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Abstract. In this paper, the analytical stability of a partial differential equation with

piecewise constant arguments is considered. By using the theory of separation of variables

in matrix form and the Fourier method, the sufficient conditions under which the analytic

solution is asymptotically stable are achieved. The results extend some existing ones.
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1. INTRODUCTION

Recently, differential equations with piecewise constant arguments (EPCA) has received

much attention from a number of investigators [1, 2, 3, 4] in such various fields as popula-

tion dynamics, physics, mechanical systems and control science. The theory of EPCA was

initiated in 1983 and 1984 with the contributions of Wiener [5], Shah and Wiener [6] and

Cooke and Wiener [7] and has been developed by many authors [8, 9, 10, 11]. In 1993,

Wiener, pioneer of EPCA recollected in the book [12] the investigation of EPCA until that

moment. Later, continuous efforts have been devoted to considering various properties of

EPCA [13, 14, 15, 16, 17, 18]. However, all of them are based on ordinary differential equa-

tions (ODEs). As far as authors’ knowledge goes, only few results are presented in the

consideration of partial differential equations with piecewise constant arguments (PEPCA).

With regard to the PEPCA, it has been argued in [19] that they naturally arise in the

process of approximating PDEs by piecewise constant arguments. Thus, it is important to

investigate boundary value problems (BVP) and initial-value problems (IVP) for EPCA with

partial derivatives, and explore the influence of certain discontinuous delays on the behavior

of solutions to some typical problems of mathematical physics.
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The equation

ut(x, t) = a2uxx(x, t)− bu(x, t)

describes heat flow in a rod with both diffusion a2uxx along the rod and heat loss (or gain)

across the lateral sides of the rod. Measuring the lateral heat change at discrete moments

of time leads to the equation with piecewise continuous delay

ut(x, t) = a2uxx(x, t)− bu(x, [t])

which was investigated in [19].

In 1992, Wiener and Debnath [20] considered two PEPCAs with [t], the qualitative proper-

ties of zero solution of these equations were studied. Moreover, they considered the equation

of neutral type [21], and studied the behavior of the solutions. In [22, 23], the authors

discussed the numerical stability of θ-methods and Galerkin methods for PEPCA with [t],

respectively. In 2015, Veloz and Pinto [24] studied the PEPCA of generalized type, the

existence, computability and stability for solutions were argued. Later, Bereketoglu and

Lafci [25] investigated the existence, uniqueness, oscillation, instability and stability of the

solutions of PEPCA with [t− 1].

In this paper, we consider the following initial boundary value problem

(1)


ut(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx

(
x, 2

[
t+1
2

])
, t > 0,

u(0, t) = u(1, t) = 0,

u(x, 0) = v(x),

where a, b, c ∈ R and a 6= 0, u : Ω = [0, 1] × [0,∞) → R, v : [0, 1] → R, [·] signifies the

greatest integer function. Our main object is to study the stability of analytic solution of

(1). From the view point of structure in equation, our result is the generalization of the

existing ones.

2. THE STABILITY OF THE ANALYTIC SOLUTION

Definition 1. [12] A solution of (1) is a function u(x, t) satisfies the conditions:

(i) u(x, t) is continuous in Ω,

(ii) The partial derivative ut, ux, uxx exist and are continuous in Ω with the possible ex-

ception of the points (x, n)(n = 1, 2, · · · ), where one-sided derivatives exist,

(iii) u(x, t) satisfies ut(x, t) = a2uxx(x, t) + buxx(x, [t]) + cuxx(x, 2[(t + 1)/2]), t > 0 in Ω

with the possible exception of the points (x, n), and conditions u(0, t) = u(1, t) = 0

and u(x, 0) = v(x).

Definition 2. [12] If any solution u(x, t) of (1) satisfies

lim
t→∞

u(x, t) = 0, x ∈ [0, 1],
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then the zero solution of (1) is called asymptotically stable.

In order to derive the stability conditions of (1), we consider the following problem

(2)


Ut(x, t) = AUxx(x, t) + BUxx(x, [t]) + CUxx

(
x, 2

[
t+1
2

])
, t > 0,

U(0, t) = U(1, t) = 0,

U(x, 0) = U0(x),

where U(x, t) and U0(x) are real m×m matrix, A, B and C are real constant m×m matrix,

by the method of separation of variables, it is not difficult to know the nonzero solution of

(2) is

U(x, t) = T(t)X(x),

so the equation in (2) gives

T′(t)X(x) = AT(t)X′′(x) + BT([t])X′′(x) + CT

(
2

[
t+ 1

2

])
X′′(x),

i.e., (
AT(t) + BT([t]) + CT

(
2

[
t+ 1

2

]))−1
T′(t) = X′′(x) (X(x))−1 ,

we set (
AT(t) + BT([t]) + CT

(
2

[
t+ 1

2

]))−1
T′(t) = X′′(x) (X(x))−1 = −P2,

which gives the BVP

(3)

{
X′′(x) + P2X(x) = 0,

X(0) = X(1) = 0,

and equation on time t

(4) T′(t) + AT(t)P2 + BT([t])P2 + CT

(
2

[
t+ 1

2

])
P2 = 0.

The general solution of (3) is

X(x) = C1 cos(xP) + C2 sin(xP),

where

cos(xP) =
∞∑
n=0

(−1)nx2nP2n

(2n)!
, sin(xP) =

∞∑
n=0

(−1)nx2n+1P2n+1

(2n+ 1)!
,

and C1,C2 are arbitrary constant matrices.

