THE $\int \chi^{2\lambda I}$ STATISTICAL CONVERGENCE OF FUZZY NUMBERS OVER $p-$ METRIC SPACE-II

N. SUBRAMANIAN1 AND A. ESI$^2, *$

1Department of Mathematics, SASTRA University, Thanjavur-613 401, India
2Department of Mathematics, Adiyaman University, 02040, Adiyaman, Turkey

*Corresponding author

Abstract. In this paper of part-II, we introduce the concepts of $\chi^{2\lambda I}$ statistical convergence and strongly $\chi^{2\lambda I}$ of fuzzy numbers. It is also shown that $\chi^{2\lambda I}$ statistical convergence and strongly $\chi^{2\lambda I}$ are equivalent for analytic sequences of fuzzy numbers.

2010 Mathematics Subject Classification. 40A05; 40C05; 46A45; 03E72.

Key words and phrases. analytic sequence; double sequences; χ^2 space; Musielak - Orlicz function; $p-$ metric space; ideal convergent; fuzzy number; de la Vallee-Poussin mean; statistical convergence.

1. Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w^2 for the set of all complex sequences (x_{mn}), where $m, n \in \mathbb{N}$, the set of positive integers. Then, w^2 is a linear space under the coordinate wise addition and scalar multiplication. Let (x_{mn}) be a double sequence of real or complex numbers. Then the series $\sum_{m,n=1}^{\infty} x_{mn}$ is called a double series. The double series $\sum_{m,n=1}^{\infty} x_{mn}$ is said to be convergent if and only if the double sequence (S_{mn}) is convergent, where

$$S_{mn} = \sum_{i,j=1}^{m,n} x_{ij}(m, n = 1, 2, 3, ...).$$

We denote w^2 as the class of all complex double sequences (x_{mn}). A sequence $x = (x_{mn})$ is said to be double analytic if

$$\sup_{mn} |x_{mn}|^{1/m+n} < \infty.$$

The vector space of all prime sense double analytic sequences are usually denoted by Λ^2. A sequence $x = (x_{mn})$ is called double entire sequence if

$$|x_{mn}|^{1/m+n} \to 0 \text{ as } m, n \to \infty.$$
The vector space of all prime sense double entire sequences are usually denoted by Γ^2. The spaces Λ^2 and Γ^2 are metric spaces with the metric

\begin{equation}
 d(x, y) = \sup_{mn} \left\{ |x_{mn} - y_{mn}|^{1/(m+n)} : m, n : 1, 2, 3, \ldots \right\},
\end{equation}

for all $x = \{x_{mn}\}$ and $y = \{y_{mn}\}$ in Γ^2.

A sequence $x = (x_{mn})$ is called double gai sequence if \((m + n)! |x_{mn}|^{1/(m+n)} \to 0\) as $m, n \to \infty$. The double gai sequences will be denoted by χ^2. Let $\phi = \{\text{finite sequences}\}$.

Consider a double sequence $x = (x_{ij})$. The $(m, n)^{th}$ section $x^{[m,n]}$ of the sequence is defined by $x^{[m,n]} = \sum_{i,j=0}^{m,n} x_{ij} \delta_{ij}$ for all $m, n \in \mathbb{N}$,

\[
\delta_{mn} = \begin{pmatrix}
0 & 0 & \ldots & 0 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots \\
& & \ddots & & \ddots & \\
& & & 0 & 0 & \ldots 1 \\
& & & & 0 & 0 & \ldots 0
\end{pmatrix}
\]

with 1 in the $(m, n)^{th}$ position and zero otherwise.

Let M and Φ are mutually complementary modulus functions. Then, we have:

(i) For all $u, y \geq 0$,

\begin{equation}
 uy \leq M(u) + \Phi(y), \text{ (Young's inequality)} \quad [\text{See} \ [16]]
\end{equation}

(ii) For all $u \geq 0$,

\begin{equation}
 u\eta(u) = M(u) + \Phi(\eta(u)).
\end{equation}

(iii) For all $u \geq 0$, and $0 < \lambda < 1$,

\begin{equation}
 M(\lambda u) \leq \lambda M(u)
\end{equation}

Lindenstrauss and Tzafriri used the idea of Orlicz function to construct Orlicz sequence space

$$
\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\},
$$

The space ℓ_M with the norm

$$
\| x \| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}.
$$
becomes a Banach space which is called an Orlicz sequence space. For \(M(t) = t^p \) \((1 \leq p < \infty)\), the spaces \(\ell_M \) coincide with the classical sequence space \(\ell_p \).

