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Abstract. In this paper, the analytical and numerical evaluation of a generalized K(n, 2n,

-n) equation is studied by the qualitative theory of bifurcations method. The result shows

the existence of the different kinds of traveling wave solutions of the generalized K(n, 2n, -n)

equation, including solitary waves, kink and anti-kink waves, periodic wave and compacton

wave, which depend on different parametric ranges. These results completely improve the

study of traveling wave solutions for the mentioned model stated in Wazwaz (App. Math.

& Compu. 173 (2006) 213-230).

2010 Mathematics Subject Classification. 34A05, 34C25-28, 34M55.

Key words and phrases. solitary wave solution; periodic wave solution; kink and anti-kink

wave solution; compacton wave solution; exact solution; dynamical behavior.

1. Introduction

The study of traveling wave solutions in particular, solitons, of partial deferential equa-

tions (PDEs), for various nonlinear evolution equations in mathematical physics plays an

important role. To obtain the traveling wave solutions for PDEs, a lot of systematic methods

have been developed, such as the inverse scattering method, the Bácklund and the Darboux

transformations, the tanh-function method, the homogeneous balance method, the extended

tanh-function method and others [1, 2, 3, 4].

It is well known that solitons appear as a result of a balance between the nonlinear

convection uux and the linear dispersion uxxx in the integrable nonlinear KdV equation

ut + auux + buxxx = 0; (1)

gives rise to solitons: waves with infinite support. Unlike the standard KdV soliton which

narrows as the amplitude increases [5], the compactons width is independent of the ampli-

tude. In other words, the compacton is a soliton characterized by the absence of infinite
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wings or tails. The soliton concept appeared for the first time in the context of nonlinear

lattices, then became a reality in many branches of science.

In nonlinear fiber optics, the long range interaction of solitons imposes a strict limitation

on the performance of long-haul fiber transformation [6]. The famous article of Rosenau

and Hyman was one of the first to call broad attention to the compactons phenomenon.

The concept of compactons: solitons with compact support, or strict localization of solitary

waves, appeared in [7, 8] where a genuinely nonlinear dispersive equation K(n,n) a special

type of the KdV equation defined by

ut + a(un)x + (un)xxx = 0, n > 1, (2)

that is a delicate interaction between a nonlinear convection (un)x with the genuine nonlinear

dispersion (un)xxx that generates solitary waves with exact compact support.

In this paper we consider the generalized K(n, 2n, -n) equation,

ut + a(un)x +
[
bu2n(u−n)xx

]
x
= 0, n > 1, (3)

where a and b are two non-zero real number. Recently, by using the sine-cosine method and

the tanh method, Wazwaz [9] found for a
b
> 0 a family of compact solutions:

u1(x, t) =

 { 2nc
a(3n−1)

sin2
(
n−1
2n

√
a
b
(x− ct)

)
}

1
n−1 , |µξ| < π,

0, otherwise

u1(x, t) =

 { 2nc
a(3n−1)

cos2
(
n−1
2n

√
a
b
(x− ct)

)
}

1
n−1 , |µξ| < π

2
,

0, otherwise

for other exact explicit solutions the reader may see [10]. However, the bifurcation behavior

of the traveling wave solutions for corresponding traveling wave equations haven’t studied in

its parameter space. It is very important to understand the dynamical behavior of solutions

for the traveling wave equation (3) in its parameter space.

To study the traveling wave solutions of equation (3), we substitute

u(x, t) = u(ξ) = ϕ(ξ), ξ = x− ct, (4)

with wave speed c. Substituting equation (4) in to equation (3) and integrating once we

obtain the following auxiliary ordinary differential equation:

bnϕn−1ϕξξ − bn(n+ 1)ϕn−2ϕ2
ξ − aϕn + cϕ− c1 = 0, (5)

where, c1 is an integral constant, equation (4) is equivalent to the planner dynamical

system:
dϕ

dξ
= y,

dy

dξ
=

n(n+ 1)ϕn−2y2 + α(ϕn − βϕ+ γ)

nϕn−1
, (6)
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which has the first integral

H(ϕ, y) =
1

2ϕ2(n+1)
y2 +

α

ϕ3n

(
1

2n
ϕn +

β

1− 3n
ϕ+

γ

3n

)
= −h. (7)

where, α = a
b
, β = c

a
and γ = c1

a
.

Clearly, system (6) is a singular traveling wave system of the first class defined by [11, 12]

with one singular straight line ϕ = 0. Because the phase orbits defined by the vector fields of

system (6) determine types of traveling wave solutions of equation (3), we are going to find

all period annuluses and their boundary curves for system (6) and to describe all bifurcations

of phase portraits on the (ϕ, y)-phase plane and the bifurcation set on the parameter space

(α, β, γ) for system (6). We focus on the bounded traveling wave solutions and we give all

possible exact explicit parametric representations for the traveling wave solutions of system

(6).

This paper is organized as follows. In Sect. 2, we study the dynamical behavior of system

(6) when n = 2m and n = 2m + 1, m ≥ 1 in the (ϕ, y) - plane. In Sects. 3 and 4, we

investigate the exact solutions of equation (3) when n = 2 and n = 3 respectively.

2. Bifurcations of phase portraits of system (6)

In this section, we study all possible phase portraits defined by system (6) when

the parameter (α, β, γ)are varied. Let dξ = nϕn−1dζ. Then except on the straight line

ϕ = 0, system (6) has the same topological phase portraits as the following associated

regular system:

dϕ

dζ
= nyϕn−1,

dy

dζ
= n(n+ 1)ϕn−2y2 + α(ϕn − βϕ+ γ). (8)

The dynamics of system (8) and (6) are different in the neighborhood of the straight line

ϕ = 0. Specially, under some parameter conditions, the variable ζ is a fast variable while

the variable ξ is a slow variable in the sense of the geometric singular perturbation theory.

