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ABSTRACT. In the present paper, we have obtained hypergeometric generating relations
associated with two hypergeometric polynomials of one variable meP) (z;m) and

937([1"3 ) (z;m, A, ) with their independent demonstrations via Gould’s identity.As applica-
tions,some well known and new generating relations are deduced.Using bounded sequences,
further generalizations of two main hypergeometric generating relations have also been given
for two generalized polynomials ST(La’ﬂ)(x; m) and TP (z;m, \, ).
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1. INTRODUCTION AND PRELIMINARIES

Throughout in the present paper, we use the following standard notations:
N:={1,2,3,...}, Ny :={0,1,2,3,...} =NU{0}, Z; :={0,—-1,-2,-3,...},
7= :={-1,-2,-3,...} =Zy\{0} and Z = (Z; UN).
Here, as usual, Z denotes the set of integers, R denotes the set of real numbers, Rt denotes
the set of positive real numbers and C denotes the set of complex numbers.
The Pochhammer symbol (or the shifted factorial) (A), (A, v € C) is defined, in terms of the
familiar Gamma function, by
1) (), = FA+v) 1 (v =10; ) € C\{0})

() AN+1)...A+n—1) (v=neN;AeC)

it is being understood conventionally that (0)g = 1 and assumed tacitly that the Gamma
quotient exists.

Some useful consequences of Lagrange’s expansion [13, p.133];see also [5, p.146,problem 207]
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include the following generalization [5, p.349,problem 216] of the familiar binomial expansion

0 4 1 1 0+1
2\ - 50
where (9+(ﬁn+1)") is a binomial coefficient and #, [ are complex numbers independent of n

and ( is a function of 't’ defined implicitly by

(1.3) C=t1+ )M

subject to the condition

(1.4) G0y =0

Another generalization [5, p.348,problem 212] related with the equation (1.2),is given as:

> 0 0+ (8+1)n\ ,,
;%&H45+mn}( n :W

(1.5) - 1+ez (9+ 1) 1)% = (1+¢)

n—l

where ( is defined by the equations (1.3) and (1.4).
When = —1,both results (1.2) and (1.5) reduce immediately to the binomial expansion.
Gould [2, p.90]; see also [7, p.169] gave the following identity:

(c+un) [0+ (B+1)n p ub¢
1.6 t" = (1
(16) Ze+ B+ n ( n I+ o+ 15
where 6, 5, o, i are complex parameters independent of n and ( is given by the equations (1.3)
and (1.4).

If we put 0 = {a+ (8 + 1)mr} and 0 = {\ + pmr} in Gould’s identity (1.6), we get the
first modified form of Gould’s identity:

—{a+ B+ V)mryA+pn+pmr) (a+ (8+ D)mr+ (8 + 1)n\ ,,
Z{(ﬁ)}(uﬂ)((ﬂ)(ﬁ))t

—~ A{a+(B+1mr+ (8 +1)n} n
_ {ot(B+1)mr} o et (B4 Dmr}
0 o (A+“ a5 )
with

¢=t(1+¢)""¢(0)=0
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If we put 0 = {a+ (8+ 1)mr} and 0 = {\+ p (8 + 1)r} in Gould’s identity (1.6), we get
the second modified form of Gould’s identity:

fa+@B+)mrH{A+pn+p(B+1)ry fa+ (B+1)mr+ (8 +1)n
Z {a+ B+ Dmr+ @B +1)n) ( n )t

(1.8) = (1L + Qlottrromn ()\ +u(B+1)r+ pa ?fﬂ_;gmr}g)

C= 1+ 5¢(0) = 0

Gauss’s Multiplication Theorem

For every positive integer m, we have

(1.9) (B)mr =m™ [ | <b+‘7—) cr=0,1,2,...

, m
J=1

Summation identity[12, p.101,Lemma(3),(2.1.6)]

(7]

(1.10) Z B(r,n) = Z ZB(r,n—i—mr)

n=0 r n=0 r=0

3z

Il
o

([x] denotes the greatest integer in x ; m € N),
provided that series involved are absolutely convergent.
The generalized Laguerre polynomials L (x) [6, p.200,112(1)]are defined by

1+ a),

(1.11) LY (z) = o

1F1[—n;1+oz; x]; ne Ny

Replacing o by a + nf in equation (1.11),we get

(1.12) Fy

-n : n!
! T —L(a+n5) T
14+ a+nB; ] (1+a+np), ()

The Jacobi Polynomials of first kind P{*”(z) [6, p.254 (132.1),p.255 (132.7)] are defined by

the following equations:

(LB (2) = L0 gy

n!

