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Abstract. The concept of 2-normed spaces was initially developed by Gähler [10], which

was extend to n-norm by Misiak [17] for single sequence space. The main objective of this

paper is to study triple sequence spaces over n-norm via the sequence of modulus functions.
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1. Introduction

A triple sequence (real or complex) is a function x : N×N×N→ R(C), where N,R and C
are the set of natural numbers, real numbers, and complex numbers respectively. We denote

by ω
′′′

the class of all complex triple sequence (xpqr), where p, q, r ∈ N. Then under the

coordinate wise addition and scalar multiplication ω
′′′

is a linear space. A triple sequence

can be represented by a matrix, in case of double sequences we write in the form of a square.

In case of triple sequence it will be in the form of a box in three dimensions.

The different types of notions of triple sequences and their statistical convergence were

introduced and investigated initially by Sahiner et. al [22]. Later Debnath et.al [2, 3], Esi

et.al [4, 5, 6], Tripathy [24] and many others authors have studied it further and obtained

various results.

Statistical convergence was introduced by Fast [7] and later on it was studied by Fridy

[8, 9] from the sequence space point of view and linked it with summability theory. The

notion of statistical convergent double sequence was introduced by Mursaleen and Edely

[18].
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I-convergence is a generalization of the statistical convergence. Kostyrko et. al. [15]

introduced the notion of I-convergence of real sequence and studied its several properties.

Later Jalal [11, 12, 13], Salat et. al. [20] and many other researchers contributed in its

study. Sahiner and Tripathy [22] studied I-related properties in triple sequence spaces and

showed some interesting results. Tripathy [24] extended the concept of I-convergent to

double sequence and later Kumar [16] obtained some results on I-convergent double sequence.

Recently Jalal and Malik [14] extended the concept of n-norms to triple sequence spaces and

proved several algebraic and topological properties.

In this paper we define the spaces c3[z, ‖·, . . . , ·‖]I , c30[z, ‖·, . . . , ·‖]I , `3∞[z, ‖·, . . . , ·‖]I ,
M3

I [z, ‖·, . . . , ·‖]I and M3
0I [z, ‖·, . . . , ·‖]I by using the concept of n-normed space via the

sequence of modulii functions F = (fpqr). We study some algebraic and topological properties

of these sequence spaces and some inclusion relations are obtained.

2. Definitions and preliminaries

Definition 2.1. Let X 6= φ. A class I ⊂ 2X (Power set of X) is said to be an ideal in X if

the following conditions holds good:

(i) I is additive that is if A,B ∈ I then A ∪B ∈ I;

(ii) I is hereditary that is if A ∈ I, and B ⊂ A then B ∈ I.

I is called non-trivial ideal if X 6∈ I

Definition 2.2. [21, 22] A triple sequence (xpqr) is said to be convergent to L in Pringsheim’s

sense if for every ε > 0, there exists N ∈ N such that

|xpqr − L| < ε whenever p ≥ N, q ≥ N, r ≥ N

and write as limp,p,r→∞ xpqr = L.

Note: A triple sequence is convergent in Pringsheim’s sense may not be bounded [21, 22].

Example Consider the sequence (xpqr) defined by

xpqr =

{
p+ q for all p = q and r = 1

1
p2qr

otherwise

Then xpqr → 0 in Pringsheim’s sense but is unbounded.

Definition 2.3. A triple sequence (xpqr) is said to be I-convergence to a number L if for

every ε > 0 ,

{(p, q, r) ∈ N× N× N : |xpqr − L| ≥ ε} ∈ I.

In this case we write I − limxpqr = L .
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Definition 2.4. A triple sequence (xpqr) is said to be I-null if L = 0. In this case we write

I − limxpqr = 0 .

Definition 2.5. [21, 22] A triple sequence (xpqr) is said to be Cauchy sequence if for every

ε > 0, there exists N ∈ N such that

|xpqr − xlmn| < ε whenever p ≥ l ≥ N, q ≥ m ≥ N, r ≥ n ≥ N

Definition 2.6. A triple sequence (xpqr) is said to be I−Cauchy sequence if for every ε > 0,

there exists N ∈ N such that

{(p, q, r) ∈ N× N× N : |xpqr − almn| ≥ ε} ∈ I

whenever p ≥ l ≥ N, q ≥ m ≥ N, r ≥ n ≥ N

Definition 2.7. [21, 22] A triple sequence (xpqr) is said to be bounded if there exists M > 0,

such that |xpqr| < M for all p, q, r ∈ N.