A sequence \(f = (f_{mn}) \) of Orlicz function is called a Musielak-Orlicz function. A sequence \(g = (g_{mn}) \) defined by

\[
g_{mn}(v) = \sup \{|v - f_{mn}(u) : u \geq 0\}, m, n = 1, 2, \ldots
\]

is called the complementary function of a Musielak-Orlicz function \(f \). For a given Musielak-Orlicz function \(f \), the Musielak-Orlicz sequence space \(t_f \) is defined as follows [see 20]

\[
t_f = \left\{ x \in w^2 : M_f (|x_{mn}|^{1/m+n}) \rightarrow 0 \text{ as } m, n \rightarrow \infty \right\},
\]

where \(M_f \) is a convex modular defined by

\[
M_f(x) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f_{mn} (|x_{mn}|^{1/m+n}), x = (x_{mn}) \in t_f.
\]

We consider \(t_f \) equipped with the Luxemburg metric

\[
d(x, y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{mn} \left(\frac{|x_{mn}|^{1/m+n}}{m+n} \right)
\]

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

\[
Z(\Delta) = \{ x = (x_k) \in w : (\Delta x_k) \in Z \}
\]

for \(Z = c, c_0 \) and \(\ell_\infty \), where \(\Delta x_k = x_k - x_{k+1} \) for all \(k \in \mathbb{N} \).

Here \(c, c_0 \) and \(\ell_\infty \) denote the classes of convergent, null and bounded scalar valued single sequences respectively. The difference sequence space \(bv_p \) of the classical space \(\ell_p \) is introduced and studied in the case \(1 \leq p \leq \infty \) by Başar and Altay and in the case \(0 < p < 1 \) by Altay and Başar. The spaces \(c(\Delta), c_0(\Delta), \ell_\infty(\Delta) \) and \(bv_p \) are Banach spaces normed by

\[
\|x\| = |x_1| + \sup_{k \geq 1} |\Delta x_k| \quad \text{and} \quad \|x\|_{bv_p} = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}, (1 \leq p < \infty).
\]

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

\[
Z(\Delta) = \{ x = (x_{mn}) \in w^2 : (\Delta x_{mn}) \in Z \}
\]

where \(Z = A^2, \chi^2 \) and \(\Delta x_{mn} = (x_{mn} - x_{mn+1}) - (x_{m+1n} - x_{m+1n+1}) = x_{mn} - x_{mn+1} - x_{m+1n} + x_{m+1n+1} \) for all \(m, n \in \mathbb{N} \).

2. Definition and Preliminaries

Let \(n \in \mathbb{N} \) and \(X \) be a real vector space of dimension \(w \), where \(n \leq m \). A real valued function \(d_p(x_1, \ldots, x_n) = \|d_1(x_1, 0), \ldots, d_n(x_n, 0)\|_p \) on \(X \) satisfying the following four conditions:

(i) \(\|d_1(x_1, 0), \ldots, d_n(x_n, 0)\|_p = 0 \) if and only if \(d_1(x_1, 0), \ldots, d_n(x_n, 0) \) are linearly
dependent,
(ii) \(\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p \) is invariant under permutation,
(iii) \(\|(\alpha d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p = |\alpha| \|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_p, \alpha \in \mathbb{R} \)
(iv) \(d_p ((x_1, y_1), (x_2, y_2) \cdots (x_n, y_n)) = (d_X(x_1, x_2, \cdots x_n)^p + d_Y(y_1, y_2, \cdots y_n)^p)^{1/p} \) for \(1 \leq p < \infty \); (or)
(v) \(d ((x_1, y_1), (x_2, y_2), \cdots (x_n, y_n)) := \sup \{d_X(x_1, x_2, \cdots x_n), d_Y(y_1, y_2, \cdots y_n)\} \),
for \(x_1, x_2, \cdots x_n \in X, y_1, y_2, \cdots y_n \in Y \) is called the \(p \) product metric of the Cartesian product of \(n \) metric spaces is the \(p \) norm of the \(n \)-vector of the norms of the \(n \) subspaces.

A trivial example of \(p \) product metric of \(n \) metric space is the \(\mathbb{R} \) equipped with the following Euclidean metric in the product space is the \(p \) norm:

\[
\|(d_1(x_1, 0), \ldots, d_n(x_n, 0))\|_E = \sup (|det(d_{mn}(x_{mn}, 0))| = \\
\left| \begin{array}{cccc}
d_{11}(x_{11}, 0) & d_{12}(x_{12}, 0) & \cdots & d_{1n}(x_{1n}, 0) \\
d_{21}(x_{21}, 0) & d_{22}(x_{22}, 0) & \cdots & d_{2n}(x_{1n}, 0) \\
\vdots & \vdots & \ddots & \vdots \\
d_{n1}(x_{n1}, 0) & d_{n2}(x_{n2}, 0) & \cdots & d_{nn}(x_{nn}, 0)
\end{array} \right| \\
\]

where \(x_i = (x_{i1}, \cdots x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \cdots n \).