For n = 2, αγ > 0 and β2−4γ > 0, system (6) has two equilibrium points A1,2 = (ϕ1,2, 0),

where ϕ1 =
β−
√

β2−4γ

2
, ϕ2 =

β+
√

β2−4γ

2
. On the straight line ϕ = 0, there are two equilibrium

points Q1,2(0,±1
6

√
Ys) with Ys = −6αγ, if Ys > 0. Note that as H(ϕi, yi) = hi changes,

system (6) defines different families of orbits of system (7) with different dynamical behavior.

For the function defined by (7) we have h0 = H(0, 0),

h1 = H(ϕ1, 0) = α(ϕ1)
−3n

(
1

2n
ϕn
1 +

β

1− 3n
ϕ1 +

γ

3n

)
h2 = H(ϕ2, 0) = α(ϕ2)

−3n

(
1

2n
ϕn
2 +

β

1− 3n
ϕ2 +

γ

3n

)
Specially, for γ = 6

5
β2, and n = 2 we have H(ϕ1, 0) = H(0,±Ys) = 0.
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Let M(ϕj, yj) be the coefficient matrix of the linearized system of (8) at an equilibrium

point Ej(ϕj, yj) and J(ϕj, yj) is the corresponding Jacobian determinant of the M(ϕj, yj).

J(ϕ1, 0) = detM(ϕj, 0) = −nαϕn−1
1 (nϕn−1

1 − β),

J(ϕ2, 0) = detM(ϕ2, 0) = −nαϕn−1
2 (nϕn−1

2 − β), (9)

J(ϕj, yj) = detM(ϕj, yj) = n2(n2 − 1)ϕ
2(n−2)
i y2i − nαϕn−1

i (nϕn−1
i − β).

By the theory of planar dynamical systems [13, 14, 15], for an equilibrium point of a planar

integrable system, (i) If J < 0, then the equilibrium point is a saddle point. (ii) If J = 0

and the Poincaré index of the equilibrium point is zero, then the equilibrium point is a cusp

point. (iii) If J > 0 and trace(M) = 0, then the equilibrium point is a center point. (iv) if

J > 0 and (trace(M))2 − 4J > 0, then the equilibrium point is a node point.

Corresponding to the phase curves we need to consider two different cases. For n ≥ 2,

the straight lines ϕ = 0 is an integral invariant straight line of system (8). Denote that,

f(ϕ) = ϕn−βϕ+γ. So, f ′(ϕ) = nϕn−1−β. Here we consider two sub-folds, for odd and even

positive integers, we choose respectively n = 2m+1 and n = 2m. Let ϕ0 =
(
β
n

) 1
n−1 , for n ̸= 0.

Here f ′(±ϕ0) = 0. We have f{n=2m}(ϕ0) = γ +
(
1− n

n
n−1

) (
β
n

) n
n−1 and f{n=2m+1}(−ϕ0) =

γ −
(
1− n

n
n−1

) (
β
n

) n
n−1 .

Thus, we have four level curves that partitioned the (β, γ)-parameter plane into subregions

for f{2m} and f{2m+1} as shown in Fig. 1 (a) and Fig. 1 (b) respectively ;

Π1 : γ = 0, and Π2 : γ = −

[(
1

2m

) 2m
2m−1

−
(

1

2m

) 1
2m−1

]
β

2m
2m−1 ,

T1 : γ = 0, and T2 : γ =
[
1− (2m+ 1)

2m+1
2m

]( β

2m+ 1

) 2m+1
2m

,

(a) n = 2m (b) n = 2m+ 1

Figure 1. Regions partitioned by bifurcation curves in the (β, γ)-plane for

m ∈ Z+
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By using the above information to do qualitative analysis for α > 0 and α < 0, we have

the following bifurcations of the phase portraits of system (6) shown in Fig.2 - Fig.5.

(a)(β, γ) ∈ Π+
1 , h1 < 0 (b)(β, γ) ∈ B1, hs < h1 < 0 (c)(β, γ) ∈ Π−

2 , hs < 0

(d)(β, γ) ∈ B3, h1 < h2 < hs (e)(β, γ) ∈ Π−
1 , hs < 0 (f)(β, γ) ∈ B4, h2 < h1 < 0

(g)(β, γ) ∈ B4, β = 0 (h)(β, γ) ∈ B4, 0 < hs < h2 (i)(β, γ) ∈ B4, hs < 0 < h2

Figure 2. Bifurcations of phase portraits of system (6) in the (ϕ, y)-phase

plane when α > 0 and n = 2m
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(a)(β, γ) ∈ Π+
1 , 0 < h1 (b)(β, γ) ∈ B1,∆ = 0, 0 < hs (c)(β, γ) ∈ Π−

1 , 0 < h1

(d)(β, γ) ∈ B2, hs < 0 < h1 (e)(β, γ) ∈ Π+
2 ,∆ < 0 (f)(β, γ) ∈ Π−

1 , 0 < hs

(g)(β, γ) ∈ B4, Ys < 0, h1 < 0 (h)(β, γ) ∈ B4, Ys > 0, (i)(β, γ) ∈ B4, Ys < 0.

