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Abstract. Coloring the nodes of a graph is a widely used technique to speed up prac-
tical clique search algorithms. This motivates our interest in various graph coloring
schemes. Because of computational costs mainly simple greedy graph coloring proce-
dures are considered. In this paper we will show that certain graph coloring schemes
can be reduced to finding cliques in an appropriately constructed auxiliary graph. Once
again because of computational costs involved one has to resort on not exhaustive clique
search procedures. These lead to new greedy graph coloring algorithms which can be
used as preconditioning tools before embarking on large scale clique searches.
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1. Introduction

Throughout this paper under graph we mean finite simple graph, that is, graphs in
this paper have finitely many vertices, finitely many edges without any loop or double
edges. Let G = (V,E) be a finite simple graph. Here V is the set of vertices of G and E
is the set of edges of G. Let D be a subset of V and let ∆ be the subgraph of G induced
by D. We say that ∆ is a clique in G if any two distinct elements of D are adjacent in
G. We call ∆ a k-clique if the set D has k elements.

Finding cliques in a given graph is an important problem in discrete applied mathe-
matics with many applications inside and outside of mathematics. For further details
see [1], [2], [4], [7], [9], [17], [18].

We formally state the following clique search problem.

Problem 1. Given a finite simple graph G and given a positive integer k. Decide if G
contains a k-clique.
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Coloring the nodes of a graph is intimately related to finding cliques in the graph.
Namely, many practical clique search algorithms employ coloring to speed up the com-
putation by reducing the search space. Finding optimal or nearly optimal colorings is
itself a computationally demanding problem. From this reason in the above computa-
tions computationally more feasible greedy algorithms are used to construct subopti-
mal colorings.

In this paper we propose to explore the opposite direction. We describe practical
means to reduce coloring to clique search. From a given graph we construct a larger
new auxiliary graph. The cliques in this auxiliary graph are associated with with
colorings of the original graph.

In [6] an algorithm is presented to locate suboptimal cliques in relatively large
graphs. This algorithm can be applied to the auxiliary graph to construct coloring
for the original graph. Numerical experiments indicate that the program provides im-
pressive results. We recommend this approach as a preconditioning tool before sub-
mitting the original graph to any of the standard clique search algorithms.

All the evidences available at the time of writing this paper indicate that the pro-
posed coloring procedure translates to better running times in practical clique search
algorithms.

2. Legal coloring of the nodes

We color the nodes of a graph G satisfying the following conditions.
(1) Each node of G receives exactly one color.
(2) Adjacent nodes in G cannot receive the same color.

This is the most commonly encountered coloring of the nodes of a graph and it is
referred as legal coloring of the nodes. It is well known that coloring can be used for
estimating clique size.

Let us suppose that ∆ is an l-clique in G and let us suppose that the nodes of G have
a legal coloring with k colors. Then l ≤ k holds.

Indeed, a legal coloring of the nodes of G gives a legal coloring of the nodes of ∆.
Note that in a legal coloring of the nodes of ∆ at least l colors must occur. This gives
l ≤ k, as required.

Problem 2. Given a finite simple graph G and given a positive integer k. Decide if the
nodes of G have a legal coloring using k colors.

Both Problems 2 and 1 are decision problems. From the complexity theory of com-
putations we know that these problems belong to the NP-complete complexity class.
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Table 1. The adjacency matrix of the graph G in Example 1

1 2 3 4 5 6

1 × • • •
2 • × •
3 • × • •
4 • • × •
5 • • ×
6 • ×

Problems 2 and 1 are polynomially reducible to each other. The point we would like
to make here is that reducing Problem 2 to Problem 1 can be utilized in practical
computations.

Here is a way how Problem 2 can be reduced to Problem 1.
Using the graph G = (V,E) and using the positive integer k one constructs an aux-

iliary graph Γ = (W,F ). The nodes of Γ are the ordered pairs

(v, a), where v ∈ V, 1 ≤ a ≤ k.

The intended meaning of the pair (v, a) is that node v of G receives color a.
Let us pick two distinct nodes

w1 = (v1, a1) and w2 = (v2, a2)

of Γ. If the unordered pair {v1, v2} is an edge of G, then in a legal coloring of the nodes
of G the colors a1, a2 cannot be identical. When we construct Γ we do not connect the
nodes w1, w2 if the unordered pair {v1, v2} is an edge of G and if in addition a1 = a2

holds. In a coloring of the nodes of G a node cannot receive two distinct colors. Thus
when we construct Γ we do not connect w1, w2 by an edge in Γ if v1 = v2.