14+« : 2

—n,1+a+p+n; l—x]

I+ a+P)m (z—1\"
(o) = GO (220)

-n, —a—n; 2
—a—fB—-2n; 1—x
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where n is a non-negative integer.

Replacing a by (« + bn) and 5 by {8 — (b+ 1)n} in equation (1.13), we get

—n,1+a+p3; 1—2 nI(a+bn+1 b B (b1
2@} 5) _ ( ) PTS +bn , B—(b+1) )([L’)
l+a+bn; 2 M'{a+ (0b+1)n+1}

Replacing o by (a« —n) and 8 by {8 — (b+1)n} in equation (1.14),we get the following result

-n, —a; 2 ]_F(l—i—oﬁ—ﬁ—bn—n)n!( 2

1.16 F

— 1) Péafn,,b’fbnfn) (iL‘)

The generalized Rice Polynomials qe? [v, 0, 2] of Khandekar [4, p.158,eq.(2.3)] are defined
by

(1.17) H@A) [y, 0, 2] = (a+n> F n,a+p+n+1,v; x]
n a+1,0 :

(1.18) H,[v,0,2] = H®Ov, 0, 2]

1—
(1.19) Ped (z) = H@P) {y, v, — x]
Replacing « by (a+bn) and 8 by {8 — (b+ 1)n} in eq.(1.17), we get
(1.20) 3F2 -n, v, l+a+ ﬁ ; x| = n! H(a+bn,ﬁf(b+l)n) [l/ o 33']

1+a+bn, o; (1+a+bn), " T

Some useful Pochhammer’s relations
Aun
(A + ) (#(m—f_m) + 1)

( Aun >
w(B+1-m) J

(1.21) L=A4pun+pu(B+1)r—pmr

(1.22)
<)\+ Ha ) N (umr+ MCﬁmTJru(mT) _ (A(1-5§)+uga) (A0cikse + 1)

(1= 50) (1-50) (1-50) (e

<mw_+1> + 1>r
(w7,

(e 5g) o 55 )

AA-BQ+uca}
{AM1-=8¢)+puca} (u(ﬂ+1)(1—ﬁc+m<) t 1>T

1— {A1=BO)+uCa}
(1=5¢) <u(ﬁ+1)(1—ﬁc+mo>r

(1.23) a+m(B+1)r=a

‘(1.23a)
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where
r=20,1,2,3,...

Now we shall discuss some special cases of the implicit functions defined by equation (1.3)
subject to the condition (1.4).Using Mathematica 9.0, we can find the roots of resulting cubic
equation in ¢ for different values of § in equation (1.3).

Case I:- When 8 = 0 in (1.3),then particular value of ((satisfying the condition (1.4)) is
denoted by

(1.24) o—_ "

Case II:- When § =1 in (1.3),we get

tC4+ (2t —1)C+t=0

then one of the values of { (satisfying the condition (1.4)) is given by

12t — /(1 4)

(1.25) A >

Case III:- When = —2 in (1.3),we get
CH+(¢—-t=0
then the particular value of ((satisfying the condition (1.4)) is given by

(1.26) ool \/2(1 + 4t)

Case IV:- When = -3 in (1.3), we get

G420 +(—t=0

then one of the roots(satisfying the condition (1.4)) of above equation is given by

{2 27t + 3v/3 /{4t 1 27752)}%

2

ol

2

{2 427t + 3v/3 /(@ + 27t2)}

Case V:- When = —1 in (1.3), we get

1
(127) T=3 |-2+ +

Wl
=

then one of the roots(satisfying the condition (1.4)) of above equation is given by

(1.28) U= %{t+\/(t2+4)}
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Case VI:- When 3 = 3 in (1.3),we get
<3 + CZ - t2 =0

then one of the roots(satisfying the condition (1.4)) of above equation is given by

PN N (1+1V/3)

3
{ 2 4+ 272 + 3v3/( 4t2+27t4}

(1—1v3) {—2 + 272 4+ 3V/3/(—4t2 + 27154)};’

1.29 +

(1-2) 23
where ¢ = /(—1).