Figure 3. Bifurcations of phase portraits of system (6) in the (ϕ, y)-phase

plane when α < 0 and n = 2m
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(a)(β, γ) = (0, 0),∆ = 0 (b)(β, γ) ∈ T+
1 , h1 < 0 (c)(β, γ) ∈ C1, Ys < 0 < h1

(d)(β, γ) ∈ C1, h1 < h0 (e)(β, γ) ∈ T+
2 , 0 < h2 (f)(β, γ) ∈ C2,∆ < 0 < α

(g)(β, γ) ∈ C2, Ys < h1 < h2 (h)(β, γ) ∈ T−
2 , 0 < β (i)(β, γ) ∈ C4, γ < 0 < β

Figure 4. Bifurcations of phase portraits of system (6) in the (ϕ, y)-phase

plane when α > 0 and n = 2m+ 1
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(a)(β, γ) = (0, 0), ∆ = h0 (b)(β, γ) ∈ T+
1 , Ys = h0 < h1 (c)(β, γ) ∈ C1, h2 < h0 < h1

(d)(β, γ) ∈ T+
2 , h2 < h0 < h1 (e)(β, γ) ∈ C2, h2 = h1 < h0 (f)(β, γ) ∈ T−

1 , Ys = h0 < h2

(g)(β, γ) ∈ C3, h0 < h2 < h1 (h)(β, γ) ∈ T−
2 , h0 < γ (i)(β, γ) ∈ C4, h2 < h0 < h1

Figure 5. Bifurcations of phase portraits of system (6) in the (ϕ, y)-phase

plane when α < 0 and n = 2m+ 1
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3. Parametric representation of exact wave solutions of equation (3)

when n = 2.

In this section, we shall consider all possible exact explicit parametric representations

for all bounded functions ϕ(ξ) =
√

φ(ξ) determined by system (6). Then, we obtain cor-

responding traveling wave solutions of equation (3) in different parameter regions of the

(α, β, γ)- parameter space for n = 2.

We see from equation (7) and the first equation of system (6) in calculating the exact

explicit parametric representation of the solutions one has:(
2
√
2
)
ξ =

∫ ϕ

ϕ0

2dϕ√
α
(
−1

4
ϕ2 + β

5
ϕ− γ

6

)
− hϕ6

=

∫ φ

φ0

dφ√
α
(
−1

4
φ2 + β

5
φ

3
2 − γ

6
φ
)
− hφ4

, (10)

Then from equation (10), we may obtain the parametric representations of solutions of

system (6) and equation (3).

3.1. Parametric representation of exact wave solutions of equation (3) when

α < 0.. 1. The case of (β, γ) ∈ Π+
1 , h1 < h0. (see Fig.2 (a)).

(i) In this case, φm = h0. Corresponding to the homoclinic orbits to the saddle point

A2(ϕ2, 0), enclosing the equilibrium point A1(ϕ1, 0) given by H2(ϕ, y) = h1. Using the first

equation of system (6), we have∫ φ

0

dφ

(φ2 − φ)
√

(φ− φl)φ
=

(
2
√
2
)
ξ.

where, φl < 0φ1 < φ2 < φL. It follows the exact solutions of equation (6):

φ(ξ) = φ2 −
2(φ2 − φl)φ2

(φl − 2φ2)− φl cosh(ω0ξ)
, (11)

where ω0 = 2
√
2φ2(φ2 − φl).

Thus, we obtain the exact solitary wave solution of equation (3) as follows (see Fig. 6(a)):

u(x, t) =

(
φ2 −

2(φ2 − φl)φ2

(φl − 2φ2)− φl cosh(ω0ξ)

) 1
2

. (12)

(ii) Corresponding to the level curve defined by H2(ϕ, y) = h where h ∈ (h1, h0) there

exists a periodic orbit to the singular straight line ϕ = 0, enclosing the equilibrium point

A1(ϕ1, 0). Using the first equation of system (6), we have∫ φ

0

dφ√
(φ− φl)φ(r1 − φ)(φL − φ)

=
(
2
√
2
)
ξ.

where ϕl < 0 < r1 < ϕL. It follows the exact solutions of equation (6):

φ(ξ) = φl

(
1− 1

1− α2
1sn

2(ω1ξ, k1)

)
, (13)
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where ω1 =
√

2ϕL(r1 − ϕl), α2
1 = r1

r1−ϕl
, k2

1 = (ϕL−ϕl)r1
(r1−ϕl)ϕL

, sn(·, k1), cn(·, k1), and dn(·, k) are
Jacobin elliptic functions and Π(·, ·, k1) is the normal elliptic integral of the third kind (see

[16]).

Thus, we obtain the exact periodic wave solution of equation (3) as follows(see Fig. 6(b)):

u(x, t) =
√
φl

(
1− 1

1− α2
1sn

2(ω1(x− ct), k1)

) 1
2

. (14)

(a) solitary wave. (b) Periodic wave.

Figure 6. Profile of solitary waves, periodic waves and compacton of system

(6) when (β, γ) ∈ Π+
1 and α > 0

Corresponding to open curves passing through (φl, 0) and (φL, 0) we have the following

compacton solution of equation (3), respectively(see Fig. 7(a) and 7(b)):

ul(x, t) =

 φl

1−
(

ϕL−ϕl

ϕL

)
sn2(ω1(x− ct), k1)

 1
2

. (15)

uL(x, t) =

r1 +
φL − r1

1−
(

ϕL−ϕl

r1−ϕl

)
sn2(ω1(x− ct), k1)

 1
2

. (16)

(iii) Corresponding to the level curve defined by H2(ϕ, y) = h where h ∈ (−∞, h1) and

h ∈ (h0,+∞) has a family of uncountably infinite many open curve tending to the singular

straight line ϕ = 0, passing through E0(0, 0).

2. The case of (β, γ) ∈ B1, ∆ = 0, h0 < hs < +∞. (see Fig.2 (b)).

(i) For h ∈ (h1, h2, ) the level curve defined by H2(ϕ, y) = h, there exists a family of

periodic orbits enclosing the equilibrium point A1(ϕ1, 0). Thus, from equation (10) we have∫ φ

r1

dφ√
(φ− r4)(φ− r3)(r2 − φ)(r1 − φ)

=
(
2
√
2
)
ξ.

where, r1 > r2 > r3 > r4.
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(a) Compacton wave (left family) (b) Compacton wave (right family).