Let n be the number of vertices ofG, that is, let n = |V |. The graph Γ has nk vertices.

Observation 1. If the nodes of the graph G have a legal coloring using k colors, then
the graph Γ contains a n-clique.

Proof. Let us assume that the nodes of G can be colored legally using k colors. Let
f : V → {1, . . . , k} be a function which describes this coloring. Let

D = {(v, f(v)) : v ∈ V }
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Figure 1. A graphical representation of the graph G in Example 1.

Table 2. The partitioned form of the adjacency matrix A of the auxiliary
graph Γ in Example 1.

B C D C C D

C B C D D D

D C B C D C

C D C B C D

C D D C B D

D D C D D B

and let ∆ be the subgraph of Γ induced by D. Clearly, D has n elements. We claim
that ∆ is an n-clique in Γ.

In order to verify this claim we pick two distinct nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

from D.
If v1 = v2, then f(v1) = f(v2) must hold as the node v1 receives exactly one color. This

means that w1 = w2. But we know that w1 6= w2.
If v1 6= v2 and the unordered pair {v1, v2} is an edge of G, then f(v1) 6= f(v2) holds

since the coloring defined by f is legal. This means that we have connected the nodes
w1, w2 by an edge in Γ when we constructed Γ.

If v1 6= v2 and the unordered pair {v1, v2} is not an edge of G, then we have connected
the nodes w1, w2 by an edge in Γ when we have constructed Γ. �

Observation 2. If the graph Γ contains an n-clique, then the nodes of the graph G can
be colored legally using k colors.
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Table 3. Monotonic matrices.

n |V | |E| L D Q K
3 27 189 6 6 5 5
4 64 1 296 12 10 9 8
5 125 5 500 20 17 16 14
6 216 17 550 30 25 22 20
7 343 46 305 42 36 32 26
8 512 106 624 56 45 41 33
9 729 221 616 72 60 52 43

10 1 000 425 250 90 74 67 54
11 1 331 765 325 110 93 82

12 1 728 1 306 800 132 109 102

13 2 197 2 135 484 156 129 121

14 2 744 3 362 086 182 153 136

15 3 375 5 126 625 210 177 161

Table 4. Deletion error correcting codes.

n |V | |E| L D Q K
3 8 9 2 2 2 2
4 16 57 4 4 5 4
5 32 305 8 6 7 6
6 64 1 473 14 13 14 12
7 128 6 657 26 23 25 20
8 256 28 801 50 42 44 37
9 512 121 089 101 84 88 68

10 1 024 499 713 199 155 160

11 2 048 2 037 761 395 306 301

Proof. Let us suppose that Γ has an n-clique ∆ and D is the set of nodes of ∆. Let

Iv = {(v, a) : 1 ≤ a ≤ k}
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Table 5. Johnson codes.

n |V | |E| L D Q K
8 70 1 855 20 17 17 14
9 126 6 615 35 30 30 25

10 210 19 425 56 48 46 40
11 330 49 665 84 71 67 56
12 495 114 345 120 99 91 77
13 715 242 385 165 133 128

14 1 001 480 480 220 171 164

15 1 365 900 900 286 222 209

16 1 820 1 611 610 364 281 265

17 2 380 2 769 130 455 376 325

for each v ∈ V . Obviously, Iv has k elements. Note that the sets Iv, v ∈ V are pair-wise
disjoint independent sets in Γ. Further note that the union of these sets is equal toW .

The nodes of Γ can be colored legally using n colors. The sets Iv, v ∈ V can play the
roles of the color classes of the nodes of Γ. Since ∆ is a clique in Γ it follows that each
Iv contains at most one element from D. Using the fact that |D| = n we can conclude
that D is a complete set of representatives of the sets Iv, v ∈ V .

Set
T = {v : (v, a) ∈ D}

We can see that T = V . Therefore each v ∈ V receives exactly one color. We may
express this result such that the map f : V → {1, . . . , k} defined by f(v) = a is a
function. It remains to show that the function f describes a legal coloring of the nodes
of G.

Suppose that the unordered pair {v1, v2} is an edge of G. and consider two distinct
nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

of ∆. When we constructed the graph Γ we have connected the nodes w1, w2 by an edge
in Γ because f(v1) 6= f(v2). �

We will draw conclusions from the proof of Observation 2. This is the reason we
have included a proof.
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Example 1. Let the finite simple graph G = (V,E) be given by its adjacency matrix
in Table 1. The graph has 6 nodes and 7 edges. A graphical representation of G is
depicted in Figure 1.