Definition 2.8. A triple sequence (xpqr) is said to be I−bounded if there exists M > 0, such

that {(p, q, r) ∈ N× N× N : |xpqr| ≥M} ∈ I for all p, q, r ∈ N.

Definition 2.9. A triple sequence space E is said to be solid if (αpqrxpqr) ∈ E whenever

(xpqr) ∈ E and for all sequences (αpqr) of scalars with |αpqr| ≤ 1, for all p, q, r ∈ N .

Definition 2.10. Let E be a triple sequence space and x = (xpqr) ∈ E. Define the set S(x)

as

S(x) =
{(
xπ(pqr)

)
: π is a permutations of N

}
If S(x) ⊆ E for all x ∈ E, then E is said to be symmetric.

Definition 2.11. A triple sequence space E is said to be convergence free if (ypqr) ∈ E

whenever (xpqr) ∈ E and xpqr = 0 implies ypqr = 0 for all p, q, r ∈ N.

Definition 2.12. A triple sequence space E is said to be sequence algebra if x · y ∈ E ,

whenever x = (xpqr) ∈ E and y = (ypqr) ∈ E, that is product of any two sequences is also in

the space.

Definition 2.13. (n-Normed Space) Let n ∈ N and X be a linear space over the field R
of reals of dimension d, where 2 ≤ d ≤ n. A real valued function ‖ ·, ..., · ‖ on Xn satisfying

the following four conditions:

(1) ‖x1, x2, ..., xn‖ = 0 if and only if x1, x2, ..., xn are linearly dependent in X;

(2) ‖x1, x2, ..., xn‖ is invariant under permutation;

(3) ‖αx1, x2, ..., xn‖ = |α|‖x1, x2, ..., xn‖ for any α ∈ R;
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(4) ‖x1 + x
′
1, x2, ..., xn‖ ≤ ‖x1, x2, ..., xn‖+ ‖x′1, x2, ..., xn‖;

is called an n-norm on X and (X, ‖ ·, ..., · ‖) is called an n−normed space over the field R.

For example (Rn, ‖ ·, ..., · ‖E) where

‖x1, x2, ..., xn‖E = the volume of the n-dimensional parallelopiped spanned by the vectors x1, x2, ..., xn

Which can also be written as

‖x1, x2, ..., xn‖E = | det(xij)|

where xi = (xi1, xi2, · · · , xin) ∈ Rn for each i = 1, 2, · · · , n. Let (X, ‖·, ..., ·‖) be an n−normed

space of dimension 2 ≤ n ≤ d and {a1, a2, · · · , an} be linearly independent set in X. Then

the following function ‖·, ..., ·‖∞ on Xn−1 defined by

‖x1, x2, ..., xn−1‖∞ = max{‖x1, x2, ..., xn−1, ai‖ : i = 1, 2, ..., n}

defines an (n− 1)-norm on X with respect to {a1, a2, ..., an}.
The standard n-norm on X, a real inner product space of dimension d ≤ n is as follows:

‖x1, x2, · · · , xn‖S =

∣∣∣∣∣∣∣∣
〈x1, x1〉 · · · 〈x1, xn〉

...
...

...
...

...

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣∣
1
2

where 〈·, ·〉 denotes the inner product on X. For n = 1 this n-norm is the usual norm

‖x‖ = 〈x1, x1〉
1
2 .

A sequence (xk) in a n-normed space (X, ‖·, ..., ·‖) is said to converge to some L ∈ X if

lim
k→∞
‖xk − L, z1, ..., zn−1‖ = 0 for every z1, ..., zn−1 ∈ X.

A sequence (xk) in a n-normed space (X, ‖·, ..., ·‖) is said to be Cauchy if

lim
k,p→∞

‖xk − xp, z1, ..., zn−1‖ = 0 for every z1, ..., zn−1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete

with respect to the n-norm. Any complete n-complete n-normed space is said to be n-Banach

space. The n-normed space has been studied in stretch [6, 19, 23].

Definition 2.14. (Modulus Function) A function f : [0,∞)→ [0,∞) is called a modulus

function if it satisfies the following conditions

(i) f(x) = 0 if and only if x = 0.

(ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0 and y ≥ 0.

(iii) f is increasing.

(iv) f is continuous from the right at 0.
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Since |f(x)−f(y)| ≤ f(|x−y|), it follows from condition (iv) that f is continuous on [0,∞).

Furthermore, from condition (2) we have f(nx) ≤ nf(x), for all n ∈ N, and so

f(x) = f
(
nx( 1

n
)
)
≤ nf

(
x
n

)
.