Case VII:- When = — in (1.3),we obtain

then one of the values of { (satisfying the condition (1.4)) is denoted by

- #3 23 (—6t% — 1°) N
3 3{274% + 1816 + 219 + 3v/3,/(271° + 41%) }3

{2763 + 185 + 2t° + 31/3./ (2715 + 41%)} 3
3.23
Case VIII:- When 3 = —2 in (1.3),we obtain

(1.30)

G-t —-t3=0

then one of the values of { (satisfying the condition (1.4)) is denoted by

13) o= (3)° ¢ o+ f\/W}
{or + V3 /=) ) 237

2. MAIN GENERATING RELATIONS

First Generating Relation:
If any values of variables and parameters leading to the results which do not make sense, are

tacitly excluded, then

S e ) 7 = (140
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a A (1=BQ)+por .

(21) ) {)\(1 - 5C) + ILLCOé } p+2Fq+2 m(B+1)’ 1 + )\(Tj?#ﬁ(g):oc ’ (ap)7 x(_C)m]
_ — Mo .
Oé(l BC) 1 + m(,B—l—l)’ mu(1+¢) (bq)v

where
¢=t1+)"¢0)=0
provided that involved series on both sides are absolutely convergent.

Here Srivastava’s generalized hypergeometric polynomials of one variable qe? (x;m) [12,
p.360,eq.(7.3.3)];see also [11, pp.331-332] are given by

(2.2) H{™P) (;m) = (a i (5n+ 1)n)p+qu+m

Ams ) (a) 5
A(m; 1+ a+ pn), (by);

where a5 are complex parameters independent of ‘n’ and A(m; \) abbreviates the array of

m number of parameters given by

A A+1 A4+m—1
—, e ;m e N
m m m

Independent Demonstration:
Using the definition (2.2) of H*P (z;m) and then the power series form of .., Fyim[z] in
left hand side of equation (2.1),we get

B > (A + un) aB)/ . 0 > A4 pn) M{a+ (B+1)n+ 1}
Q_Z{omL(ﬁ—i—l)n}H’(1 P (sm) ¢ _nzz(]{a+(5+1)n} IF'n+1) T{a+pn+1}

Jj=1

(L) (),

2] ﬁ (%j—l) [(ap)]r " ¢

m
J=1

Using Gauss’s multiplication theorem (1.9) in above equation, we get

-y o A+ pm) (<)o (@i (@), a7 1"

(2'3) Q o (04 + 1)n5 (1 +a+ nﬂ)mr [(bQ)]T rlnl

Now applying summation identity (1.10) and then simplifying further, we get

B+1 [(ap)]r {a+ (B+1)mr}(A+ pn + pmr)
0o Z m(p+1)r 7" ; {a+ (B4 mr + (6 + 1)n}

(2.4) | (a +(B+ Dmr + (B + 1)n> t"

n

Now using first modified Gould’s identity (1.7),we get

LT W ¥ i (5 A
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O e =)

Now using (1.22) and simplifying it further, we get

250+ e 5 ey Lo - O (M +1),

(- 60 5 o G + D () ! (Mce)

@6)Q:(L+Q“(

r=

After solving it further,we get the result (2.1) in the form of a generalized hypergeometric
function of one variable.

Second Generating Relation:

If any values of variables and parameters leading to the results which do not make sense, are

tacitly excluded, then

)\—i_/'[/n « n «
Z{M T A s m A 17 = (140)

a A (1-B¢)+uda .
(27) A(1 — B¢) + pCer 2Fyis | A L+ smasermg (@); 2(—C)™
: : a(1 = B¢) p+2+ g+ 1+ A (1=B¢)+u¢e ()
(5'1'1) p(1+8)(1=B¢+m() > N4/
where

¢=t1+¢)":¢0)=0

provided that involved series on both sides are absolutely convergent.
Here we define new generalized hypergeometric polynomials%%a’ﬁ ) (x;m, A, u),known as “Pathan’s

generalized hypergeometric polynomials of one variable”, given by

(2.8)
. Atpun .
B (w3m, N ) = <a tE+ 1)n) pm+1Fgrmtt Alm; =n) 1+ ”('Bi*m)’ () x
n A(m; 1+ a+ Bn), o, (by);

where «, 5 are complex parameters independent of ‘n’ and A(m; \) abbreviates the array of

m number of parameters given by

A A+1 Ad+m—1
—, e ;m e N
m  m m

Independent Demonstration:

Using the definition (2.8) of B (@;m, A, u) and then the power series form of 4,11 Fym+1[]
in left hand side of equation (2.7),using Gauss’s multiplication theorem (1.9) and result
(1.21),we get

A+un a n
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oo ]
—~ At pn 4 p(B+1)r — pmr] (=n)me H{a+n(8+1)} [(gp)]r 2" "
Z Z a4+ ng+1+mr} [(b)], r! n!

