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1. Introduction

It is a well-known fact that the mathematical results regarding fixed points of con-
traction type mappings are very useful for determining the existence and uniqueness
of solutions to various mathematical models.Over the last 40 years,the theory of fixed
points has been developed regarding the results that are related to finding the fixed
points of self and nonself nonlinear mappings in a metric space.

The study of fixed points for multi-valued contraction mappings was initiated by
Nadler[18] and Markin[8].Several authors proved fixed point results in different types
of generalized metric spaces[1, 3, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 19].

Azam et al.[1] introduced the concept of a complex valued metric space and obtained
sufficient conditions for the existence of common fixed points of a pair of mappings sat-
isfying a contractive type condition.Subsequently,Rouzkard and Imdad [6] established
some common fixed point theorems for maps satisfying certain rational expressions in
complex valued metric spaces to generalize the results of [1].In the same way, Sintu-
navarat et al. [21, 22] obtained common fixed point results by replacing the constant of
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contractive condition to control functions.Recently ,Sitthikul and Saejung [9] and Klin-
eam and Suanoom [4] established some fixed point results by generalizing the contrac-
tive conditions in the context of complex valued metric spaces.Very recently,Ahmad et
al.[7] obtained some new fixed point results for multi-valued mappings in the setting
of complex valued metric spaces.

Throughout this paper,N and C denote the set of all positive integers and the set of
all complex numbers respectively.

A complex number z ∈ C is an ordered pair of real numbers, whose first co-ordinate
is called Re(z) and second co-ordinate is called Im(z). Let z1, z2 ∈ C. Define apartial
order - on C as follows:
z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).
Thus z1 - z2 if one of the following holds:
(1)Re(z1) = Re(z2) and Im(z1) = Im(z2),
(2)Re(z1) < Re(z2) and Im(z1) = Im(z2),
(3)Re(z1) = Re(z2) and Im(z1) < Im(z2),
(4)Re(z1) < Re(z2) and Im(z1) < Im(z2).
We will write z1 � z2 if z1 6= z2 and one of (2), (3) and (4) is satisfed;also we will write
z1 ≺ z2 if only (4) is satisfed.

Definition 1.1. ([1]) Let X be a non empty set. A function d : X ×X → C is called a
complex valued metric on X if for all x, y, z ∈ X the following conditions are satisfied:
(i) 0 - d(x, y) and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) - d(x, z) + d(z, y).

The pair (X, d)is called a complex valued metric space.

Let {xn} be a sequence in X and x ∈ X.If for every c ∈ C with 0 � c there is n0 ∈ N

such that for all n > n0, d(xn, x) ≺ c,then {xn} is said to be convergent to x and x is
called the limit point of {xn}.We denote this by limn→∞xn = x or xn → x as n → ∞.If
for every c ∈ C with 0 ≺ c there is n0 ∈ N such that for all n > n0, d(xn, xn+m) ≺ c,
where m ∈ N ,then {xn} is called Cauchy sequence in(X, d).If every Cauchy sequence
is convergent in (X, d) then (X, d) is called a complete complexvalued metric space.
We require the follwing lemmas.
The following lemmas are very useful for further discussion.

Lemma 1.2. ([1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X.Then {xn} converges to x if and only if |d(xn, x)| → 0 as n→∞.
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Lemma 1.3. ([1]) Let (X, d) be a complex valued metric space and let {xn} be a sequence
in X.Then {xn} is a Cauchy sequence if and only if |d(xn, xn+m)| → 0 as n,m→∞.

Now we follow the notations and definitions given in [7].
Let (X, d) be a complex valued metric space. We denote

s(z1) = {z2 ∈ C : z1 - z2} for z1 ∈ C and
s(a,B) =

⋃
b∈B

s(d(a, b)) =
⋃
b∈B
{z ∈ C : d(a, b) - z} for a ∈ X and B ∈ C(X).

For A,B ∈ C(X), we denote
s(A,B) =

( ⋂
a∈A

s(a,B)

)
∩
( ⋂

b∈B
s(b, A)

)
.

Remark 1.4. ([7]) Let (X, d) be a complex valued metric space and let CB(X) be a col-
lection of nonempty closed subsets of X. Let T : X → CB(X) be a multivaluedmap.For
x ∈ X and A ∈ CB(X),
define Wx(A) = {d(x, a) : a ∈ A}.
Thus , for x, y ∈ X. Wx(Ty) = {d(x, u) : u ∈ Ty}.

Definition 1.5. ([7]) Let (X, d) be a complex valued metric space.A nonempty subset
A of X is called bounded from below if there exists some z ∈ C such that z - a for all
a ∈ A.

Definition 1.6. ([7]) Let (X, d) be a complex valued metric space. A multivalued map-
ping F : X → 2C is called bounded from below if for each x ∈ X there exists zx ∈ C

such that zx - u for all u ∈ Fx.

