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PROPERTIES OF MEROMORPHIC SOLUTIONS OF NONLINEAR DIFFERENCE EQUATION
w(z + 1)w(z − 1) = h(z)wm(z)
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Abstract. In this paper, we mainly deal with the properties of meromorphic solutions of the nonlinear difference
equation of the form

w(z + 1)w(z − 1) = h(z)wm(z), (∗)

where h(z) is a nonzero rational function andm = ±2,±1, 0. It is shown that the admissible meromorphic solution
w(z) of the equation (∗) satisfies ρ(w) ≥ 1. The relationship of the exponents of convergence of zeros and poles of
difference and divided difference to the order of growth of w(z) is also given when h(z) is a non-polynomial rational
function.
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1. Introduction.

Throughout this paper, for a meromorphic function w(z), we use standard notations of the Nevanlinna theory
of meromorphic functions such as T (r, w), m(r, w) and N(r, w) ( see e.g. [9, 11, 17]) and denote the order of
growth of w(z), the hyper order of w(z), the exponent of convergence of the zeros of w(z) and the exponent of
convergence of the poles of w(z) by ρ(w), ρ2(w), λ(w), λ(1/w), respectively, and define them as follows:

ρ(w) = lim sup
r→∞

log T (r, w)

log r
, ρ2(w) = lim sup

r→∞

log log T (r, w)

log r
,

λ(w) = lim sup
r→∞

logN(r, 1/w)

log r
, λ(1/f) = lim sup

r→∞

logN(r, w)

log r
.

We say a(z) is a small functionwith respect tow(z) if T (r, a) = S(r, w), where S(r, w) = o(T (r, w)), as r → +∞

outside of a possible exceptional set of finite logarithmic measure, and say an equation admits an “admissible
solution" w(z) if all its coefficients are small functions with respect to w(z).

Furthermore, we need some notations on differences. Let η be a nonzero complex constant and let w(z) be
a meromorphic function. We use the notation ∆n

ηw(z) to denote the difference operators of w(z), which are
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defined by

∆ηw(z) = w(z + η)− w(z) and ∆n
cw(z) = ∆n−1

η (∆ηw(z)), n ∈ N, n ≥ 2.

In particular, if η = 1, we denote ∆ηw = ∆ηw(z) = ∆w(z) = ∆w.
Since the application of the classical Nevanlinna theory to difference equations by Ablowitz et al. [1] in 2000,

meromorphic solutions of complex difference equations have been a hot topic recently (see e.g. [3–8,10,12–15,18,
19]. Lots of results on the existence, value distribution and growth of meromorphic solutions of kinds of linear
and non-linear difference equations are proved.

One of the most important and creative results in this direction can be found in [7] which was given by
Halburd and Korhonen. In fact, they considered the following difference equation

(1.1) w(z + 1) + w(z − 1) = R(z, w),

where R(z, w) is rational in w and meromorphic in z, and proved that if (1.1) has an admissible meromorphic
solution of finite order, then either w satisfies a difference Riccati equation or (1.1) can be transformed into a
linear difference equation or difference Painlevé I, II equations.

The other important result is about the difference Painlevé III equations given by Ronkainen in [15]. He
showed that if the equation

(1.2) w(z + 1)w(z − 1) = R(z, w)

has an admissible meromorphic solution w of hyper order less than one, whereR(z, w) is rational and irreducible
in w and meromorphic in z, then either w satisfies a difference Riccati equation or (1.2) can be transformed into
difference Painlevé III equations. In this paper, we consider the following nonlinear difference equation of the
form

(1.3) w(z + 1)w(z − 1) = h(z)wm(z),

where h(z) is a nonzero rational function andm = ±2,±1, 0. This equation comes from the family of Painlevé III
equations by Ronkainen’s classification.

Concerning on the value distribution and growth of meromorphic solutions of the equations (1.3), Zhang and
Yang [18] and Zhang and Yi [19] gave numbers of results for the case that all coefficients are constants, which
were improved into the case that all coefficients are rational functions by Lan and Chen [13,14]. We recall three
results as follows.