(2.9)

n=0 r=0

Now applying summation identity (1.10) in above equation then simplifying further, we get

o eyl {a+ (B+ Dmry(X+ pn + p(B+1)r)
Q —Z[a+m(5+1 rlz {a+(B+1L)mr+ (B +1)n} '

(2.10) .<oz + (B4 Dmr+ (8 + 1)n> n

n

Now using second modified Gould’s identity (1.8) and eq.(1.23),we get

* = S (ﬁ)r [(ay)], a" (=)™
= (1+¢) ; a(mle)T ((b,)], !
(2.11) [(A+%) +{M(6+1)T+%}}

Now using equation (1.23a) in above equation and summing it up into hypergeometric form
further, we get the desired result (2.7).

3. KNOWN APPLICATIONS OF FIRST GENERATING RELATION (2.1)

(i). Putting A =1,pu = % in equation (2.1) and after simplifying, we get

0 o ' s (1 + C)a—&-l

which is the result of Srivastava [9, p.975];see also [10, p.233,eq.(12)].Here ¢ being given by
equation (1.3) and (1.4) and HiP) (x;m) is given by equation (2.2).

n=0

(ii). Putting A = 1,u = % and m = 1 in equation (2.1) and using the definition of
H (2:1) and after simplification, we get

(3.2)

_ o )
- (1 _BC) qu (bq); ( C)]

which is the result of Srivastava [8, p.591,eq.(9)];see also [3, p.1186].¢ is given by equations
(1.3) and (1.4).
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(iii). Putting A =1, 4 = 5,
_1
2 (x;1) = fn (x) and replacing ¢ by U, we get

qug )(:L')t :Z( n 2)p-f—qu—&-l

n=0 n=0

= 5! and m = 1 in equation (2.1),using the definition(2.2) of

—n, (ap) P

" g

(1+5) 77

q);
where

U= Lit+ VB

which is the known result of Brown [1, p.264,eq.(7)] and f,ga)(x) is Brown’s generalized
hypergeometric polynomial [12, p.358,eq.(7.2.4)].

4. NEW APPLICATIONS OF FIRST GENERATING RELATION (2.1)

(i). Putting § = 0 and ¢ = © = - from equation (1.24) in equation (2.1), we get

N (A +un) (a+n A(m; —n), (ap) n o
St otmFoim . o la| = (1=t
—~ (a+n) \ n A(m; 1+ ), (by);
m =0 +pat) o %,HMZ—W,(%); NEEAY
. . a p+2 1+ %’ A(l—é)}j—uat’(bq); 1—¢

(ii). Putting S =1and ( = A = A —r 0 from equation (1.25) in equation (2.1),we get

oo )\ + un o+ 2n A(m, —n)’ (CL ) ; n N
Z Oé—I—QTL( n )p-l—qu-I-m Alm: b i t :(1+A).
= (m; 14 o+ n), (by);
A1-A)+palA .
(42) {)\(I—A)+/LOZA} +2F+2 Qmal‘f'THuA),(ap), g;(_A)m
' ’ p+254q —A)+paA
a(l —A) 1+%,%,(bq);
(iii). Putting 8 = -2 and ( === V 0 from equation (1.26) in equation (2.1),we get
= (A+pn) (a—n AGms—n), (@)
SFormo-n) g, [ Sosn )y
n=0 (m7 1 +a— 2”)7 (bq)>
= = —a A (1425)+paZ .
(4.3) -{A(l Tty O‘“} praFass | 0 a0 (@) _gym
a(l+ 2=5) 1_%’W£)Ha(bq)§
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(iv). Putting f = —3 and ¢ = T from equation (1.27) in equation (2.1),we get

(A4 pun) (a—2n A(m; —n), (ap) n o
Z 2 ( )p+qu+m Y x| t"=(1+T)%
— (v — 2n) n A(m; 1+ a —3n), (by);
o A(143Y)+pua Y ,
(4 4) {)\(1 + ST) + ,LLOCT} p+2Fq+2 %7 + )\(m#’(x]‘_)-t,-éf) Y7 (ap>7 SC(—T)m
: . o A1+37)+pa .
Oé(].+3T) 1—2— %7(&1%

(v). Putting 8 = 5! and ¢ = U from equation (1.28) in equation (2.1),we get

(A + ;m a+in A(m; —n), (ap)
Z p+qu+m x
— Oé + n n )

Alm;l+a— %n), (by);

t"=(1+4+U)".