Figure 7. Profile of compacton wave of system (6) when (β, γ) ∈ Π+
1 and

α > 0

It follows the exact solutions of equation (6):

φ(ξ) = r4 +
r3 − r4

1− α2
2sn

2(ω2ξ, k2)
, (17)

where ω2 =
√
2(r1 − r3)(r2 − r4), α2

2 =
r2−r3
r2−r4

, k2
2 =

(r2−r3)(r1−r4)
(r2−r4)(r2−r4)

Thus, we obtain the exact periodic solution of equation (3) as follows:

u(x, t) =

(
r4 +

r3 − r4
1− α2

2sn
2(ω2(x− ct), k2)

) 1
2

. (18)

(ii) In this case ϕl < 0 < ϕm < ϕ1 < ϕ2 < ϕL.

For the level curve defined by H2(ϕ, y) = h2, there exists a homoclinic orbit to the saddle

point A2(ϕ2, 0) enclosing the equilibrium point A1(ϕ1, 0) to the right of the singular line

ϕ = 0. Using the first equation of (6) we have:∫ φ

φm

dφ

(φ2 − φ)
√

(φ− φl)φ(φ− φm)
=

(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φ2 −
2(φ2 − φl)(φ2 − φm)

(φm − φl) cosh(ω3ξ) + (φm + φl)
, (19)

where ω3 = 2
√
2(φ2 − φl)(φ2 − φm).

Thus, we obtain the exact solitary wave solution of equation (3) as follows:

u(x, t) =

(
φ2 −

2(φ2 − φl)(φ2 − φm)

(φm − φl) cosh(ω3ξ) + (φm + φl)

) 1
2

. (20)

3. The case of (β, γ) ∈ Π−
2 , hs < h0. (see Fig.2 (c)).

In this case φ2 = −φ1. For h = hs, the level curve defined by H2(ϕ, y) = h, there exists

a cusp at the point A1(ϕ1, 0) and A2(ϕ2, 0). Thus, we obtain the exact solution of equation
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(6) as follows:

φ(ξ) = φ2
2 − exp(ω4ξ), (21)

where ω4 = 4
√
2φ2.

Hence, we obtain the exact solution of equation (3) as follows:

u(x, t) =
[
φ2
2 − exp(ω4(x− ct))

] 1
2 . (22)

4. The case of (β, γ) ∈ B3, h1 < h2 < hs. (see Fig.2 (d)).

(i) For h = h2 the level curve defined by H2(ϕ, y) = h, there exists a homoclinic orbit at

A1(ϕ1, 0) enclosing A2(ϕ2, 0). Using the first equation of (6) we have:∫ φM

φ

dφ

(φ− φ1)
√

(φM − φ)(φL − φ)
=

(
2
√
2
)
ξ.

where, φl < φ1 < φ2 < φL It follows the exact solutions of equation (6):

φ(ξ) = φ1 +
2(φM + φ1)(φL + φ1)

(φL − φM) cosh(ω5ξ)− (φM + φL)− 2φ1

, (23)

where ω5 = 2
√
2(φM + φ1)(φL + φ1).

Thus, we obtain the exact solitary wave solution of equation (3) as follows:

u(x, t) =

(
φ1 +

2(φM + φ1)(φL + φ1)

(φL − φM) cosh(ω5(x− ct))− (φM + φL)− 2φ1

) 1
2

. (24)

(ii) Specially, taking φM = 0, of Fig. 2(e), we have the exact solitary wave solution of

equation (3) as follows:

u(x, t) =

(
φ1 +

2φ1(φ1 − φL)

(φL − 2φ1)− (φL) cosh(ω5(x− ct))

) 1
2

. (25)

5. The case of (β, γ) ∈ B4, β = h0, γ < 0. (see Fig.2 (g)).

For h ∈ (h0, h1), system (6) has four heteroclinic orbits connecting to the saddle points

A1(ϕ1, 0) and A2(ϕ2, 0) passing through Q1(0,−Ys) and Q2(0, Ys). Then, from equation (10),

we have ∫ φ

φ0

dφ

(φ− φ1)(φ2 − φ)
=

(
2
√
2
)
ξ.

where, φ0 ∈ (φ1, φ2). It follows the exact solutions of equation (6):

φ(ξ) = φ2 −
φ2 − φ1

1− exp((φ2 − φ1)ξ)
. (26)

Thus, we obtain kink and anti-kink wave solution of equation (3) as follows:

u(x, t) =

(
φ2 −

φ2 − φ1

1− exp((φ2 − φ1)ξ)

) 1
2

. (27)

6. The case of (β, γ) ∈ B4, hs < h0 < h2. (see Fig.2 (i)).
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In Fig. 2(i), the level curves defined by H2(ϕ, y) = h for h ∈ (h1, h0), contain two stable

manifolds and two unstable manifolds of the saddle point at A1(ϕ1, 0), where ϕ1 = −14
5
The

function φ(ξ) in the left two manifolds tends asymptotically to the singular straight line

ϕ = 0 as |y| → ∞. So, corresponding to the left stable manifold and unstable manifold

about the saddle point A1(ϕ1, 0), one has the following two parametric representations of

the solutions of system (6):

φ(ξ) = φ1 +
4(φ1 − φl)(φL − φ1)P

P 2exp(±ω6ξ) + (φL − φl)2exp(∓ω6ξ)− 2(φL + φl − 2φ1)
, (28)

where φl < φ1 < 0 < φL, P = φL − φl, ω6 =
√
8(φ1 − φl)(φL − φ1),

ξ ∈ (−∞,∞).