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(p \)-metric. Any complete \(p \)-metric space is said to be \(p \)-Banach metric space.

2.1. Definition. Let \(X \) be a linear metric space. A function \(\rho : X \to \mathbb{R} \) is called paranorm, if

(1) \(\rho (x) \geq 0, \text{ for all } x \in X; \)
(2) \(\rho (-x) = \rho (x), \text{ for all } x \in X; \)
(3) \(\rho (x + y) \leq \rho (x) + \rho (y), \text{ for all } x, y \in X; \)
(4) If \((\sigma_{mn}) \) is a sequence of scalars with \(\sigma_{mn} \to \sigma \text{ as } m, n \to \infty \) and \((x_{mn}) \) is a sequence of vectors with \(\rho (x_{mn} - x) \to 0 \text{ as } m, n \to \infty \), then \(\rho (\sigma_{mn}x_{mn} - \sigma x) \to 0 \text{ as } m, n \to \infty \).

A paranorm \(w \) for which \(\rho (x) = 0 \) implies \(x = 0 \) is called total paranorm and the pair \((X, w) \) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [28], Theorem 10.4.2, p.183).

The notion double sequence of \(\chi \) and double \(\Gamma \) was introduced by Subramanian et al. [21-24] and the notion of ideal convergence was studied by Esi et al. [1], Kostyrko et al.[17] and others as a generalization of statistical convergence which was further studied in topological spaces by Kumar et al.[18,19] and also more applications of ideals.
can be deals with various authors by B.Hazarika [2-14] and B.C.Tripathy and B. Hazarika [15,25-27].

2.2. Definition. A family $I \subset 2^Y$ of subsets of a non empty set Y is said to be an ideal in Y if
1. $\phi \in I$
2. $A, B \in I$ imply $A \cup B \in I$
3. $A \in I, B \subset A$ imply $B \in I$.

while an admissible ideal I of Y further satisfies \{x\} $\in I$ for each $x \in Y$. Given $I \subset 2^{N \times N}$ be a non trivial ideal in $N \times N$. A sequence $(x_{mn})_{m,n \in N \times N}$ in X is said to be I-convergent to $0 \in X$, if for each $\epsilon > 0$ the set $A(\epsilon) = \{(m, n) \in N \times N : \|d_1(x_1, 0), \ldots, d_n(x_n, 0)\| \geq \epsilon\}$ belongs to I.

2.3. Definition. A non-empty family of sets $F \subset 2^X$ is a filter on X if and only if
1. $\phi \in F$
2. for each $A, B \in F$, we have imply $A \cap B \in F$
3. each $A \in F$ and each $A \subset B$, we have $B \in F$.

2.4. Definition. An ideal I is called non-trivial ideal if $I \neq \phi$ and $X \notin I$. Clearly $I \subset 2^X$ is a non-trivial ideal if and only if $F = F(I) = \{X - A : A \in I\}$ is a filter on X.

2.5. Definition. A non-trivial ideal $I \subset 2^X$ is called (i) admissible if and only if \{x\} $\in I$ \forall x \in X \subset I$. (ii) maximal if there cannot exists any non-trivial ideal $J \neq I$ containing I as a subset.

If we take $I = I_f = \{A \subseteq N \times N : A is a finite subset \}$. Then I_f is a non-trivial admissible ideal of N and the corresponding convergence coincides with the usual convergence. If we take $I = I_\delta = \{A \subseteq N \times N : \delta(A) = 0\}$ where $\delta(A)$ denote the asyptotic density of the set A. Then I_δ is a non-trivial admissible ideal of $N \times N$ and the corresponding convergence coincides with the statistical convergence.

Let D denote the set of all closed and bounded intervals $X = [x_1, x_2]$ on the real line $\mathbb{R} \times N$. For $X, Y \in D$, we define $X \leq Y$ if and only if $x_1 \leq y_1$ and $x_2 \leq y_2$, $d(X, Y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}$, where $X = [x_1, x_2]$ and $Y = [y_1, y_2]$.

Then it can be easily seen that d defines a metric on D and (D, d) is a complete metric space. Also the relation ”\leq” is a partial order on D. A fuzzy number X is a fuzzy subset of the real line $\mathbb{R} \times \mathbb{R}$ i.e. a mapping $X : R \to J (= [0, 1])$ associating each real number t with its grade of membership $X(t)$.