Hence 1
n
f(x) ≤ f(x

n
) for all n ∈ N

Let I be an admissible ideal, F = (fpqr) be a sequence of modulus functions and (X, ‖·, . . . , ·‖)
be a n-normed space. By ω

′′′
(n−X) we denote the space of all triple sequences defined over

(X, ‖·, . . . , ·‖). In the present paper we define the following sequence spaces

c3[F, ‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

fpqr (‖xpqr − L, z1, · · · , zn−1‖) ≥ ε, for some L ∈ C and z1, . . . , zn−1 ∈ X
}
∈ I
}

c30[F, ‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

fpqr (‖xpqr, z1, · · · , zn−1‖) ≥ ε, z1, . . . , zn−1 ∈ X
}
∈ I
}

`3∞[F, ‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∃ K > 0 such that

{
(p, q, r) ∈ N× N× N :

sup
p,q,r≥1

{fpqr (‖xpqr, z1, · · · , zn−1‖)} ≥ K, z1, . . . , zn−1 ∈ X
}
∈ I
}

and

M3[F, ‖·, . . . , ·‖]I = c3[F, ‖·, . . . , ·‖]I ∩ `3∞[F, ‖·, . . . , ·‖]I

M3
0 [F, ‖·, . . . , ·‖]I = c30[F, ‖·, . . . , ·‖]I ∩ `3∞[F, ‖·, . . . , ·‖]I

For F (x) = x we have

c3[‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

‖xpqr − L, z1, · · · , zn−1‖ ≥ ε, for some L ∈ C and z1, . . . , zn−1 ∈ X
}
∈ I
}

c30[‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∀ ε > 0, the set

{
(p, q, r) ∈ N× N× N :

‖xpqr, z1, · · · , zn−1‖ ≥ ε, z1, . . . , zn−1 ∈ X
}
∈ I
}

`3∞I [‖·, . . . , ·‖]I =

{
x = xpqr ∈ ω

′′′
(n−X) : ∃ K > 0 such that

{
(p, q, r) ∈ N× N× N :

sup
p,q,r≥1

(‖xpqr, z1, · · · , zn−1‖) ≥ K, z1, . . . , zn−1 ∈ X
}
∈ I
}
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and

M3[‖·, . . . , ·‖]I = c3[‖·, . . . , ·‖]I ∩ `3∞[‖·, . . . , ·‖]I

M3
0 [‖·, . . . , ·‖]I = c30[‖·, . . . , ·‖]I ∩ `3∞[‖·, . . . , ·‖]I

3. Algebraic and Topological Properties of the new Sequence spaces

Theorem 3.1. Let F = (fpqr) be a sequence of modulus functions then the triple sequence

spaces c30[F, ‖·, . . . , ·‖]I , c3[F, ‖·, . . . , ·‖]I , `3∞[F, ‖·, . . . , ·‖]I , M3[F, ‖·, . . . , ·‖]I and M3
0 [F, ‖·, . . . , ·‖]I

all linear over the field C of complex numbers.

Proof. We prove the result for the sequence space c3[z, ‖·, . . . , ·‖]I .
Let x = (xpqr), y = (ypqr) ∈ c3[z, ‖·, . . . , ·‖]I and α, β ∈ C, then there exist positive integers

mα and nβ such that |α| ≤ mα and |β| ≤ nβ, then for z1, z2, . . . , zn−1 ∈ X

I − lim fpqr (‖xpqr − L1, z1, . . . , zn−1‖) = 0, for some L1 ∈ C

I − lim fpqr (‖xpqr − L2, z1, . . . , zn−1‖) = 0, for some L2 ∈ C

Now for a given ε > 0 we set

C1 =
{

(p, q, r) ∈ N× N× N : fpqr(‖xpqr − L1, z1, . . . , zn−1‖) >
ε

2

}
∈ I (2.1)

C2 =
{

(p, q, r) ∈ N× N× N : fpqr(‖ypqr − L2, z1, . . . , zn−1‖) >
ε

2

}
∈ I (2.2)

Since fpqr is a modulus function, so it is non-decreasing and convex, hence we get

fpqr(‖(αxpqr + βypqr)−(αL1 + βL2), z1, . . . , zn−1‖)

= fpqr(‖(αxpqr − αL1) + (βypqr − βL2), z1, . . . , zn−1‖)

≤ fpqr(|α|‖xpqr − L1, z1, . . . , zn−1‖) + fpqr(|β|‖ypqr − L2, z1, . . . , zn−1‖)

= |α|fpqr(|xpqr − L1|) + |β|fpqr(|ypqr − L2|)

≤ mαfpqr(‖xpqr − L1, z1, . . . , zn−1‖) + nβfpqr(‖ypqr − L2, z1, . . . , zn−1‖)

From (2.1) and (2.2) we can write

{(p, q, r) ∈ N× N× N : fpqr(‖(αxpqr + βypqr)− (αL1 + βL2), z1, . . . , zn−1‖) > ε} ⊆ C1 ∪ C2

Thus αx+ βy ∈ c3[z, ‖·, . . . , ·‖]I .
Therefore c3[z, ‖·, . . . , ·‖]I is a linear space.