Thus, we obtain the exact compacton wave solution of equation (3) as follows:

u(x, t) =

(
φ1 +

4(φ1 − φl)(φL − φ1)P

P 2exp(±ω6(x− ct)) + (φL − φl)2exp(∓ω6(x− ct))− 2(φL + φl − 2φ1)

) 1
2

.

(29)

3.2. Parametric representation of exact wave solutions of equation (3) when

α < 0.. In this section, we give some exact explicit parametric representations of the traveling

wave solutions such as solitary solutions, compacton solutions, periodic cusp wave solutions

and periodic traveling wave solutions.

1. The case of (β, γ) ∈ Π+
1 , h0 < h1. (see Fig. 3(a)).

For the level curves defined by H2(ϕ, y) = 0, there exists a family of a periodic orbits to

the right and left of the singular straight line ϕ = 0. Thus, corresponding to the left family

of periodic orbit equation (10) becomes:∫ φ

r3

dφ√
(φ− r3)φ(r2 − φ)(r1 − φ)

=
(
2
√
2
)
ξ.

where, r3 < 0 < r2 < r1. It follows the exact solutions of equation (6):

φl(ξ) = r1 +
r3 − r1

1− α2
3sn

2(ω7ξ, k3)
, (30)

where, ω7 =
√
8r1(r2 − r3), α2

3 =
r3
r1
, k2

3 =
r3(r2−r1)
r1(r2−r3)

Thus, we obtain a periodic wave solution of equation (3) as follows (see Fig.8(a)):

ul(x, t) =

(
r1 +

r3 − r1
1− α2

3sn
2(ω7(x− ct), k3)

) 1
2

. (31)

Corresponding to the right family of periodic orbit we have an exact solutions of equation

(3) as follows (see Fig.8(b)):

ur(x, t) =

(
r2

1− α2
4sn

2(ω7(x− ct), k3)

) 1
2

. (32)
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where α2
4 =

r1−r2
r1

.

(a)Periodic wave (left-family) (b)Periodic wave (right-family) (c)Solitary Wave

Figure 8. Profile of periodic wave families and solitary wave of system (6)

when α < 0

2. The case of (β, γ) ∈ B1, ∆ = 0, h0 < hs < +∞. (see Fig. 3(b) & 3(e)).

Corresponding to the right homoclinic orbit and left homoclinic orbit to the equilibrium

point A0(0, 0), we see from equation (10) that we have the exact solutions of equation (6),

respectively, as follows:

φr(ξ) =
2φM |φm|

(φM − φm) cosh(ω8ξ)− (φM + φm)
(33)

and

φl(ξ) =
−2φM |φm|

(φM − φm) cosh(ω8ξ) + (φM + φm)
, (34)

where ω8 =
√
8φM |φm|.

Equation (33) and (34) give rise to the exact solitary wave solutions of equation (3) as

follows (see Fig.8(c)): for n > 1,

ur(x, t) =

(
2φM |φm|

(φM − φm) cosh(ω8(x− ct))− (φM + φm)

) 1
2

. (35)

and for n is a odd number,

ul(x, t) =

(
−2φM |φm|

(φM − φm) cosh(ω8(x− ct)) + (φM + φm)

) 1
2

. (36)

3. The case of (β, γ) ∈ Π−
1 , h0 < h1. (see Fig. 3(c), 3(d), 3(f), 3(g) & 3(i)).

Corresponding to the curves defined by H2(ϕ, y) = h, h ∈ (h2, h1) in (7), equation (6)

has two families of periodic solutions. Now, (10) can be written as∫ φ

φd

dφ√
(φ− φd)(φc − φ)(φb − φ)(φa − φ)

=
(
2
√
2
)
ξ.
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where, φd < φc < φb < φa. for the family of periodic orbits shown on the left-hand side of

Figure 3(c), and ∫ φ

φb

dφ√
(φ− φd)(φ− φc)(φ− φb)(φa − φ)

=
(
2
√
2
)
ξ.

for the family of periodic orbits shown on the right-hand side of Figure 3(c). Thus, we

have parametric representations for the two families of periodic solutions of equation (6),

respectively as follows:

φl(ξ) = φd +
(φd − φa)α

2
l sn

2(ω9ξ, k4)

1− α2
l sn

2(ω9ξ, k4)
, (37)

and

φr(ξ) = φb +
(φb − φc)α

2
rsn

2(ω9ξ, k4)

1− α2
rsn

2(ω9ξ, k4)
, (38)

where ω9 =
√
8(φa − φc)(φb − φd), k4 =

√
(φa−φb)(φc−φd)
(φa−φc)(φb−φd)

, αl =
√

φc−φd

φa−φc
, αr =

√
φa−φb

φa−φc
.

Thus, we have the following exact periodic traveling wave solution corresponding to (37)

and (38) of equation (3) respectively:

ul(x, t) =

(
φd +

(φd − φa)α
2
l sn

2(ω9ξ, k4)

1− α2
l sn

2(ω9(x− ct), k4)

) 1
2

. (39)

and

ur(x, t) =

(
φb +

(φb − φc)α
2
rsn

2(ω9ξ, k4)

1− α2
rsn

2(ω9ξ, k4)

) 1
2

. (40)

Theorem 1

Depending on the changes of system parameters α, β, γ, the bifurcations of phase por-

traits of system (6) for n = 2, when α ∈ R are shown in Fig. 1 (a), Fig.2 and Fig.3.

(i) Equation (3) has exact periodic wave solutions given by (12), (14), (18), (31), (32), (39)

and (40).

(ii) Equation (3) has exact kink and anti-kink solutions given by (27).

(iii) Equation (3) has exact compacton solutions given by (15), (16), (22) and (29).