Definition 1.7. ([7]) Let (X, d) be a complex valued metric space.The multivalued
mapping T : X → CB(X) is said to have the lower bound proerty (l.b.Property) on
(X, d) if the for any x ∈ X, the multi-valued mapping Fx : X → 2C defined by Fx(y) =

Wx(Ty) is bounded from below.That is for x, y ∈ X,there exists an element lx(Ty) ∈ C

such that lx(Ty) - u, for all u ∈ Wx(Ty), where lx(Ty) is called a lower bound of T
associated with (x, y).

Definition 1.8. ([7]) Let (X, d) be a complex valued metric space.The multivalued
mapping T : X → CB(X) is said to have the gretest lower bound proerty
(g.l.b.Property) on (X, d) if the gretest lower bound ofWx(Ty) exists in C for all x, y ∈ X.
We denote d(x, Ty) by the g.l.b.Property of Wx(Ty). That is d(x, Ty) = inf{d(x, u) : u ∈
Ty}.

Definition 1.9. ([20]) Let f : X → X,S : X → CB(X).f is said to be S-weakly com-
muting at x ∈ X if f 2x ∈ Sfx.
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2. Main Results

Theorem 2.1. Let (X, d) be a complex valued metric space.
Let S, T : X → CB(X) be multi valued mappings f, g : X → X satisfying

(2.1.1)Sx ⊆ g(X),Tx ⊆ f(X),∀x ∈ X

(2.1.2)ad(fx, Ty) + bd(gy, Sx)+ cd(fx,Ty)d(gy,Sx)
1+d(fx,gy)

∈ s(Sx, Ty)

for all x, y ∈ X and a, b, c are non negative reals such that 2a+ 2b < 1,

(2.1.3)f is S weakly commuting and g is T weakly commuting,

(2.1.4)f(X) is complete.

Then (f,S) and (g,T) have the same coincidence point.

Proof. Let x1 be an arbitrary point in X. Write y1 = fx1.Since Sx1 ⊆ g(X), there exists
x2 ∈ X such that y2 = gx2 ∈ Sx1.
From (2.1.2) ,we have
ad(fx1, Tx2) + bd(gx2, Sx1)+

cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(Sx1, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈
( ⋂

x∈Sx1

s(x, Tx2)

)
.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(x, Tx2),∀x ∈ Sx1.

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈ s(gx2, Tx2).

ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
∈

⋃
x∈Tx2

s (d(gx2, x)).

Since Tx2 ⊆ f(X),there exists some x3 ∈ X with y3 = fx3 ∈ Tx2 suchthat ad(fx1, Tx2) + bd(gx2, Sx1)+
cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
.

∈ s (d(gx2, fx3)).

Hence
d(gx2, fx3) - ad(fx1, Tx2) + bd(gx2, Sx1)+

cd(fx1,Tx2)d(gx2,Sx1)

1+d(fx1,gx2)
.

d(y2, y3) - ad(y1, y3) + bd(y2, y2)+
cd(y1,y3)d(y2,y2)

1+d(y1,y2)
.

|d(y2, y3)| ≤ a |d(y1, y2)|+ a |d(y2, y3)|.

|d(y2, y3)| ≤ a
1−a |d(y1, y2)|. ‘.....(1)

Now,
ad(fx3, Tx2) + bd(gx2, Sx3)+

cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, Tx2).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
. ∈

( ⋂
y∈Tx2

s(Sx3, y)

)
.
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ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
. ∈ s(Sx3, y),∀y ∈ Tx2

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈ s(Sx3, fx3).

ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
∈
⋃

y∈Sx3

s (d(y, fx3)).

Since Sx3 ⊆ g(X),there exists some x4 ∈ X with y4 = gx4 ∈ Sx3 such that ad(fx3, Tx2) + bd(gx2, Sx3)+
cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
.

∈ s (d(gx4, fx3)).

Hence
d(gx4, fx3) - ad(fx3, Tx2) + bd(gx2, Sx3)+

cd(fx3,Tx2)d(gx2,Sx3)

1+d(fx3,gx2)
.

d(y3, y4) - ad(y3, y3) + bd(y2, y4)+
cd(y3,y3)d(y2,y4)

1+d(y3,y2)
.

|d(y3, y4)| ≤ b |d(y2, y3)|+ b |d(y3, y4)|∣∣∣d(y3,y4)∣∣∣ ≤ b
1−b

∣∣∣d(y2,y3)∣∣∣. ......(2)
putting h = max

{
a

1−a ,
b

1−b

}
and we continuing in this way, we get∣∣d(yn, yn+1)

∣∣ ≤ h
∣∣d(yn−1, yn)∣∣

≤ h2
∣∣d(yn−2, yn−1)∣∣

.

.

.

≤ hn−1 |d(y1, y2)|

.

Now for m > n consider∣∣∣d(yn,ym)∣∣∣ ≤ ∣∣∣d(yn,yn+1) + d(yn+1,yn+2) + ......+ d(ym−1,ym)
∣∣∣

≤ hn−1 + hn + ....+ hm−2
∣∣∣d(y1,y2)∣∣∣

≤
[
hn−1

1−h

]
→ 0 as m, n→∞.

