + 1

2

√
(n− 1)2 + (4n2−13n+2)2

n(n−2) , for even n.

Proof. (1) The formula of PWH(ΓD2n
)(λ) of Theorem 2.2 (1) for odd n result the eigenvalues for

ΓD2n . We have λ1 = 0 of multiplicity n − 2. Then we get λ2 = −1 of multiplicity n − 1, and
λ3,4 = n−1

2 ±
1
2

√
(n−1)2(17n−16)

n as the roots of the quadratic formula. Hence, theWiener-Hosoya
spectrum for ΓD2n is as follows

Spec(ΓD2n) =


(
n− 1

2
+

1

2

√
(n− 1)2(17n− 16)

n

)1

, (0)n−2,

(
n− 1

2
− 1

2

√
(n− 1)2(17n− 16)

n

)1

, (−1)n−1

 .
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Now for i = 1, 2, 3, 4, the maximum of |λi| is the Wiener-hosoya spectral radius of ΓD2n ,

ρWH(ΓD2n) =
n− 1

2
+

1

2

√
(n− 1)2(17n− 16)

n
.

(2) As can be seen in Theorem 2.2 (2), the roots of PWH(ΓD2n
)(λ) = 0 are the eigenvalues of

ΓD2n . Firstly, we have λ1 = 0 of the multiplicity 3(n−2)
2 . Next, the roots are λ2 = −2

(
n−1
n−2

)
of

multiplicity n
2 − 1, and λ3,4 = n−1

2 ±
1
2

√
(n− 1)2 + (4n2−13n+2)2

n(n−2) . Therefore,

Spec(ΓD2n) =


(
n− 1

2
+

1

2

√
(n− 1)2 +

(4n2 − 13n + 2)2

n(n− 2)

)1

, (0)
3n−6

2 ,

(
n− 1

2
− 1

2

√
(n− 1)2 +

(4n2 − 13n + 2)2

n(n− 2)

)1

,

(
−2

(
n− 1

n− 2

))n
2
−1

 .

Determining themaximum absolute eigenvalues, as a consequence, theWiener-Hosoya spectral
radius of ΓD2n is provided as

ρWH(ΓD2n) =
n− 1

2
+

1

2

√
(n− 1)2 +

(4n2 − 13n+ 2)2

n(n− 2)
.

�

Theorem 2.4. Let ΓD2n be the non-commuting graph on D2n,then the Wiener-Hosoya energy for ΓD2n is

(1) EWH(ΓD2n) = (n− 1) +

√
(n−1)2(17n−16)

n , for odd n, and

(2) EWH(ΓD2n) = (n− 1) +
√

(n− 1)2 + (4n2−13n+2)2

n(n−2) , for even n.

Proof. (1) From the Wiener-Hosoya spectrum in Theorem 2.3 (1) for odd n, we can calculate the
Wiener-Hosoya energy for ΓD2n is. By the definition of energy, we obtain

EWH(ΓD2n) =(n− 2)|0|+ (n− 1) |−1|+

∣∣∣∣∣n− 1

2
± 1

2

√
(n− 1)2(17n− 16)

n

∣∣∣∣∣
=(n− 1) +

√
(n− 1)2(17n− 16)

n
.

(2) According to Spec(ΓD2n) in Theorem 2.3 (2) for even n, as the same manner of odd n case, we
derive the Wiener-Hosoya energy of ΓD2n as follows

EWH(ΓD2n) =

(
3(n− 2)

2

)
|0|+

(n
2
− 1
) ∣∣∣∣−2

(
n− 1

n− 2

)∣∣∣∣+∣∣∣∣∣n− 1

2
± 1

2

√
(n− 1)2 +

(4n2 − 13n+ 2)2

n(n− 2)

∣∣∣∣∣
=(n− 1) +

√
(n− 1)2 +

(4n2 − 13n+ 2)2

n(n− 2)
.

�
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Based on Theorem 2.3 and 2.4, we conclude the relationship betweenWH-energy andWH-spectral
radius with the following conclusion:

Corollary 2.5. For the non-commuting graph ΓD2n , EWH(ΓD2n) = 2 · ρWH(ΓD2n).
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