(iv) Equation (3) has exact solitary wave solutions given by (20), (24), (25), (35) and (36).

Theorem 2: Suppose that n = 2m, m ∈ Z+ and see figure 2 and figure 3.

(1) For (β, γ) ∈ Π+
1 . When α > 0, equation (3) has a smooth solitary wave solutions

with valley form for h = h1, and has a family of uncountably infinite many smooth periodic

solutions for h ∈ (h1, h0). Corresponding to the level curve defined by H2(ϕ, y) = h where

h ∈ (−∞, h1) and h ∈ (h0,+∞) has a family of uncountably infinite many open curve

tending to the singular straight line ϕ = 0, passing through E0(0, 0). And when α < 0,

equation (3) has a family of uncountably infinite many periodic solutions for h = h0, and
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their amplitudes tend to ∞ for h → 0.

(2) For (β, γ) ∈ B1. When α > 0, equation (3) has a smooth solitary wave solutions

with valley form for h = h2, at A1(ϕ1, 0) and has a family of uncountably infinite many

smooth periodic solutions for h ∈ (h1, h2). And when α < 0, equation (3) has a family of

uncountably infinite many smooth periodic solutions for h ∈ (h2, 0) and if H(ϕ1, 0) = h

(here A2(ϕ2, 0) is the saddle point) defined by (6) has a zero ϕ∗ satisfying 0 < ϕ1 < ϕ∗,

equation (3) has a smooth solitary wave solutions with peak form for h = h2 and a family

of uncountably infinite many smooth periodic solutions for h ∈ (h2, h1).

(3) For (β, γ) ∈ Π−
2 . When α > 0, equation (3) has a cusp solitary wave solutions with peak

form for h = hs, and has a family of uncountably infinite many smooth periodic solutions

for h ∈ (h2, h1).

(4) For (β, γ) ∈ B4.When α < 0, equation (3) has two families of uncountably infinite many

smooth periodic solutions for h ∈ (h1, 0). And, when α > 0, equation (3) has two stable

manifolds and two unstable manifolds of the saddle point at A1(ϕ1, 0) tending asymptotically

to the singular straight line ϕ = 0 as |y| → ∞ for h ∈ (h1, h0).

4. Parametric representation of exact wave solutions of equation (3)

when n = 3.

We see from equation (7) and the first equation of system (6) and system (8) in calculating

the exact explicit parametric representation of the solutions one has:(
2
√
2
)
ξ =

∫ ϕ

ϕ0

2dϕ√
α
(
−1

6
ϕ2 + β

8
ϕ− γ

9ϕ

)
− hϕ8

=

∫ φ

φ0

dφ√
α
(
−1

6
φ2 + β

8
φ− γ

9
φ

1
2

)
− hφ5

,

(41)

Then from equation (10), we may obtain the parametric representations of solutions of

system (6).

4.1. Parametric representation of exact wave solutions of equation (3) when

α > 0.. In this section, we give some exact explicit parametric representations of the traveling

wave solutions of equation (3).

1. The case of (β, γ) = (0, 0), ∆ = 0, h1 < h0. (see Fig. 4(a)).

Corresponding to the curves defined by H3(ϕ, y) = h, h ∈ (h1, h0) (see Fig. 4(a)), we have

from equation (7) that y2 = 8(φ− φm)φ
3(φL − φ), where φm < 0 < φL. Equation (6) has a

homoclinic orbit to the cusp point A0(0, 0). Then from equation (41) we have∫ φ

φm

dφ

φ
√

(φ− φm)φ(φL − φ)
=

(
2
√
2
)
ξ.
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It follows the exact solutions of equation (6):

φ(ξ) = φmcn
2(Ω1ξ, k5), (42)

where, Ω1 =
√

2(φL − φm), k2
5 =

(
1− φL

φm

)−1

.

Thus, we obtain a solitary wave solution of equation (3) as follows (see Fig 9(a)):

u(x, t) =
√
φmcn(Ω1(x− ct), k5). (43)

Corresponding to the open arch curve to the right of the singular straight line ϕ = 0, we

have from equation (41) that:∫ φ

φL

dφ

φ
√

(φ− φm)φ(φ− φL)
=

(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φLnc
2(Ω1ξ, k6), (44)

where, k2
6 =

φm

φL
.

Thus, we obtain a compacton solution of equation (3) as follows (see Fig 9(b)):

u(x, t) =
√
φLnc(Ω1(x− ct), k6). (45)

(a) Solitary wave. (b) Compacton wave.

Figure 9. Profile of solitary waves and compacton waves of system (6) when

(β, γ) ∈ T+
1 when α < 0

2. The case of (β, γ) ∈ T+
1 , h1 < h0. (see Fig. 4(b)).

In this case, φ1 < 0 < φ2 < φL. Corresponding to the level curve defined by H3(ϕ, y) = h1,

there exists a heteroclinic orbit connecting the equilibrium points A1(ϕ1, 0) and A2(ϕ2, 0).

Moreover we see from (7) that the two arch curve connecting the equilibrium pointsQ1(0,−Ys)
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and Q2(0, Ys) in the left and right side of the straight line ϕ = 0 enclosing the origin have

the exact solution of equation (6):

φ(ξ) = φL −Ψ1

(
1 + exp(Ω2ξ)

1− exp(Ω2ξ)

)2

, (46)

where, Ψ1 = φL − φ1, Ω2 = 4φ2

√
2Ψ1.