2.6. **Definition.** A fuzzy number X is said to be (i) convex if $X(t) \geq X(s) \land X(r) = \min \{ X(s), X(r) \}$, where $s < t < r$. (ii) normal if there exists $t_0 \in \mathbb{R} \times \mathbb{R}$ such that $X(t_0) = 1$. (iii) upper semi-continuous if for each $\epsilon > 0, X^{-1}(t) = 0$, for all $a \in [0, 1]$ is open in the usual topology of $\mathbb{R} \times \mathbb{R}$.

Let $R(J)$ denote the set of all fuzzy numbers which are upper semi continuous and have compact support, i.e. if $X \in R(J)$ the for any $\alpha \in [0, 1], [X]^{\alpha}$ is compact, where $[X]^{\alpha} = \{ t \in \mathbb{R} \times \mathbb{R} : X(t) \geq \alpha, \text{if } \alpha \in [0, 1] \}, [X]^0 = \text{closure of } (\{ t \in \mathbb{R} \times \mathbb{R} : X(t) > \alpha, i.e \alpha = 0 \})$.

The set \mathbb{R} of real numbers can be embedded $R(J)$ if we define $\bar{r} \in R(J) \times R(J)$ by

$$\bar{r}(t) = \begin{cases} 1, & \text{if } t = r : \\ 0, & \text{if } t \neq r \end{cases}$$

The absolute value, $|X|$ of $X \in R(J)$ is defined by

$$|X|(t) = \begin{cases} \max \{ X(t), X(-t) \}, & \text{if } t \geq 0; \\ 0, & \text{if } t < 0 \end{cases}$$

Define a mapping $\bar{d} : R(J) \times R(J) \rightarrow \mathbb{R}^+ \cup \{ 0 \}$ by

$$\bar{d}(X, Y) = \sup_{0 \leq \alpha \leq 1} d([X]^{\alpha}, [Y]^{\alpha}).$$

It is known that $(R(J), \bar{d})$ is a complete metric space.

2.7. **Definition.** A metric on $R(J)$ is said to be translation invariant if $\bar{d}(X + Z, Y + Z) = \bar{d}(X, Y)$, for $X, Y, Z \in R(J)$.

2.8. **Definition.** A sequence $X = (X_{mn})$ of fuzzy numbers is said to be (i) convergent to a fuzzy number X_0 if for every $\epsilon > 0$, there exists a positive integer n_0 such that $\bar{d}(X_{mn}, X_0) < \epsilon$ for all $n \geq n_0$. (ii) bounded if the set $\{ X_{mn} : m, n \in \mathbb{N} \}$ of fuzzy numbers is bounded.

2.9. **Definition.** A sequence $X = (X_{mn})$ of fuzzy numbers is said to be (i) I-convergent to a fuzzy number X_0 if for each $\epsilon > 0$ such that

$$A = \{ m, n \in \mathbb{N} : \bar{d}(X_{mn}, X_0) \geq \epsilon \} \in I.$$ \hspace{1cm}

The fuzzy number X_0 is called I-limit of the sequence (X_{mn}) of fuzzy numbers and we write $\lim I X_{mn} = X_0$. (ii) I-bounded if there exists $M > 0$ such that

$$\{ m, n \in \mathbb{N} : \bar{d}(X_{mn}, \bar{0}) > M \} \in I.$$ \hspace{1cm}

2.10. **Definition.** A sequence space E_F of fuzzy numbers is said to be (i) solid (or normal) if $(Y_{mn}) \in E_F$ whenever $(X_{mn}) \in E_F$ and $\bar{d}(Y_{mn}, \bar{0}) \leq \bar{d}(X_{mn}, \bar{0})$ for all $m, n \in \mathbb{N}$. (ii) symmetric if $(X_{mn}) \in E_F$ implies $(X_{\pi(mn)}) \in E_F$ where π is a permutation of $\mathbb{N} \times \mathbb{N}$.

Let $K = \{ k_1 < k_2 < \ldots \} \subseteq \mathbb{N}$ and E be a sequence space. A K-step space of E is a sequence space.
\[\lambda^E_{mn} = \{ (X_{m,p}n_p) \in w^2 : (m,pn_p) \in E \} . \]

A canonical preimage of a sequence \(\{ (x_{m,p}n_p) \} \in \lambda^E_K \) is a sequence \(\{ y_{mn} \} \in w^2 \) defined as

\[
y_{mn} = \begin{cases}
 x_{mn}, & \text{if } m, n \in E \\
 0, & \text{otherwise}.
\end{cases}
\]

A canonical preimage of a step space \(\lambda^E_K \) is a set of canonical preimages of all elements in \(\lambda^E_K \), i.e. \(y \) is in canonical preimage of \(\lambda^E_K \) if and only if \(y \) is canonical preimage of some \(x \in \lambda^E_K \).