We would like to decide if the nodes of G have a legal coloring using k = 3 colors.
The auxiliary graph Γ has |V | · k = 18 nodes. Let A be the adjacency matrix of Γ. The
matrix A can be partitioned into 3 by 3 blocks. The partitioned form of A is given in
Table 2. Note that the pattern of the adjacency matrix of G and the pattern of the
blocks in the adjacency matrix of Γ are similar. The block B is a 3 by 3 matrix in which
all cells are empty. The block D is a 3 by 3 matrix in which all cells are filled with
bullets. Finally, the block C is a 3 by 3 matrix, where the cells in the main diagonal
are empty and all the other cells are filled with bullets.

Finding a legal coloring of a graph with 1000 nodes using 60 colors can be reduced
to locate a 1000-clique in the auxiliary graph which has 60000 nodes. The size of the
auxiliary graph makes us wonder if this proposal is reasonable. We carried out a large
scale numerical experiment. The graphs we used are coming from coding theory. They
are related to the existence of certain error correcting codes. (Details from the mono-
tonic matrices can be found in [15].) The results are summarized in Tables 3, 4, and
3. The columns labeled by L contain the number of colors one gets using the simplest
sequential greedy coloring procedure. The columns labeled by D holds the number of
colors we get using the dsatur algorithm described in [3]. The columns labeled by Q
and K contain the number of colors provided by the proposed clique approach.

One can locate a suboptimal size clique in the auxiliary graph using the following
procedure. We check if the graph itself is a clique. If not, then let us pick a node with
a maximum degree. Next we delete all the nodes that are not adjacent to this node.
Repeating this procedure for the remaining graph eventually we end up with a clique.
The results provided by this greedy clique search algorithm are listed in the columns
with heading Q.

Locating independent sets in a graph is equivalent to locating cliques in the com-
plement of the graph. In [6] an algorithm is advanced for locating independent sets
is sparse graph. (The program is downloadable from http://algo2.iti.kit.edu/kamis/.)
The algorithm of course is applicablee for locating cliques in dense graphs. We used
this algorithm. The running time of the program was limited to 600 seconds by de-
fault. This limited the sizes of the auxiliary graphs we could complete the search. The
results are listed in columns labeled by K. Cells remained empty when the auxiliary
graph for too big to complete the search during alloted 600 second time. In spite of
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their limited nature the results are impressive in comparison with the other coloring
algorithms.

In summary we can say that the numerical experiments show that the clique ap-
proach for coloring is a feasible proposal. Further, there are many local search based
methods to locate cliques in a graph. It means there is a large number of potential
greedy coloring methods.

3. 2-fold coloring of the nodes

We color the nodes of a given finite simple graph G with k colors satisfying the
following conditions.

(1) Each node receives exactly two distinct colors.
(2) Adjacent nodes never receive the same color.

This coloring of the nodes of the graph G is referred as a 2-fold legal coloring of the
nodes of G. Coloring can be used for bounding clique size.

Let us suppose that ∆ is an l-clique in G and let us suppose that the nodes of G have
a 2-fold legal coloring using k colors. Then l ≤ k/2 holds.

Indeed, a 2-fold legal coloring of the nodes of G provides a 2-fold legal coloring of the
nodes of ∆. Note that in a 2-fold legal coloring of the nodes of ∆ at least 2l colors must
occur. This gives 2l ≤ k, as required.

Problem 3. Given a finite simple graph G and given a positive integer k. Decide if the
nodes of G have a 2-fold legal coloring using k colors.

Problem 3 can be reduced to Problem 1. Using the graph G = (V,E) and using the
integer k we construct an auxiliary graph Γ = (W,F ). The nodes of Γ are the ordered
triples

(v, a, b), where v ∈ V, 1 ≤ a < b ≤ k.

The intuitive meaning of the triple (v, a, b) is that node v receives the two distinct colors
a, b. Let n be the number of vertices of G, that is, let n = |V |. The number of nodes of
Γ is equal to nk(k − 1)/2.

Let us consider two distinct nodes

w1 = (v1, a1, b1) and w2 = (v2, a2, b2)

of Γ. If the unordered pair {v1, v2} is an edge of G, then {a1, b1}∩{a2, b2} = ∅must hold
in a 2-fold legal coloring of the nodes of G. Thus when we construct the graph Γ we do
not connect w1, w2 by an edge in Γ if {v1, v2} is an edge of G and {a1, b1} ∩ {a2, b2} 6= ∅.
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Table 6. The adjacency matrix of the graph G in Example 2

1 2 3 4 5

1 × • •
2 • × •
3 • × •
4 • × •
5 • • ×

Table 7. The partitioned form of the adjacency matrix A of the auxiliary
graph Γ in Example 2.