Hence, we obtain a kink and anti-kink wave solution of equation (3) as follows:

u(x, t) =

[
φL −Ψ1

(
1 + exp(Ω2(x− ct))

1− exp(Ω2(x− ct))

)2
] 1

2

. (47)

3. The case of (β, γ) ∈ C1, h0 < h1. (see Fig. 4(c), 4(d) & 4(i)).

(i) Corresponding to the curves defined by H3(ϕ, y) = h0 in (7), equation (6) has a periodic

orbit enclosing the equilibrium point A2(ϕ2, 0). We obtain from equation (41) that:∫ φ

r3

dφ

(φ− φ1)
√

(φ− r3)(r2 − φ)(r1 − φ)
=

(
2
√
2
)
ξ.

where, r3 < 0 < r2 < r1.We obtain a parametric representation of system (6) for the periodic

orbit as follows:

φ(ξ) = r3 + (r2 − r3)sn
2(Ω3ξ, k7), (48)

where, k2
7 =

r2−r3
r1−r3

, Ω3 =
√
2(r1 − r3).

Thus, we obtain a periodic wave solution of equation (3) as follows:

u(x, t) =
[
r3 + (r2 − r3)sn

2(Ω3(x− ct), k7)
] 1

2 . (49)

(ii) Corresponding to the two stable manifolds and two unstable manifolds at A1(ϕ1, 0),

that tends asymptotically to the singular straight line to ϕ = 0 as |y| → ∞, and an open curve

passing through the point P (r1, 0), we have, the exact solutions of system (6) respectively:

φ(ξ) = r2 +
r3 − r2

1− sn2(Ω3ξ, k7)
, (50)

and

φ(ξ) = r2 +
r1 − r2

1− sn2(Ω3ξ, k8)
, (51)

where, k2
8 =

r1−r2
r1−r3

.

Thus from equation (50) and (51) respectively, we obtain a compacton solution of equation

(3) as follows:

u{A1}(x, t) =

(
r2 +

r3 − r2
1− sn2(Ω3(x− ct), k7)

) 1
2

(52)

and

u{P}(x, t) =

(
r2 +

r1 − r2
1− sn2(Ω3(x− ct), k8)

) 1
2

. (53)
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4.2. Parametric representation of exact wave solutions of equation (3) when

α < 0.. In this section, we give some exact explicit parametric representations of the

traveling wave solutions such as solitary solutions, compacton solutions, periodic cusp wave

solutions and periodic traveling wave solutions.

1. The case of (β, γ) = (0, 0), ∆ = h0. (see Fig. 5(a)).

In this case, h0 < h1 < h2, φl < 0 < φM . For h ≪ 0, the level curve defined by

H3(ϕ, y) = h (see Fig. 5(a)), there exists a homoclinic orbit to the cusp point A0(0, 0). Then

from equation (41) we have∫ φM

φ

dφ

φ
√
(φM − φ)φ(φ− φl)

=
(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φMcn2(Ω4ξ, k9), (54)

where, Ω4 =
√

2(φM − φl), k2
9 =

(
1− φl

φM

)−1

.

Thus, we obtain a solitary wave solution of equation (3) as follows:

u(x, t) =
√
φMcn(Ω4(x− ct), k9). (55)

Corresponding to the open arch curve to the left of the singular straight line ϕ = 0, we

have from equation (41) that:∫ φ

φl

dφ

φ
√

(φM − φ)φ(φ− φl)
=

(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φlcn
2(Ω4ξ, k10), (56)

where, k2
10 =

(
1− φM

φl

)−1

.

Thus, we obtain a compacton solution of equation (3) as follows:

u(x, t) =

√
φl

nc(Ω4(x− ct), k10)
. (57)

2. The case of (β, γ) ∈ C2, h2 = h1 < h0. (see Fig. 5(e)). In this case, r3 < r2 <

r1 < φM (i) For h ≪ 0, the level curve defined by H3(ϕ, y) = h, there exists a family of

homoclinic orbit to the equilibrium point P (r1, 0) enclosing the equilibrium point A2. Then

from equation (41) we have∫ φM

φ

dφ

(φ− r1)
√
(φM − φ)(φ− r2)(φ− r3)

=
(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = r2 + φMcn2(Ω5ξ, k11), (58)
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where, Ω5 =
√

2(φM − r3), k2
11 =

φM−r2
φM−r3

.

Thus, we obtain a solitary wave solution of equation (3) as follows:

u(x, t) =
(
r2 + φMcn2(Ω5(x− ct), k11)

) 1
2 . (59)

(ii) Corresponding to the periodic orbit which encloses the equilibrium point A1(ϕ1, 0), we

have from equation (41) that:∫ φ

r3

dφ

(r1 − φ)
√
(φM − φ)(r2 − φ)(φ− r3)

=
(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = r2sn
2(Ω5ξ, k12) + r3cn

2(Ω5ξ, k12), (60)

where, k2
12 =

r2−r3
φM−r3

.

Thus, we obtain a periodic wave solution of equation (3) as follows:

u(x, t) =
[
r2sn

2(Ω5(x− ct), k12) + r3cn
2(Ω5(x− ct), k12)

] 1
2 . (61)

3. The case of (β, γ) ∈ T−
1 , h0 < h2. (see Fig. 5(f)).

For h = h0, we have a family of periodic orbits of equation (6) shown in Fig. 5(f). We

see from (7) that two arch curve connecting the equilibrium points Q1(0,−Ys) and Q2(0, Ys)

in the left and right side of the straight line ϕ = 0 enclosing the origin. Thus from (41) we

have:

∫ φ

r2

dφ√
(r1 − φ)(φ− r2)[(φ− β1)2 + β2

2 ]
=

(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) =
r1B1 + r2A1 − (r1B− r2A1)cn(Ω6ξ, k13)

A1 + B1 − (A1 − B1)cn(Ω6ξ, k13)
, (62)

where, Ω6 = 2
√
2A1B1, k2

13 =
(r1−r2)2−(A1−B1)2

4A1B1
, A2

1 = (r1 − β1)
2 + β2

2 , B2
1 = (r2 − β1)

2 + β2
2 .