From X(0) = 0 we get that C1 = 0, and X(1) = 0 gives sin P = 0, thus

Pj = diag(π(m(j − 1) + 1), · · · , πmj), j = 1, 2, · · · ,m,

so we have the following result.
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Theorem 1. There exists an infinite sequence of matrix eigenfunctions for (3)

Xj(x) =
√

2diag(sinπ(m(j − 1) + 1)x, · · · , sin πmjx), j = 1, 2, · · · ,m.

The solution of (4) will be derived in the following theorem.

Theorem 2. Let E(t) be the solution of the problem

T′(t) = −AT(t)P2, T(0) = I,

and let

M(t) = E(t) + (E(t)− I)A−1B, N(t) = (E(t)− I)A−1C,

if the matrix A is nonsingular, then the problem{
T′(t) + AT(t)P2 + BT([t])P2 + CT

(
2
[
t+1
2

])
P2 = 0, t ≥ 0,

T(0) = C0,

has a unique solution

(5)

T(t) = M
(
t− 2

[
t+1
2

]
+ 1
)

((I −N(1))−1M(1))−1

(M(2) + N(2)[I −N(1)]−1M(1))
[ t+1

2
]
C0

+N
(
t− 2

[
t+1
2

]
+ 1
)

(M(2) + N(2)(I −N(1))−1M(1))
[ t+1

2
]
C0.

Proof: On the interval [2n− 1, 2n+ 1), it follows (4) we have

T′(t) = −AT(t)P2 −BT(2n− 1)P2 −CT(2n)P2

= −AT(t)P2 −BC2n−1P
2 −CC2nP

2,

with the general solution

T(t) = E(t− 2n+ 1)K−A−1BC2n−1 −A−1CC2n,

at t = 2n− 1

C2n−1 = K−A−1BC2n−1 −A−1CC2n,

hence we obtain

K = C2n−1 + A−1BC2n−1 + A−1CC2n,

thus we have

T(t) = {E(t− 2n+ 1) + (E(t− 2n+ 1)− I)A−1B}C2n−1 + (E(t− 2n+ 1)− I)A−1CC2n,

which is equivalent to

T(t) = M(t− 2n+ 1)C2n−1 + N(t− 2n+ 1)C2n,

at t = 2n

C2n = M(1)C2n−1 + N(1)C2n,
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so we derive

C2n = (I −N(1))−1M(1)C2n−1,

on the other hand, at t = 2n+ 1

C2n+1 = M(2)C2n−1 + N(2)C2n =
(
M(2) + N(2)[I −N(1)]−1M(1)

)
C2n−1,

then

C2n+1 =
(
M(2) + N(2)(I −N(1))−1M(1)

)n
C1,

so

C2n =
(
M(2) + N(2)(I −N(1))−1M(1)

)n
C0.

C2n−1 = ((I −N(1))−1M(1))−1
(
M(2) + N(2)(I −N(1))−1M(1)

)n
C0.

From them it is immediate that

(6)

T(t) = M(t− 2n+ 1)C2n−1 + N(t− 2n+ 1)C2n

= M(t− 2n+ 1)((I −N(1))−1M(1))−1

(M(2) + N(2)(I −N(1))−1M(1))
n

C0

+N(t− 2n+ 1) (M(2) + N(2)(I −N(1))−1M(1))
n

C0

= M
(
t− 2

[
t+1
2

]
+ 1
)

((I −N(1))−1M(1))−1

(M(2) + N(2)(I −N(1))−1M(1))
[ t+1

2
]
C0

+N
(
t− 2

[
t+1
2

]
+ 1
)

(M(2) + N(2)(I −N(1))−1M(1))
[ t+1

2
]
C0,

the proof is finished.

Thus the main result is as follows.

Corollary 1. If the following conditions are satisfied

(7)
(a2 + b+ c)((a2 + b− c)e−a2π2j2 − (b− a2 − c)) > 0,

(a2 + b+ c)((a2 + b+ c)e−a
2π2j2 − (b− a2 + c)) > 0,

where

c 6= a2

e−a2π2j2 − 1
, a 6= 0,

then the zero solution of (1) is asymptotically stable.

Proof: If a 6= 0, let

m = 1,A = a2,P = Pj = πj,

in view of Theorems 1 and 2, we have

(8)

Ej(t) = e−a
2π2j2t,

Mj(t) = e−a
2π2j2t + b

a2
(e−a

2π2j2t − 1),

Nj(t) = c
a2

(e−a
2π2j2t − 1).
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The zero solution of (1) is asymptotically stable if and only if∣∣∣∣ e−a2π2j2+ b
a2

(e−a
2π2j2−1)

1− c
a2

(e−a2π2j2−1)

∣∣∣∣ < 1,∣∣∣e−a2π2j2 + b+c
a2

(e−a
2π2j2 − 1)

∣∣∣ < 1,

which is equivalent to(
e−a

2π2j2 + b
a2

(e−a
2π2j2 − 1)

1− c
a2

(e−a2π2j2 − 1)
+ 1

)(
e−a

2π2j2 + b
a2

(e−a
2π2j2 − 1)

1− c
a2

(e−a2π2j2 − 1)
− 1

)
< 0,

(
e−a

2π2j2 +
b+ c

a2
(e−a

2π2j2 − 1) + 1

)(
e−a

2π2j2 +
b+ c

a2
(e−a

2π2j2 − 1)− 1

)
< 0.

After some deductions, we can get (7).
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