B C D D C

C B C D D

D C B C D

D D C B C

C D D C B

In a 2-fold legal coloring of the nodes of G each node receives exactly two distinct
colors. Thus when we construct the graph Γ we do not connect w1, w2 by an edge in Γ

if v1 = v2.

Observation 3. If the nodes of G have a 2-fold legal coloring with k colors, then Γ

contains an n-clique.

Proof. Suppose that the nodes of G have a 2-fold legal coloring with k-colors and f :

V → P is a function which describes this coloring. Here

P = {{a, b} : 1 ≤ a < b ≤ k}.

SetD = {(v, f(v)) : v ∈ V }. It is clear that |D| = n. Let ∆ be the subgraph of Γ induced
by D. We will verify that ∆ is a clique in Γ. In order to do so let us pick two distinct
nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

from ∆.
If v1 = v2, then f(v1) = f(v2) must hold as f is a function. In this situation w1 = w2.

But we know that w1 6= w2. We are left with the case when v1 6= v2.
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Table 8. The 10 by 10 size block C in Example 2.

1 1 1 1 2 2 2 3 3 4

2 3 4 5 3 4 5 4 5 5

1,2 × • • •
1,3 × • • •
1,4 × • • •
1,5 × • • •
2,3 • • × •
2,4 • • × •
2,5 • • × •
3,4 • • • ×
3,5 • • • ×
4,5 • • • ×

If the unordered pair {v1, v2} is an edge of G, then [f(v1)] ∩ [f(v2)] = ∅ since the
function f codes a 2-fold legal coloring of the nodes of G. When we constructed Γ we
have connected the nodes w1, w2 by an edge in Γ on the base that the unordered pair
{v1, v2} is an edge of G and [f(v1)] ∩ [f(v2)] = ∅. We are left with the case when the
unordered pair {v1, v2} is not an edge of G. When we constructed Γ we have connected
the nodes w1, w2 by an edge in Γ on the base that the unordered pair {v1, v2} is not an
edge of G. �

Observation 4. If Γ contains an n-clique, then the nodes of G have a 2-fold legal col-
oring using k colors.

Proof. Suppose that Γ contains an n-clique ∆ whose set of nodes is equal to D. Let

Iv = {(v, a, b) : 1 ≤ a < b ≤ k}

for each v ∈ V . Clearly, |Iv| = k(k − 1)/2. The reader will note that the sets Iv, v ∈ V
are pair-wise disjoint independent sets of Γ. We a can see that the union of these
independent sets is equal to W .

The nodes of Γ have a legal coloring using n colors. The reason is that the sets Iv,
v ∈ V can be identified with with n color classes of the nodes of Γ. Each node of the
n-clique ∆ falls into exactly one color class. Set

T = {v : (v, a, b) ∈ U}.
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It follows that T = V . We define a function f : V → P by setting f(v) = {a, b}whenever
(v, a, b) ∈ U . Here P = {{a, b} : 1 ≤ a < b ≤ k}. The function f describes a 2-
fold coloring of the nodes of G. It remains to show that this coloring is a 2-fold legal
coloring of the nodes of G.

Let us consider an unordered pair {v1, v2} which is an edge of G and let us focus our
attention to the distinct nodes

w1 = (v1, f(v1)) and w2 = (v2, f(v2))

of ∆. When we constructed the graph Γ we connected the nodes w1, w2 by an edge in
Γ exactly on the base that [f(v1)] ∩ [f(v2)] = ∅. �

Example 2. Let the finite simple graph G = (V,E) be given by its adjacency matrix in
Table 6. The graph is a circle which has 5 nodes and 5 edges.

We would like to decide if the nodes of the graph G have a 2-fold legal coloring with
5 colors. In order to reduce the coloring problem to a clique problem we construct the
auxiliary graph Γ = (W,F ). In this case n = |V | = 5 and k = 5. The graph Γ has
nk(k − 1)/2 = 50 nodes. Let A be the adjacency matrix of Γ. We partition A into 10 by
10 size blocks. Table 7 exhibits the adjacency matrix A in block form. Note that the
pattern of A follows the pattern of the adjacency matrix of G.

The block B is a 10 by 10 matrix in which all the 100 cells are empty. The block D is
a 10 by 10 matrix in which all the cells are filled with bullets. Finally, the block C is a
10 by 10 matrix given in Table 8. The rows and the columns of the block C are labeled
by the 2-element subsets of the set {1, . . . , k}. The cell at the intersection of the row
labeled by {a1, b1} and the column labeled by {a2, b2} holds a bullet if {a1, b1}∩{a2, b2} =

∅.
Problem 3 can be reduced to Problem 2 too. This means that instead of finding a a

2-fold coloring of the nodes of a given graph we may look for a (1-fold) legal coloring of
the nodes of a larger auxiliary graph.