In the same way we can show that other spaces are linear as well. �
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Theorem 3.2. Let z = (fpqr) be a sequence of modulus functions then the inclusions

c30[z, ‖·, . . . , ·‖]I ⊂ c3[z, ‖·, . . . , ·‖]I ⊂ `3∞[z, ‖·, . . . , ·‖]I holds .

Proof. The inclusion c30[z, ‖·, . . . , ·‖]I ⊂ c3[z, ‖·, . . . , ·‖]I is obvious.

We prove c3[z, ‖·, . . . , ·‖]I ⊂ `3∞[z, ‖·, . . . , ·‖]I .
Let x = (xpqr) ∈ c3[z, ‖·, . . . , ·‖]I then there exists L ∈ C such that

I − lim fpqr(‖xpqr − L, z1, . . . , zn−1‖) = 0, z1, . . . , zn−1 ∈ X
Since z = (fpqr) is a sequence of modulus functions so

fpqr(‖xpqr, z1, . . . , zn−1‖) ≤ fpqr(‖xpqr − L, z1, . . . , zn−1‖) + fpqr(‖L, z1, . . . , zn−1‖)

On taking supremum over p, q and r on both sides gives x = (xpqr) ∈ `3∞[z, ‖·, . . . , ·‖]I

Hence the inclusion c30[z, ‖·, . . . , ·‖]I ⊂ c3[z, ‖·, . . . , ·‖]I

⊂ `3∞[z, ‖·, . . . , ·‖]I holds. �

Theorem 3.3. The triple sequence c30[z, ‖·, . . . , ·‖]I and M3
0 [z, ‖·, . . . , ·‖]I are solid.

Proof. We prove the result for c30[z, ‖·, . . . , ·‖]I .
Consider x = (xpqr) ∈ c30[z, ‖·, . . . , ·‖]I ,
then I − limp,q,r fpqr(‖xpqr, z1, . . . , zn−1‖) = 0

Consider a sequence of scalar (αpqr) such that |αpqr| ≤ 1 for all p, q, r ∈ N.

Then we have

I − lim
p,q,r

fpqr(|αpqr(xpqr), z1, . . . , zn−1‖) ≤ I − |αpqr| lim
p,q,r

fpqr(‖xpqr, z1, . . . , zn−1‖)

≤ I − lim
p,q,r

fpqr(‖xpqr, z1, . . . , zn−1‖)

= 0

Hence I − limp,q,r fpqr(‖αpqrxpqr, z1, . . . , zn−1‖) = 0 for all p, q, r ∈ N
Which gives (αpqrxpqr) ∈ c30[z, ‖·, . . . , ·‖]I

Hence the sequence space c30[z, ‖·, . . . , ·‖]I is solid.

The result for M3
0 [z, ‖·, . . . , ·‖]I can be similarly proved. �

Theorem 3.4. The triple sequence spaces c30[z, ‖·, . . . , ·‖]I , c3[z, ‖·, . . . , ·‖]I , `3∞[z, ‖·, . . . , ·‖]I

, M3[z, ‖·, . . . , ·‖]I and M3
0 [z, ‖·, . . . , ·‖]I are sequence algebras.

Proof. We prove the result for c30[z, ‖·, . . . , ·‖]I .
Let x = (xpqr), y = (ypqr) ∈ c30[z, ‖·, . . . , ·‖]I

Then we have I − lim fpqr(‖xpqr, z1, . . . , zn−1‖) = 0 and I − lim fpqr(‖xpqr, z1, . . . , zn−1‖) = 0

Using definition modulus functions we have I − lim fpqr(‖(xpqr · ypqr), z1, . . . , zn−1‖) = 0. It
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implies that x · y ∈ c30[z, ‖·, . . . , ·‖]I

The result can be proved for the spaces c3[z, ‖·, . . . , ·‖]I , `3∞[z, ‖·, . . . , ·‖]I , M3[z, ‖·, . . . , ·‖]I

and M3
0 [z, ‖·, . . . , ·‖]I in the same way. �

Theorem 3.5. In general the sequence spacesc30[z, ‖·, . . . , ·‖]I , c3[z, ‖·, . . . , ·‖]I and `3∞[z, ‖·, . . . , ·‖]I

are not convergence free.