2.11. **Definition.** A sequence space \(E \) is said to be monotone if \(E \) contains the canonical pre-images of all its step spaces.

The following well-known inequality will be used throughout the article. Let \(p = (p_{mn}) \) be any sequence of positive real numbers with \(0 \leq p_{mn} \leq sup_{mn}p_{mn} = G, D = max \{ 1, 2G - 1 \} \) then

\[
|a_{mn} + b_{mn}|^{p_{mn}} \leq D (|a_{mn}|^{p_{mn}} + |b_{mn}|^{p_{mn}}) \text{ for all } m, n \in \mathbb{N} \text{ and } a_{mn}, b_{mn} \in \mathbb{C}.
\]

Also \(|a_{mn}|^{p_{mn}} \leq max \{ 1, |a|^G \} \) for all \(a \in \mathbb{C} \).

First we procure some known results; those will help in establishing the results of this article.

2.12. **Lemma.** A sequence space \(E \) is normal implies \(E \) is monotone. (For the crisp set case, one may refer to Kamthan and Gupta [16], page 53).

2.13. **Lemma.** (Kostyrko et al., [17], Lemma 5.1). If \(I \subset 2^\mathbb{N} \) is a maximal ideal, then for each \(A \subset \mathbb{N} \) we have either \(A \in I \) or \(\mathbb{N} - A \in I \).

2.14. **Definition.** A sequence \(X = (X_{mn}) \) of fuzzy numbers is a function \(X \) from the set \(\mathbb{N} \times \mathbb{N} \) of natural numbers into \(L(\mathbb{R}) \times L(\mathbb{R}) \). The fuzzy number \(X_{mn} \) denotes the value of the function \(m, n \in \mathbb{N} \).

We denote \(W^{2F} \) denotes the set of all sequences \(X = (X_{mn}) \) of fuzzy numbers.

2.15. **Definition.** A sequence \(X = (X_{mn}) \) of fuzzy numbers is said to be analytic if the set \(\{ X_{mn} : m, n \in \mathbb{N} \} \) of fuzzy numbers is analytic.

2.16. **Definition.** The sequence \(X = (X_{mn}) \) of fuzzy numbers is said to be almost convergent to a fuzzy number \(\bar{0} \) if \(\lim_{m,n \to \infty} d(t_{pm,qn}(X), \bar{0}) = 0 \) uniformly in \(m, n \), where

\[
t_{pm,qn}(X) = \frac{1}{(m+1)(n+1)} \sum_{i=0}^{p} \sum_{j=0}^{q} ((i + m) + (j + n))!X_{i+m,j+n}^{1/(i+m)+(j+n)}.
\]

This means that for every \(\epsilon > 0 \), there exists a \(p_0q_0 \in \mathbb{N} \) such that \(d(t_{pm,qn}(X), \bar{0}) < \epsilon \) whenever \(p, q \geq p_0q_0 \) and for all \(m, n \).
2.17. **Definition.** A sequence \(X = (X_{mn}) \) of fuzzy numbers is said to be statistically convergent to a fuzzy number \(\bar{0} \) if for every \(\epsilon > 0 \),

\[
\lim_{r,s} \left| \left\{ m \leq r, n \leq s : d \left(\left((m + n)!X_{mn} \right)^{1/(m+n)}, \bar{0} \right) \geq \epsilon \right\} \right| = 0.
\]

The set of all statistically convergent sequences of fuzzy numbers is denoted by \(S^{2F} \).

We note that if a sequence \(X = (X_{mn}) \) of fuzzy numbers converges to a fuzzy number \(\bar{0} \), then it is statistically converges to \(\bar{0} \). But the converse statement is not necessarily valid.

Let \(\mu = (\lambda_{rs}) \) be a non-decreasing sequence of positive real numbers tending to infinity and \(\lambda_{11} = 1 \) and \(\lambda_{r+1,s+1} \leq \lambda_{rs} + 1 \), for all \(r, s \in \mathbb{N} \).