Using the graph G = (V,E) and the positive integer k we construct an auxiliary
graph Γ = (W,F ). The nodes of Γ are the ordered pairs

(v, α), where v ∈ V, 1 ≤ α ≤ 2.

The number of the nodes of Γ is equal to 2n.
Let us consider two distinct nodes

w1 = (v1, α1) and w2 = (v2, α2)
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Figure 2. The correspondence between the graphs G and Γ.

of Γ. We connect the nodes w1, w2 by an edge in the graph Γ whenever v1 = v2. (In this
situation α1 6= α2 must hold as w1 6= w2.) If the unordered pair {v1, v2} is an edge of G,
then we add the unordered pairs

{(v1, 1), (v2, 1)}, {(v1, 1), (v2, 2)},

{(v1, 2), (v2, 1)}, {(v1, 2), (v2, 2)},

as edges to Γ. Note that if the nodes w1 and w2 are adjacent in Γ and v1 6= v2, then the
nodes v1 and v2 must be adjacent in G.

Observation 5. If the nodes of G have a 2-fold legal coloring using k colors, then the
nodes of the auxiliary graph Γ have a legal coloring with k colors.

Proof. Let us suppose that the nodes of G have a 2-fold legal coloring using k colors.
We define a coloring of the nodes of Γ. If the node v of G receives the distinct colors a,
b, then the nodes (v, 1), (v, 2) of Γ receive colors a, b, respectively.

It is clear that each node of the graph Γ receives exactly one color. It remains to
verify that if w1 = (v1, α1), w2 = (v2, α2) are distinct adjacent nodes of Γ, then they do
not receive the same color. We distinguish two cases depending on v1 = v2 or v1 6= v2.

Case 1: v1 = v2. Now α1 6= α2 must hold since otherwise the nodes w1, w2 are
identical. We may assume that α1 = 1 and α2 = 2 since this is only a matter of
exchanging the nodes. As a 6= b then nodes w1, w2 of Γ receive distinct colors.

Case 2: v1 6= v2. Now the unordered pair {v1, v2} must be an edge of G. Let us
suppose that the node v1 of G receives the colors a1, b1 and the node v2 of G receives
the colors a2, b2. The colors a1, b1, a2, b2 are pair-wise distinct. Consequently the nodes
w1, w2 of Γ receive distinct colors. �

Observation 6. If the nodes of the auxiliary graph Γ have a legal coloring with k colors,
then the nodes of the graph G have a 2-fold legal coloring with k colors.
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Table 9. The adjacency matrix of the auxiliary graph Γ in Example 3.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

1,1 × • • • • • • • •
2,1 • × • • • • • • •
3,1 • × • • • • • • •
4,1 • × • • • • • • •
5,1 • • × • • • • • •

1,2 • • • × • • • • •
2,2 • • • • × • • • •
3,2 • • • • × • • • •
4,2 • • • • × • • • •
5,2 • • • • • × • • •

1,3 • • • • • • × • •
2,3 • • • • • • • × •
3,3 • • • • • • • × •
4,3 • • • • • • • × •
5,3 • • • • • • • • ×

Proof. Let us assume that the nodes of the graph Γ have a legal coloring with k colors.
We define a 2-fold coloring of the nodes of the graph G. If v is a node of G, then
w1 = (v, 1) and w2 = (v, 2) are nodes of the graph Γ. Suppose that the node w1 receives
the colors a1 and the node w2 receives the color a2. We assign the colors a1, a2 to the
node v of G. As the nodes w1 and w2 are adjacent in Γ, the colors a1 and a2 must be
distinct. In other words each node of G receives exactly two distinct colors.

It remains to show that if the unordered pair {v1, v2} is an edge of G, then the nodes
v1 and v2 cannot have the same color. The nodes (v1, 1), (v2, 1), (v1, 2), (v2, 2) of Γ are the
nodes of a 4-clique in Γ. Since the nodes of Γ are legally colored, these nodes receive
pair-wise distinct colors. Therefore the nodes v1 and v2 of G cannot receive the same
color. �

Example 3. Let the finite simple graph G = (V,E) be given by its adjacency matrix in
Table 6. The graph is a circle which has 5 nodes and 5 edges.
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Table 10. The simple greedy sequential coloring procedure applied to
the auxiliary graph in Example 3.