Thus {yn} is a Cauchy sequence in X.
Since f(X) is complete , {y2n+1} = {fx2n+1} is Cauchy,it follows that {y2n+1} converges
to u ∈ f(X).Hence there exists v ∈ X such that u = fv.
Since {yn} is a Cauchy sequence and {y2n+1} → u it follow that {y2n} → u.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, Tx2n).

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈

( ⋂
y∈Tx2n

s(Sv, y)

)
.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y),∀y ∈ Tx2n.

ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s(Sv, y2n+1).
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ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈
⋃

u1∈Sv
s (d(u1, y2n+1)).

There exists vn ∈ Sv such that
ad(fv, Tx2n) + bd(gx2n, Sv)+

cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
∈ s
(
d(vn, y2n+1)

)
.

Therefore d(vn, y2n+1) - ad(fv, Tx2n) + bd(gx2n, Sv)+
cd(fv,Tx2n)d(gx2n,Sv)

1+d(fv,gx2n)
.

Using g.l.b.property, we get

d(vn, y2n+1) � ad(fv, y2n+1) + bd(y2n, vn)+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

Using triangular inequality, we obtain

d(vn, y2n+1) - ad(fv, y2n+1) + bd(y2n, y2n+1) + bd(y2n+1, vn)+
cd(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

d(vn, y2n+1) - a
1−bd(fv, y2n+1) +

b
1−bd(y2n, y2n+1) +

c
1−b

d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)
.

Now consider
d(fv, vn) - d(fv, y2n+1) + d(y2n+1, vn).

- d(fv, y2n+1) +
a

1−bd(fv, y2n+1) +
b

1−bd(y2n, y2n+1) +
c

1−b
d(fv,y2n+1)d(y2n,vn)

1+d(fv,y2n)

|d(fv, vn)| ≤ |d(fv, y2n+1)|+ a
1−b |d(fv, y2n+1)|+ b

1−b |d(y2n, y2n+1)|

+ c
1−b
|d(fv,y2n+1)||d(y2n,vn)|
|1+d(fv,y2n)|

. Letting n → ∞ ,

we obtain
|d(fv, vn)| → 0 as n→∞.By Lemma 1.2,we have vn → fv as n→∞.

Since Sv is closed and {vn} ⊆ Sv, it follows that fv ∈ Sv.

Now u = fv ∈ Sv and Sv ⊆ g(X) it follows that u = fv = gw for some w ∈ X.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(Sx2n−1, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈

( ⋂
y1∈Sx2n−1

s(y1, Tw)

)
.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

∈ s(y1, Tw),∀y1 ∈ Sx2n−1.

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(y2n, Tw).

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈

⋃
u1∈Tw

s (d(y2n, u
1)).

There exists some wn ∈ Tw such that

ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
∈ s(d(y2n, wn)).
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d(y2n, wn) - ad(fx2n−1, Tw) + bd(gw, Sx2n−1)+
cd(fx2n−1,Tw)d(gw,Sx2n−1)

1+d(fx2n−1,gw)
.

Using g.l.b.property, we obtain

d(y2n, wn) - ad(y2n−1, wn) + bd(gw, y2n)+
cd(y2n−1,wn)d(gw,y2n)

1+d(y2n−1,gw)
.

Using triangular inequality, we have
d(y2n, wn) - ad(y2n−1, y2n) + ad(y2n, wn) + bd(gw, y2n)+

cd(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

d(y2n, wn) - a
1−ad(y2n−1, y2n) +

b
1−ad(gw, y2n) +

c
1−a

d(y2n−1,wn)d(gw,y2n)
1+d(y2n−1,gw)

.

Now consider d(gw,wn) - d(gw, y2n) + d(y2n, wn).

- d(gw, y2n) +
a

1−ad(y2n−1, y2n) +
b

1−ad(gw, y2n) +
c

1−a
d(y2n−1,wn)d(gw,y2n)

1+d(y2n−1,gw)
.

|d(gw,wn)| ≤ |d(gw, y2n)|+ a
1−a |d(y2n−1, y2n)|+

b
1−a |d(gw, y2n)|
+ c

1−a
|d(y2n−1,wn)||d(gw,y2n)|
|1+d(y2n−1,gw)| .

Letting n→∞ we get
|d(gw,wn)| → 0 as n→∞.By Lemma 1.2, we have wn → gw as n→∞.
Since Tw is closed and {wn} ⊆ Tw, it follows that gw ∈ Tw.
We have u = fv = gw ∈ Tw.
Since f is S-weakly commuting and g is T -weakly commuting we have
f 2v ∈ Sfv ⇒ fu ∈ Su and g2w ∈ Tgw ⇒ gu ∈ Tu.
Thus the pairs (f, S) and (g, T ) have the same coincident point. �
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