The generalized de la Vallee-Poussin means is defined by

\[
t_{rs}(x) = \frac{1}{\lambda_{rs}} \sum_{p \in I_r} \sum_{q \in I_s} ((m + n)!|x_{mn}|)^{1/(m+n)}
\]

where \(I_{rs} = [r, s - \lambda_{rs} + 1, rs] \). A sequence \(x = (x_{mn}) \) of complex numbers is said to be \((V, \lambda) -\) summable to a number if \(t_{rs}(x) \to L \) as \(r, s \to \infty \).

3. **Some new integrated statistical convergence sequence spaces of fuzzy numbers**

The main aim of this article to introduce the following sequence spaces and examine topological and algebraic properties of the resulting sequence spaces. Let \(p = (p_{mn}) \) be a sequence of positive real numbers for all \(m, n \in \mathbb{N} \). \(f = (f_{mn}) \) be a Musielak-Orlicz function, \((X, \|(d(x_1,0), d(x_2,0), \ldots, d(x_n-1,0))\|_p) \) be a \(p \)-metric space, and \((\lambda_{rs}^{-1}) \) be a sequence of non-zero scalars and \(\mu_{mn}(X) = d(t_{rs}, \bar{0}) \) be a sequence of fuzzy numbers, we define the following sequence spaces as follows:

\[
\left[\left. \frac{2q}{\lambda_{f\mu}}, \|(d(x_1,0), d(x_2,0), \ldots, d(x_n-1,0))\|_p \right] = \lim_{r,s \to \infty} \left| \left\{ m, n \in I_{rs} : \left[f_{mn} \left(\|\mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_n-1,0))\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \right| = 0, \text{ uniformly in } r, s.
\]

In this case, we write \(X_{mn} \to \bar{0} \left(S^F_\lambda \right) \). The set of all statistically convergent sequences is denoted by \(S^F_\lambda \).

Let \(X = (X_{mn}) \) be a sequence of fuzzy numbers and \(q = (q_{mn}) \) be a sequence of strictly positive real numbers. Then the sequence \(X = (X_{mn}) \) is said to be strongly \(\lambda \)-convergent if there is a fuzzy number \(\bar{0} \) such that

\[
\left[\left. \frac{2q}{\lambda_{f\mu}}, \|(d(x_1,0), d(x_2,0), \ldots, d(x_n-1,0))\|_p \right] = \lim_{r,s \to \infty} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\|\mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_n-1,0))\|_p \right)^{q_{mn}} = 0, \text{ uniformly in } r, s.
\]
In this case, we write \(X_{mn} \to \overline{0}(\bar{w}_\lambda^F, q) \). The set of all strongly \(\lambda \)-convergent sequences is denoted by \((\bar{w}_\lambda^F, q) \).

Let \(X = (X_{mn}) \) be a sequence of fuzzy numbers. Then the sequence \(X = (X_{mn}) \) of fuzzy numbers is said to be double analytic if the set \(\{r_{rs} : r, s \in \mathbb{N} \} \) of fuzzy numbers is double analytic and it is denoted by \(\Lambda^2 \). In this section we give some inclusion relations between strongly \(\lambda \)-convergence and \(\lambda \)-statistically convergence and show that they are equivalent for almost bounded sequences of fuzzy numbers. We also study the inclusion \(\bar{S}_\lambda^2 \subseteq \bar{S}_\lambda^2 \) under certain restrictions on the sequence \(\Lambda^2 = (\lambda_{rs}) \).

3.1. Theorem
If \(\chi^2 (X) \in \bar{S}_\lambda^2 \) and \(c \in \mathbb{R} \), then

(a) \(\bar{S}_\lambda^2 - \lim \chi^2 (X) = c \bar{S}_\lambda^2 - \lim \chi^2 (X) \)

(b) \(\bar{S}_\lambda^2 - \lim \chi^2 (X + Y) = \bar{S}_\lambda^2 - \lim \chi^2 (X) + \bar{S}_\lambda^2 - \lim \chi^2 (Y) \)

Proof (a): Let \(\chi^2 (X) \in \bar{S}_\lambda^2 \) so that \(\bar{S}_\lambda^2 - \lim \chi^2 (X) = 0, c \in \mathbb{R} \) and \(\epsilon > 0 \). Then the inequality

\[
\left\{ m, n \in I_{rs} : \left[f_{mn}\left(\|\mu_{mn} (x + y), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \leq
\]

\[
\left\{ m, n \in I_{rs} : \left[f_{mn}\left(\|\mu_{mn} (x), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq \frac{\epsilon}{2} \right\}.
\]