(1, 1) [1] 1 1 [1] [1] [1] 1 1 [1] [1] [1] 1 1 [1] 1
(2, 1) → [2] 2 2 [2] [2] [2] 2 2 [2] [2] [2] 2 2 2
(3, 1) → [1] 1 1 [1] [1] [1] 1 1 [1] [1] [1] 1 1
(4, 1) → [2] 2 2 [2] [2] [2] 2 2 [2] [2] [2] 2
(5, 1) → [3] 3 3 [3] [3] [3] 3 3 [3] [3] 3
(1, 2) → [4] 4 4 [4] [4] [4] 4 4 [4] 4
(2, 2) → [3] 3 3 [3] [3] [3] 3 3 3
(3, 2) → [4] 4 4 [4] [4] [4] 4 4
(4, 2) → [5] 5 5 [5] [5] [5] 5
(5, 2) → [6] 6 6 [6] [6] 6
(1, 3) → [5] 5 5 [5] 5
(2, 3) → [6] 6 6 6
(3, 3) → [7] 7 7
(4, 3) → [8] 8
(5, 3) → 7

Table 11. The nodes of the graph G and their colors in Example 3.

node 1 2 3 4 5
color 1 2 1 2 3
color 4 3 4 5 6
color 5 6 7 8 7

We would like to decide if the nodes of the graph G have a 3-fold legal coloring with
8 or less colors. In order to reduce this to a 1-fold legal coloring problem we construct
the auxiliary graph Γ = (W,F ). The graph Γ has 3 · |V | = 15 nodes. The set of nodes
of Γ is

W = {(v, a) : v ∈ V, 1 ≤ a ≤ 3}.

Table 9 exhibits the adjacency matrix of Γ. The greedy sequential coloring of the nodes
is recorded in Table 10. The nodes of G and their colors can be seen in Table 11.
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4. Coloring the edges of a graph

Instead of the nodes we are coloring the edges of a graph. For example we may color
the edges of a graph G with k colors in the following way.

(1) Each edge of G receives exactly one color.
(2) If x, y, z are distinct nodes of a 3-clique in G, then the edges {x, y}, {y, z}, {x, z}

must receive three distinct colors.
(3) If x, y, u, v are distinct nodes of a 4-clique in G, then the edges {x, y}, {x, u},
{x, v}, {y, u}, {y, v}, {u, v} must receive six distinct colors.

We call this type of coloring of the edges of G a legal or well or proper edge coloring.
Edge coloring can be used for bounding clique size.

Let us suppose that ∆ is an l-clique in G and let us suppose that the edges of G have
a legal coloring using k colors. Then l(l − 1)/2 ≤ k holds.

Indeed, a legal coloring of the edges of G provides a legal coloring of the edges of ∆.
Note that in a legal coloring of the edges of ∆ at least l(l− 1)/2 colors must occur. This
gives l(l − 1)/2 ≤ k, as required.

Problem 4. Given a finite simple graph G and given a positive integer k. Decide if the
edges of G have a legal coloring using k colors.

Problem 4 can be reduced to Problem 2. Using the graph G and the positive number
k we construct an auxiliary graph Γ. The edges of G will play the role of the vertices
of Γ. Let

w1 = {u1, v1} and w2 = {u2, v2}

be two distinct nodes of Γ. Of course w1, w2 are distinct edges of G.
Let us consider the set

X = {u1, v1} ∪ {u2, v2} = {u1, v1, u2, v2}.

Plainly, |X| ≤ 4. Since w1 6= w2, it follows that |X| ≥ 3. Let HX be the subgraph of G
induced by X.

When we construct the graph Γ we connect the nodes w1, w2 by an edge in Γ if HX is
a clique in G. As 3 ≤ |X| ≤ 4, the graph HX can only be a 3-clique or a 4-clique in G.

Observation 7. If the edges of G have a legal coloring with k colors, then the vertices
of Γ have a legal coloring with k colors.

Proof. Suppose that the edges of G are legally colored using k colors. Let f : E →
{1, . . . , k} be a function describing this coloring. As W = E, the function f describes a
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coloring of the nodes of Γ. The only thing we should prove is that adjacent nodes in Γ

do not receive the same color.
Let

w1 = {u1, v1} and w2 = {u2, v2}

be distinct adjacent nodes of Γ. This means that the subgraph HX of G is a clique in
G.

If |X| = 4, then HX is a 4-clique. The six edges of HX receive six distinct colors
because f is a legal coloring of the edges of G. In particular the edges {u1, v1}, {u2, v2}
cannot receive the same color. Therefore the nodes w1, w2 of Γ cannot receive the same
color.