A14+Y)tapU
A1+ Y)+aulU 20 g 4 AT (),
(45) . ( 2) a +2F 42 mu(l—i—U) ( p) x(—U)m
a(1+5) P gz Al ),
2 ma m“(1+U) ) q/»

(vi). Putting 3 = =3 and ¢ = ¥ from equation (1.29) in equation (2.1),we get

(A4 un) (o —3n P
Z (a _ ln) n p+mt g+m
n=0

2

A(mi—n), (a) ] PR

Alm;l+a— %n), (by);

—9 A1+2 U)o .
R W} o | L w5 g
: - 3 p+2Lq o A1+3 ) taul '
a(l+37) —%7W7(bq)v
(vii). Putting 8 = =X and ¢ = II from equation (1.30) in equation (2.1),we get

(A + pn) oz+§n I
Za—l— n n p+m+ g+m

Ams—n), (@) ] PR

Alm;1+a— %n), (by);

1 3a A(L+3 ) +apll .
an  [AEEDEEL om0 s
a(l+ 31I) 23—;, mi(1+H)“ , (bg);

(viii). Putting § = 2% and ¢ = ® from equation (1.31) in equation (2.1),we get
A+ /m a+3n A(m;—n), (a,) ;
Z P+qu+m
— (a+ n n

Alm;l+a— %n), (by);

:p] "= (1+ )~

2 3a A(14+2 @) 4pad )
(4.8) {)\(1 + 3 CD);}‘ /LO&CI)} erQF 1 + m, (ap), x(—(I))m
a(l+3 ) 1+?§“,#1+§),(bq);
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5. NEW APPLICATIONS OF SECOND GENERATING RELATION (2.7)

(i). Putting A =1, = %1 in equation (2.7) and after simplifying, we get

o : at+(B+1)n .
at(P41n Alms—n), 1+ 280y ]
Z ( n prm+1Fgimat (B+1)(B+1—m) P |t

A(m7 1 + +6n)a %l)n)v (bq)7

n=0 (B+1)(B+1—m
atl a(14+¢) .
(5.1) — (1O I m(ﬁ+l)’ 1+ (B+1)?(1=B¢+m()’ (ap); 2(—C)™
' (1—p¢) " 14 St (by);
(B+1) (B+1)2(1-B¢+m¢) > \ 74/

where ( is given by equations (1.3) and (1.4).
(ii). Putting A = 1, p = £ 'm = 1 in equation (2.7) and using the definition of B (21,1 £y,

Y P

we get
- at(8+1)n .
o+ (ﬂ + 1)71, F —-n, 1+ W, (ap), i
n=0 ot B, ST ()
a+1 a(1+¢) .
(5.2) = M F (B+1) 1+ (B+1)2(1—BC+C)° , (ap); (—0)
. (1 . BC) p+247qg+2 1 + a(1+<) (b ) x
(6+1)’ (B+1)2(1-BC+¢) 7 VT4

where ( is given by equations (1.3) and (1.4).
(iii). Putting A= 1lpu = i,ﬁ = _71, m = 1 in equation (2.7),using the definition of

B )( 2;1,1, ) and replacing ¢ by U from equation (1.28), we get

2 (10 et

—n,1 —4a —2n, (ay,); i
x
1+a— 3%, —4a—2n, (b)) ;

(L4 Uy 20,1+ 550 (ap);
(5.3) = 1—Up+2 q+2 8a(140) ) z(=U)
( + 5) 1+ 2047 (2+30) » (bQ)a

(iv). Putting 8 = 0 and ¢ = © = ;& from equation (1.24) in equation (2.7), we get

(A4 pn) (a+n A(m; — )1+M—”mna(a); n Cae
Z%( )p+m+1Fq+m+1 )\—i-(;n Do e =17
—~ (a+n) \ n Alm; 1+ ), S5 (bg) 5

Ot A(1—t + at . m
5.4 {A(l—t)+uat} E 1+%,(ap),x( ¢ ) ]
' : p+2fq AL a
o 1+ ) {M((ljzj__,l:lt)t}> (bq)§ t—1
(v). Putting f=1and ( = A = ———— 01 from equation (1.25) in equation (2.7),we get
- )\—l—,un a+2n 7 A(m; —n), 1‘*‘,;}_;% (ap); n
Z B prm+1L grm+1 A ' 13
“— (a+ 2n) n A(m; 1+ a+ n), 75505, (by):
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A=A +pai} .