Proof (b): Suppose that \(\chi^2 (X), \chi^2 (Y) \in \bar{S}_\lambda^2 \) so that \(\bar{S}_\lambda^2 - \lim \chi^2 (X) = 0 \) and \(\bar{S}_\lambda^2 - \lim \chi^2 (Y) = 0 \). By Minkowski’s inequality, we get

\[
\left[f_{mn}\left(\|\mu_{mn} (x + y), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \leq
\]

\[
\left[f_{mn}\left(\|\mu_{mn} (x), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} +
\]

\[
\left[f_{mn}\left(\|\mu_{mn} (y), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} .
\]

Therefore given \(\epsilon > 0 \), for all \(r, s \in \mathbb{N} \), we have

\[
\left\{ m, n \in I_{rs} : \left[f_{mn}\left(\|\mu_{mn} (x + y), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \leq
\]

\[
\left\{ m, n \in I_{rs} : \left[f_{mn}\left(\|\mu_{mn} (x), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq \frac{\epsilon}{2} \right\} +
\]

\[
\left\{ m, n \in I_{rs} : \left[f_{mn}\left(\|\mu_{mn} (y), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq \frac{\epsilon}{2} \right\} .
\]

The completes the proof.

The following theorem shows that \(\lambda \)-statistical convergence and strongly \(\lambda \)-convergence are equivalent for double analytic sequences of fuzzy numbers.

3.2. Theorem
Let the sequence \(\mu = (\mu_{mn}) \) be double analytic and \(\chi^2 (X) \) be a sequence of fuzzy numbers. Then (a) \(\chi^2 (X) \to \overline{0}(\bar{w}_\lambda^2, \mu) \) implies \(\chi^2 (X) \to \overline{0}(\bar{S}_\lambda^2, \mu) \).

(b) \(\Lambda^2 (X) \to \overline{0}(\bar{S}_\lambda^2, \mu) \) imply \(\Lambda^2 (X) \to \overline{0}(\bar{w}_\lambda^2, \mu) \).

(c) \(\bar{S}_\lambda^2 \cap \Lambda^2 = (\bar{w}_\lambda^2, \mu) \cap \Lambda^2 \).

Proof (a): Let \(\epsilon > 0 \) and \(\chi^2 (X) \to \overline{0}(\bar{w}_\lambda^2, \mu) \) for all \(r, s \in \mathbb{N} \), we have

\[
\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn}\left(\|\mu_{mn} (x), (d(x,0), d(x,1), \cdots, d(x_{n-1},0))\|_p \right) \right]^{q_{mn}} \geq
\]
Theorem 3.3.

\[
\sum_{m \in I_r} \sum_{n \in I_s} \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon
\]

\[
\sum_{m \in I_r} \sum_{n \in I_s} \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon
\]

\[
\left\{ (m, n) \in I_r : \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \cdot \min \left(\epsilon^h, \epsilon^H \right).
\]

Hence \(\chi^2 (X) \in \tilde{S}^2_F \).

Proof (b): Suppose that \(\chi^2 (X) \in \tilde{S}^2_F \cap \Lambda^2_F \). Since \(\chi^2 (X) \in \Lambda^2_F \), we write

\[
\left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \leq T, \text{ for all } r, s \in \mathbb{N}, \text{ let}
\]

\[
G_{rs} = \left\{ (m, n) \in I_r : \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \text{ and}
\]

\[
H_{rs} = \left\{ (m, n) \in I_r : \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} < \epsilon \right\}.
\]

Then we have

\[
\sum_{m \in I_r} \sum_{n \in I_s} f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \geq 0
\]

\[
\sum_{m \in G_{rs}} \sum_{n \in G_{rs}} f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \geq 0
\]

\[
\sum_{m \in H_{rs}} \sum_{n \in H_{rs}} f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \leq max (T^h, T^H) G_{rs} + max (\epsilon^h, \epsilon^H).
\]

Taking the limit as \(\epsilon \to 0 \) and \(r, s \to \infty \), it follows that \(\chi^2 (X) \in \tilde{S}^2_F \).

(c) Follows from (a) and (b).

3.3. Theorem

If \(\liminf_{rs} (\lambda_{rs}) > 0 \), then \(\tilde{S}^2_F \subset \tilde{S}^2 \).

Proof: Let \(\chi^2 (X) \in \tilde{S}^2_F \). For given \(\epsilon > 0 \), we get

\[
\left\{ m \leq r, n \leq s : \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \supset G_{rs} \text{ where}
\]

\(G_{rs} \) is in the Theorem of 3.2 (b). Thus,

\[
\left\{ m \leq r, n \leq s : \left[f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \right]^{q_{mn}} \geq \epsilon \right\} \supset G_{rs} = \lambda^{rs} \text{ Taking limit as } r, s \to \infty \text{ and using } \liminf_{rs} (\lambda^{rs}) > 0, \text{ we get } \chi^2 (X) \in \tilde{S}^2 \).