If |X| = 3, then HX is a 3-clique. The three edges of HX receive three distinct colors
because f is a legal coloring of the edges of G. In particular the edges {u1, v1}, {u2, v2}
cannot receive the same color. Therefore the nodes w1, w2 of Γ cannot receive the same
color. �

Observation 8. If the nodes of Γ have a legal coloring using k colors, then the edges of
G have a legal coloring with k colors.

Proof. Suppose that the nodes of Γ have a legal coloring with k colors. Let f : W →
{1, . . . , k} be a function that represents this coloring. Since W = E, the function f

records a coloring of the edges of G.
Let us consider the subgraph HX of G. We should show that if HX is a 3-clique in G,

then the three edges of HX are colored with three distinct colors. Similarly, if HX is a
4-clique in G, then the six edges of HX are colored with six distinct colors.

The three edges of the 3-clique HX in G are nodes of a 3-clique in Γ. As f is legal
coloring of the nodes of Γ it follows that the three edges of HX receive three distinct
colors.

Similarly, the six edges of the 4-clique HX in G are nodes of a 6-clique in Γ. As f is
legal coloring of the nodes of Γ it follows that the six edges of HX receive six distinct
colors. �

5. 3-clique free coloring

We color the nodes of a graph G satisfying the following conditions.
(1) Each node of G receives exactly one color.
(2) The three nodes of a 3-clique in G cannot receive the same color.

We call this type of coloring of the nodes of G a 3-clique free coloring. Coloring can be
used for estimating clique size.
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Let us suppose that ∆ is an l-clique in G and let us suppose that the nodes of G have
a 3-clique free coloring with k colors. Then l ≤ 2k holds.

We indicate the proof in the case when l is an even number. A 3-clique free coloring
of the nodes of G gives a 3-clique free coloring of the nodes of ∆. Note that in a 3-clique
free coloring of the nodes of ∆ at least l/2 colors must occur. This gives l/2 ≤ k, as
required.

Problem 5. Given a finite simple graph G and given a positive integer k. Decide if the
nodes of G have a 3-clique free coloring using k colors.

Problem 5 can be reduced to Problem 1. Starting with the the graph G = (V,E) and
the positive integer k we construct an auxiliary graph Γ = (W,F ). The nodes of Γ are
the triples

({u, v}, a, b), where {u, v} ∈ E, 1 ≤ a, b,≤ k.

Let m be the number of edges of G, that is, let m = |E|. The number of the triples is
equal to mk2.

The triple ({u, v}, a, b) intends to code the information that the end points u, v of the
edge {u, v} are colored with the colors a, b respectively. In this section we assume that
each node of the graph G is end point of some edge of G. In other words we assume
that the graph G does not contain isolated nodes.

Let us consider two distinct nodes

w1 = ({u1, v1}, a1, b1) and w2 = ({u2, v2}, a2, b2)

of Γ. Set
X = {u1, v1} ∪ {u2, v2} = {u1, v1, u2, v2}.

It is clear that |X| ≤ 4 and since u1 6= v1 we get that |X| ≥ 2. Thus 2 ≤ |X| ≤ 4. Let
HX be the subgraph of G induced by X. The nodes u1, v1, u2, v2 receive the colors a1,
b1, a2, b2, respectively in the graph HX .

When |X| ≤ 3, then these nodes are not pair-wise distinct and it may happen that
two distinct colors are assigned to a node in HX . In this case we call the graph HX a
non-qualifying graph.

It also may happen that there is a 3-clique in HX and all the three nodes of this
3-clique receive the same color. In this situation again we call the graph HX a non-
qualifying graph. In all the other cases HX is called a qualifying graph.

When we construct the graph Γ we connect the nodes w1, w2 by an edge in Γ if HX is
a qualifying graph.
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Table 12. The adjacency matrix of the graph G in Example 4

1 2 3 4

1 × • •
2 × •
3 • • × •
4 • • ×

�
�
�
�
�
�
�

r r

r r

3 2

4 1

Figure 3. A graphical representation of the graph G in Example 4.

Observation 9. If the nodes of G have a 3-clique free coloring with k colors, then the
graph Γ contains an m-clique.

Proof. Suppose that the nodes of the graph G have a 3-clique free coloring using k

colors. Let f : V → {1, . . . , k} be a function that codes this coloring. Set

D = {({u, v}, f(u), f(v)) : {u, v} ∈ E}

and let ∆ be the subgraph of Γ induced by D. It is clear that |D| = m. We claim that
∆ is a clique in Γ.