2 L g Afan) s (ap); {L‘(—A)m]
_a A=A fpad} .
1 T om 2u(1—AﬁmA) , (bg);

(5.5) :(1+A>Q{A(1;(11\>_+AF>‘O‘A} JF,

(vi). Putting f = —2 and ¢

F gt+m+1
(Oé _ n) n )p+m+1
n=0

= —1+\/(1+4t

——Y——from equation (1.26) in equation (2.7),we get
A —n) 1 — Gt

w(14+m)? <ap) , .Z'] mn

Aun
A(m7 l+a—- 2”), _%7 (bq>a

—a {A (1428)+paS} )
‘m L= M(1+2E+:LE) ? <ap)’ x(_:)m
1_ {A (1428) +pa=} =

A1+ 22) + pa=
56) =(1+=)“ F
56) =+ {AEE

X 1 (1+2E+mE) (bg);
(vii). Putting 8 = —3 and { = T from equation (1.27) in equation (2.7),we get

[e.e]

(A4 pn) (o —2n A(m;—n), 1— (Hun)’ (ap);
Z p+m+1+4 g+m—+1 M(Q—(i_;r}r) ) x| t"
(o —2n) n A(m;1+a—3n), —E2

u(2+m) ) (bQ)a

—a {A437)+paY} .
mr T 2u(1+3T+¢rLT) > (ap); ]
1

(5.7) =(1 +T)Q{A(1;<ff_)3;¢aT} Y

o _Dsnien g 70"
2m’ 2p (143T4+mY) > \¥4/»

(viii). Putting # = 5 and ¢ = U from equation (1.28) in equation (2.7),we get

i >\~|—un <oz~|—%n

A(m; —n), 1 + Bfen)
=0 Oé+ n

)p+m+1Fq+m+1 . (()\+M)n)(ap); ol
n A(??%l—l—()é 2 )’u(%—m)’(bq);

o 2001+ L) +ap U}
ML+Y) +anU %,14‘2—
(5.8) =<1+U>a{< (2> - }F

p (145 +mU) (ap);
all + %) 14 20 2{(1+35)+apU}

z(=U)™
U ) (bq)§
u(1+Z+mU)

(ix). Putting g = = and ¢ = ¥ from equation (1.29) in equation (2.7),we get

) . Aun
)\+/m oz—%n A(m,—n),l—(+“)
E p+m+1F +m—+1

N(%+m)7 (ap); n
(a— Lin) n Alm;1+ o — 3p), — e (b)x '
n=0 2 ) 2 ) #(%er)’ q)s

2a D43 W) )
A1+ 20) + ap¥ 201 - 28 (ay);
(5.9) = (Lewp {2 D Tl W i
o1+ 30 2 200+

m?

U)+au¥} .
u(1+§ U+m¥) (bq)7

=L and ¢ = 1I from equation (1.30) in equation (2.7),we get

Z (A + un) (oa+§n

(x). Putting g =

) . Afms=m), T+ 3225 () |
+m+1Lg+m+1 n z
o U Afmi 1+ o~ Ln), Lol )

a+n
n=
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30 3{A(1+ 2 M) 4apull} )
A1+ £10) + auH} o 14 %(H% s (a); Sy
1 p+2tg+2 30 3{AA+3 D)+apull} A
a(l + 3 H) 1 S 2#(14-3% T (b )7

(5.10) = (1+n)a{

(xi). Putting 8 = 52 and ¢ = ® from equation (1.31) in equation (2.7),we get

e’} Atpn .

Z /\+,un (oH—%n) P A(m;—n),1+ ((ﬂt )) (ap); .
p+m+14L g+m+1 Aun x

— (a+ n) n A(m;1+a—§n),fb(;fm)),(bq);

a 3142 @) +pad} _
%’ 1 + 5 . ) ( P))

(
A1+ 2®) + pad (112 ®+md)
(5.11) = (1+ @)a{ 3’ } p+2Fyia g z(—@)"
2 3o 3{A1+3 )+pad} .
Oé(1+ 3®) 1+H7 N(1+§q)+mq>) 7<bq)7

Making suitable adjustments of parameters and variables in all generating relations of sec-
tions 4 andb, we can also obtain a number of new generating relations involving restricted
generalized Laguerre polynomials, restricted Jacobi polynomials, restricted generalized Rice

polynomials of Khandekar and other orthogonal polynomials.