3.4. Theorem

Let \(0 < u_{mn} \leq v_{mn} \) and \((u_{mn}, v_{mn}^{-1}) \) be double analytic. Then \((\tilde{w}^2_F, v) \subset (\tilde{w}^2, u) \).

Proof: Let \(\chi^2 (X) \in \tilde{w}^2_F \). Let

\[
w_{mn} = f_{mn} \left(\left\| \mu_{mn} (x), (d(x_1, 0), d(x_2, 0), \ldots, d(x_{n-1}, 0)) \right\|_p \right) \geq 0 \text{ for all } r, s \in \mathbb{N} \text{ and } \lambda_{mn} = u_{mn}v_{mn}^{-1} \text{ for all } m, n \in \mathbb{N} \text{ Then } 0 < \lambda_{mn} \leq 1 \text{ for all } m, n \in \mathbb{N} \text{. Let } b \text{ be a constant such that } 0 < b \leq \lambda_{mn} \leq 1 \text{ for all } m, n \in \mathbb{N} \text{.}
\]

Define the sequences \((k_{mn}) \) and \((\ell_{mn}) \) as follows:

For \(w_{mn} \geq 1 \), let \(k_{mn} = (w_{mn}) \) and \(\ell_{mn} = 0 \) and for \(w_{mn} < 1 \), let \(k_{mn} = 0 \) and \(\ell_{mn} = w_{mn} \). Then it is clear that for all \(m, n \in \mathbb{N} \), we have \(w_{mn} = k_{mn} + \ell_{mn} \) and \(w_{mn}^{\lambda_{mn}} = k_{mn}^{\lambda_{mn}} + \ell_{mn}^{\lambda_{mn}} \). Now it follows that \(k_{mn}^{\lambda_{mn}} \leq k_{mn} \leq w_{mn} \) and \(\ell_{mn}^{\lambda_{mn}} \leq \ell_{mn}^{\lambda_{mn}} \). Therefore
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(w_{mn}^{\lambda_{mn}}), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} = \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(k_{mn} + \ell_{mn})^{\lambda_{mn}}, (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} = \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(w_{mn}), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} + \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(\ell_{mn})^{\lambda_{mn}}, (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}}. \]

Now for each \(r, s, \)
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(\ell_{mn})^{\lambda}, (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} = \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(\ell_{mn})^{\lambda}, (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} \leq \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} \left[f_{mn} \left(\| \mu_{mn}(\ell_{mn})^{\lambda}, (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right]^{q_{mn}} \lambda. \]

3.5. Theorem.
\(\hat{\Lambda}^2 F = \hat{w}_{\lambda, \Lambda^2}^{2F}, \) where \(\hat{w}_{\lambda, \Lambda^2}^{2F} = \)
\[\left\{ \sup_{rs} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\| \mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right\}^{q_{mn}} < \infty \]

Proof: Let \(X = (X_{mn}) \in \hat{w}_{\lambda, \Lambda^2}^{2F}. \) Then there exists a constant \(T_1 > 0 \) such that
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\| \mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right\}^{q_{mn}} \leq \]
\[\sup_{rs} \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\| \mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right\}^{q_{mn}} \leq T_1 \text{ for all } r, s \in \mathbb{N}. \]
Therefore we have \(X = (X_{mn}) \in \hat{\Lambda}^2 F. \) Conversely, let \(X = (X_{mn}) \in \hat{\Lambda}^2 F. \) Then there exists a constant \(T_2 > 0 \) such that
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\| \mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right\}^{q_{mn}} \leq T_2 \text{ for all } m, n \text{ and } r, s. \]
\[\sum_{m \in I_{rs}} \sum_{n \in I_{rs}} f_{mn} \left(\| \mu_{mn}(x), (d(x_1,0), d(x_2,0), \ldots, d(x_{n-1},0)) \|_p \right) \right\}^{q_{mn}} \leq T_2 \sum_{m \in I_{rs}} \sum_{n \in I_{rs}} 1 \leq T_2, \text{ for all } m, n \text{ and } r, s. \]
Thus \(X = (X_{mn}) \in \hat{w}_{\lambda, \Lambda^2}^{2F}. \)

Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

Acknowledgement

The authors are extremely grateful to the anonymous learned referee(s) for their keen reading, valuable suggestion and constructive comments for the improvement of the manuscript. The authors are thankful to the editor(s) and reviewers of Asia Pacific Journal of Mathematics.
References