In order to verify the claim let us choose two distinct nodes w1, w2 from D. Let us
consider the subgraph HX associated with w1, w2. Since f is a function, each node of
HX receives exactly one color. As f describes a 3-clique free coloring of the nodes of G,
it follows that the restriction of f to the nodes of HX is a 3-clique free coloring of the
nodes of HX . Thus HX is a qualifying graph. Consequently, we connected w1, w2 by an
edge in Γ when we constructed Γ. �

Observation 10. If the auxiliary graph Γ contains an m-clique, then the nodes of the
graph G have a 3-clique free coloring with k colors.
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Table 13. The nodes of the auxiliary graph Γ in Example 4.

1 ({1, 3}, 1, 1) 9 ({2, 3}, 1, 1)

2 ({1, 3}, 1, 2) 10 ({2, 3}, 1, 2)

3 ({1, 3}, 2, 1) 11 ({2, 3}, 2, 1)

4 ({1, 3}, 2, 2) 12 ({2, 3}, 2, 2)

5 ({1, 4}, 1, 1) 13 ({3, 4}, 1, 1)

6 ({1, 4}, 1, 2) 14 ({3, 4}, 1, 2)

7 ({1, 4}, 2, 1) 15 ({3, 4}, 2, 1)

8 ({1, 4}, 2, 2) 16 ({3, 4}, 2, 2)

Proof. Suppose that Γ contains an m-clique ∆ and D is the set of nodes of ∆. Now
|D| = m.

Set
I{u,v} = {({u, v}, a, b) : 1 ≤ a, b,≤ k}

for each {u, v} ∈ E. Obviously, |I{u,v}| = k2. Note that the sets I{u,v}, {u, v} ∈ E are
pair-wise disjoint independent sets in Γ.

Indeed, if
w1 = ({u, v}, a1, b1) and w2 = ({u, v}, a2, b2)

are distinct elements of I{u,v}, then the graphHX associated with w1, w2 has two nodes.
From w1 6= w2 it follows that a1 = a2, b1 = b2 cannot hold. Thus HX is not qualifying.
This means when we constructed Γ we did not connect w1, w2 by an edge in Γ.

The nodes of Γ have a legal coloring using m colors. The independent sets I{u,v},
{u, v} ∈ E can play the roles of the color classes.

As ∆ is a clique in Γ each color class contains at most one element from D. Using
the cardinality of D we can conclude that D is a complete set of representatives of the
color classes.

Set
T = {{u, v} : ({u, v}, a, b) ∈ D}.

It follows that E = T . Consequently, each node of G which is an end point of at least
one edge of G receives at least one color. We claim that each node receives exactly one
color.

In order to prove the claim assume on the contrary that more than one colors are as-
signed to a node of G. In this case there are distinct nodes w1, w2 of ∆ such that a node
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Table 14. The adjacency matrix of the auxiliary graph Γ in Example 4.

1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6

1 × • • • •
2 × • • • • • •
3 × • • • • • •
4 × • • • •

5 • × • • •
6 • • × • • • • • •
7 • • × • • • • • •
8 • × • • •

9 • • • • • × • •
10 • • • • • × • •
11 • • • • • × • •
12 • • • • • × • •

13 • • • • ×
14 • • • • • • ×
15 • • • • • • ×
16 • • • • ×

receives more than one color in the subgraph HX associated with w1, w2. This means
that HX is not qualifying. On the other hand when we constructed Γ we connected w1,
w2 by an edge on the base that the subgraph HX was qualifying.

We may summarize our consideration by saying that we can define a function f :

V → {1, . . . , k} by setting f(u) = b whenever ({u, v}, a, b) is a node of ∆. It remains to
show that the coloring of the nodes of G described by the function f is a 3-clique free
coloring.

Suppose there is a 3-clique Ω in G whose nodes receive the same color. There are
distinct nodes w1, w2 of ∆ such that Ω is a 3-clique in the subgraph HX associated with
w1, w2. This means that HX is not qualifying. On the other hand when we constructed
Γ we connected w1, w2 by an edge in Γ because the subgraph HX was qualifying. �
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Example 4. Let the finite simple graph G = (V,E) be given by its adjacency matrix in
Table 12. The graph has 4 nodes and 4 edges. Figure 3 depicts a possible geometric
version of G .

We wish to decide if the nodes of the graph G have a 3-clique free legal coloring with
2 colors. By constructing the auxiliary graph Γ = (W,F ) the question is reduced to a
clique search. The graph Γ has |V | · k2 = (4)(22) = 16 nodes. The nodes of Γ are listed
in Table 13.
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