6. FURTHER GENERALIZATIONS OF GENERATING RELATIONS (2.1) AND (2.7)

Generalization of (2.1):
Let

(6.1) S (z:m) - (a+ (B+ 1) )’yrxr

|s

M

n—mr

where o, are Complex parameters independent of ‘n’; m is an arbitrary positive integer and

{7} is a bounded sequence of arbitrary real and complex numbers such that -, # 0.Then

A4 pun (@B) (.. n
Z{a—l— G+1) }Sn (x;m)t

62 _(aoe [{m =50+ pkat (L4 OnE)

(=8¢ {a+ (B +1)mn} !

where ( is given by

n=

(6.3) ¢=t(1+¢)P;¢0)=0

provided that each of the series involved is absolutely convergent.

Independent Demonstration:

Using the definition (6.1) of Slenb )(a:; m) in left hand side of equation (6.2),we get

)\‘i‘ﬂ” (a,8) n
) . t
Z{a+ CESS
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0 L A+ pn) T{a+ (B+1)n+ 1}

(64) :n g{a+(ﬁ+1)n}f‘(n—mr+l)F{&+/Bn+mr+1}

,yr x'r tn

Applying summation identity (1.10) and then simplifying further, we get

)mr {a+ B+ 1)mr}A+ pun+ pmr)
Z{a+mﬁ—|—1r} {Z {a+ B+ 1)mr+ (8 +1)n}

(6.5) "

(a + (B4 L)ymr + (B + 1)n> t”}
Now using first modified Gould’s identity (1.7) with condition (6.3),we get

(6.6) Q" =(1+¢)° i HA + %} + {MW T MC({? j %W} H {&ﬁi((ﬁg)ﬁ)r}

r=0

Changing the summation index from r to n and after solving it further,we get the general

result (6.2) corresponding to our first generating relation (2.1) subject to the conditions

(6.3).
Generalization of (2.7):
Let
(6.7)
]
1 1
T30 (2;m, A, p) = S z; { (Q Z(_B;r )n) A +pn+p(B+1- m)r]} Yo"

where «, 5,\,u are complex parameters independent of ‘n’; m is an arbitrary positive integer
and {7, } is a bounded sequence of arbitrary real and complex numbers such that v, # 0.Then

(e e}

Aﬂm o n

(6.8)

,yn :En Cmn

_ (149 ¢ {{A(l—ﬁé)+uCa+u(1+5)(1—BC+ mg¢)n}
(1-8¢) {a+(B+ )mn}

where ( is given by

n—

(=t(1+Q)M;¢(0)=0

provided that each of the series involved is absolutely convergent.
Independent Demonstration:
Using the definition (6.7) of Tl (x;m, A, ) in left hand side of equation (6.8),we get

(A + pn)
O — T(a B)( . A "
§ {a+ B‘l‘ln} n (m,m, ,/l)
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oo [r]
S [(at (B4 Dn\ DA+ pn+ (B + D — pmr}
s =Xy |( ) e

Applying summation identity (1.10) and then simplifying further, we get

)™ {a+ B+ DmrifA+pn+p(B+ 1r}
& Z{a—irmﬁ—l—lr} {Z {a+ B+ 1)mr+ (8 + 1)n}

:| ,y’r‘ x’!‘ t?’l

n=0 r=

(6.10) .

(a +(B+ D)ymr + (8 + 1)n) t"}

Now using second modified Gould’s identity (1.8) with condition (6.3),we get

Q*** — (1 4 C)a

(6.11) 2 HA + (1M—C—ZC)} + {u (B+1r+ Mg(g J_r ;gr} H {ojjr Z(;clm;)r}

Changing the summation index from r to n and after solving it further,we get the general
result (6.8) corresponding to our second generating relation (2.7) subject to the conditions
(6.3).

In the definitions of generalized polynomials given by Slep) (x;m) and TP (x;m, A, 1),
putting

_ (=)™ (@) - - (ap)r
N (R (S P I

we obtain Srivastava’s generalized hypergeometric polynomials of one variable HP (z;m)

and Pathan’s generalized hypergeometric polynomials of one variable B (x;m, A\, ) re-

spectively.
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