Proof. We prove the result for the sequence space c3I [z, ‖·, . . . , ·‖]I using an example.

Example: Let I = If define the triple sequence x = (xpqr) as

xpqr =

{
0 if p = q = r

1 otherwise

Then if fpqr(x) = xpqr ∀ p, q, r ∈ N, we have x = (xpqr) ∈ c3[z, ‖·, . . . , ·‖]I .
Now define the sequence y = ypqr as

ypqr =

{
0 if r is odd , and p, q ∈ N
lmn otherwise

Then for fpqr(x) = xpqr ∀ p, q, r ∈ N, it is clear that y = (ypqr) 6∈ c3[z, ‖·, . . . , ·‖]I

Hence the sequence spaces c3[z, ‖·, . . . , ·‖]I is not convergence free.

The space c3[z, ‖·, . . . , ·‖]I and `3∞[z, ‖·, . . . , ·‖]I are not convergence free in general can be

proved in the same fashion. �

Theorem 3.6. In general the triple sequences c30[z, ‖·, . . . , ·‖]I and c3[z, ‖·, . . . , ·‖]I are not

symmetric if I is neither maximal nor I = If .

Proof. We prove the result for the sequence space c30[z, ‖·, . . . , ·‖]I using an example.

Example: Define the triple sequence x = (xpqr) as

xpqr =

{
0 if r = 1, for all p, q ∈ N
1 otherwise

Then if fpqr(x) = xpqr ∀ p, q, r ∈ N, we have x = (xpqr) ∈ c30[z, ‖·, . . . , ·‖]I .
Now if xπ(pqr) be a rearrangement of x = (xpqr) defined as

xπ(pqr) =

{
1 for p, q, r even ∈ K
0 otherwise

Then {xπ(p,q,r)} 6∈ c30[z, ‖·, . . . , ·‖]I as xπ(pqr) = 1

Hence the sequence spaces c30[z, ‖·, . . . , ·‖]I is not symmetric in general.

The space c3[z, ‖·, . . . , ·‖]I is not symmetric in general can be proved in the same fashion. �
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Theorem 3.7. Let F = (fpqr) and G = (gpqr) be two sequences of modulus functions. Then

T 3[F, ‖·, . . . , ·‖]I ∩ T 3[G, ‖·, . . . , ·‖]I ⊆ T 3[F +G, ‖·, . . . , ·‖]I

where T = c, c0, or `∞

Proof. We prove the result for T = `∞. Let x = (xijk) ∈ `3∞[F, ‖·, . . . , ·‖]I∩`3∞[G, ‖·, . . . , ·‖]I .
Then for z1, . . . , zn−1 ∈ X we have{

(p, q, r) ∈ N× N× N : sup
p,q,r≥1

{fpqr (‖xpqr, z1, · · · , zn−1‖)} ≥ K1

}
∈ I for some K1 > 0

and{
(p, q, r) ∈ N× N× N : sup

p,q,r≥1
{gpqr (‖xpqr, z1, · · · , zn−1‖)} ≥ K2

}
∈ I for some K2 > 0

Now since

sup
p,q,r≥1

{
(fpqr + gpqr) (‖xpqr, z1, · · · , zn−1‖)

}
= sup

p,q,r≥1

{
fpqr (‖xpqr, z1, · · · , zn−1‖) + gpqr (‖xpqr, z1, · · · , zn−1‖)

}

≤ sup
p,q,r≥1

{
fpqr (‖xpqr, z1, · · · , zn−1‖)

}
+ sup

p,q,r≥1

{
gpqr (‖xpqr, z1, · · · , zn−1‖)

}

Hence for K = max{K1, K2} we have{
(p, q, r) ∈ N× N× N : sup

p,q,r≥1

{
(fpqr + gpqr) (‖xpqr, z1, · · · , zn−1‖)

}
≥ K

}
∈ I

Therefore x ∈ `3∞[F +G, ‖·, . . . , ·‖]I .
Hence

`3∞[F, ‖·, . . . , ·‖]I ∩ `3∞[G, ‖·, . . . , ·‖]I ⊆ `3∞[F +G, ‖·, . . . , ·‖]I

In the same way the inclusion for T = c, c0 can be proved. �
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