Thus, we obtain a periodic wave solution of equation (3) as follows:

u(x, t) =

(
r1B1 + r2A1 − (r1B− r2A1)cn(Ω6(x− ct), k13)

A1 + B1 − (A1 − B1)cn(Ω6(x− ct), k13)

) 1
2

. (63)

4. The case of (β, γ) ∈ C3, h1 < h0 < h2. (see Fig. 5(g)).

In this case we have r3 < 0 < r2 < r1. For h = h1, the level curve defined H3(ϕ, y) = h

there exists a family of periodic orbits and a homoclinic orbits.

(i) Corresponding to a homoclinic orbit at an equilibrium point P (r3, 0) enclosing the

equilibrium point A1(ϕ1, 0). Thus from (41) we have:
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∫ φM

φ

dφ

(φ− r3)
√
(φM − φ)(φ− r2)(φ− r1)

=
(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φMnc2(Ω7ξ, k14)− r2tn
2(Ω7ξ, k14), (64)

where, Ω7 =
√

(r1 − φM), k2
14 =

r1−r2
r1−φM

.

Thus, we obtain a solitary wave solution of equation (3) as follows:

u(x, t) =
[
φMnc2(Ω7(x− ct), k14)− r2tn

2(Ω7(x− ct), k14)
] 1

2 . (65)

(ii) Corresponding to a family of periodic orbits of system (6), enclosing the equilibrium

point A2(ϕ2, 0), we have from equation (41):∫ φ

r2

dφ

(φ− r3)
√
(φ− φM)(φ− r2)(r1 − φ)

=
(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φM + (r2 − φM)nd2(Ω8ξ, k15), (66)

where, Ω8 =
√

2(r1 − φm), k2
15 =

r1−r2
r1−φm

.

Thus, we obtain a periodic wave solution of equation (3) as follows:

u(x, t) =
[
φM + (r2 − φM)nd2(Ω8(x− ct), k15)

] 1
2 . (67)

5. The case of (β, γ) ∈ C4, h2 < h0 < h1. (see Fig. 5(i)). In this case, φm < r3 < r2 < r1.

(i) For h → 0, the level curve defined byH3(ϕ, y) = h (see Fig. 5(i)), there exists a homoclinic

orbit to the equilibrium point A1(ϕ1, 0). Then from equation (41) we have∫ φ

φm

dφ

(r3 − φ)
√

(φ− φm)(r2 − φ)(r1 − φ)
=

(
2
√
2
)
ξ.

It follows the exact solutions of equation (6):

φ(ξ) = φm + (r2 − r1)sn
2(Ω8ξ, k16), (68)

where, k2
16 =

r2−φm

r1−φm
.

Thus, we obtain a solitary wave solution of equation (3) as follows (see Fig. 10(a)):

u(x, t) =
[
φm + (r2 − r1)sn

2(Ω8(x− ct), k16)
] 1

2 . (69)

(ii) Corresponding to a family of periodic orbits of system (6), enclosing the equilibrium

point A2(ϕ2, 0). Then from equation (41) we have∫ φ

r2

dφ

(φ− r3)
√

(φ− φm)(φ− r2)(r1 − φ)
=

(
2
√
2
)
ξ.
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It follows the exact solutions of equation (6):

φ(ξ) = φm + (r2 − φm)nd
2(Ω8ξ, k16), (70)

Thus, we obtain a periodic wave solution of equation (3) as follows (see Fig. 10(b)):

u(x, t) =
[
φm + (r2 − φm)nd

2(Ω8ξ, k16)
] 1

2 . (71)

(a) Solitary wave. (b) Periodic wave.

Figure 10. Profile of solitary waves and periodic waves of system (6) when

(β, γ) ∈ C4 when α < 0

Theorem 3: Depending on the changes of system parameters α, β, γ, the bifurcations of

phase portraits of system (6) for n = 3 when α ∈ R are shown in Fig. 1 (b), Fig. 4 and

Fig. 5.

(i) Equation (3) has exact solitary wave solutions given by (43), (55), (65) and (69).

(ii) Equation (3) has exact compacton solutions given by (45), (52), (53) and (57).

(iii) Equation (3) has exact kink and anti-kink wave solutions given by (47).

(iv) Equation (3) has exact periodic wave solutions given by (49), (59), (61), (63), (67) and

(71).

Theorem 4: Suppose that n = 2m+ 1, m ∈ Z+ and see figure 4 and figure 5.

(1) For (β, γ) = (0, 0), ∆ = h0 When α ∈ R, equation (3) has a family of solitary wave

solution at to the cusp point A0(0, 0) for h ≪ 0.

(2) For (β, γ) ∈ T+
1 . When α > 0, equation (3) has a couple of kink and anti-kink wave

solutions for h = h1 (or h2), and has a family of uncountably infinite many periodic wave

solutions for h ∈ (h1,+∞). (3) For (β, γ) ∈ C1. When α > 0, equation (3) has two

families of uncountably infinite many smooth periodic solutions for h = h0, and has two

stable manifolds and two unstable manifolds at A1(ϕ1, 0), that tends asymptotically to the

singular straight line to ϕ = 0 as |y| → ∞.
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(4) For (β, γ) ∈ T−
2 . When α < 0, equation (3) has a family of uncountably infinite many

smooth periodic solutions for h = h0, and their amplitudes tend to |y| → ∞ for h → 0.

(5) For (β, γ) ∈ C4. When α < 0, equation (3) has two families of uncountably infinite

many smooth periodic solutions enclosing the equilibrium point A2(ϕ2, 0) for h → 0, and

|y| → ∞. And, also equation (3) has a family of smooth solitary wave solutions with peak

(or valley) form for h = h0
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