Theorem A ( [18]). If w(z) is a nonconstant meromorphic solution with finite order of (1.3), wherem = −2,−1, 0, 1

and h(z) is a nonzero constant, then

(i) w(z) cannot be a rational function;

(ii) λ(1/w) = λ(w) = ρ(w).

Theorem B ( [18]). If w(z) is a nonconstant meromorphic solution with finite order of (1.3), wherem = 2 and h(z) is a

nonzero constant, then

(i) w(z) has no nonzero Nevanlinna exceptional value;
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(ii) w(z) cannot be a rational function.

Theorem C ( [13]). Suppose that h(z) is a nonconstant rational function. If w(z) is a transcendental meromorphic

solution with finite order of (1.3), wherem = −2,−1, 0, 1, then

(i) w(z) has no Nevanlinna exceptional value;

(ii) λ(∆w) = λ(1/∆w) = ρ(w), λ(∆w/w) = λ(w/∆w) = ρ(w).

Remark 1. Examples to show the existences of moromorphic solutions of (1.3), can be found in [13, 18]. In
particular, Zhang and Yang [18] gave an example for the casem = 2 and h(z) is a nonzero constant such that
w(z) has two Picard exceptional values z = 0,∞. From their example, we get the following example in which
h(z) is a rational function.

Example 1. w(z) = zez satisfies the equation

w(z + 1)w(z − 1) =
z2 − 1

z2
w2(z),

and ∆w = (ez+ e− z)ez, 1/∆w = 1/(ez+ e− z)ez,∆w/w = (ez+ e− z)/z and w/∆w = z/(ez+ e− z) have the
same Nevanlinna exceptional values z = 0,∞. This indicates that the conclusion in Theorem 1 does not always
hold for the casem = 2.

Remark 2. Looking into the proofs of Theorem 1 in [18] and Theorem 1 in [13], we can see that if w(z) is a
nonconstant meromorphic solution of (1.3) with finite order, where m = −2,−1, 0, 1 and h(z) is a nonzero
constant, then λ(1/w) = λ(w) = λ(1/∆w) = λ(w/∆w) = ρ(w). However, we still wonder whether λ(∆w) =

λ(∆w/w) = ρ(w) holds or not.

Considering Remarks 1 and 2, we ask the following two questions:
Question 1. What can we say about ρ(w) in Theorems B and C?
Question 2. When does λ(∆w) = λ(1/∆w) = λ(∆w/w) = λ(w/∆w) = ρ(w) hold for the nonconstant finite

order meromorphic solution w(z) of (1.3), wherem = −2,−1, 0, 1 and h(z) is a nonzero constant or wherem = 2

and h(z) is a nonzero rational function?
We will give some lemmas in the next section, and then consider the Question 1 and Question 2 in the section

3 and section 4 respectively.

2. Lemmas

Lemma 2.1 ( [3]). Let w(z) be a meromorphic function of finite order ρ, ε be a positive constant, η be a nonzero complex

constant. Then
N(r, w(z + η)) ≤ N(r, w(z)) +O(rρ−1+ε) +O(log r),

T (r, w(z + η)) ≤ T (r, w(z)) +O(rρ−1+ε) +O(log r).

The lemma below is Hadamard’s factorization Theorem of meromorphic function which can be found in [16].

Lemma 2.2 ( [16]). Let w(z) be a meromorphic function of finite order ρ. If

w(z) = ckz
k + ck+1z

k+1 + · · · (ck 6= 0, k ∈ Z)
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near z = 0. Then we write w(z) as follows

w(z) = zk
P1(z)

P2(z)
eQ(z),

where P1(z), P2(z) are entire functions and the canonical products of w formed with the non-null zeros and poles of

w, respectively, such that ρ(P1) = λ(P1) = λ(w), ρ(P2) = λ(P2) = λ(1/w), and Q(z) is a polynomial such that

degQ(z) = q ≤ ρ.

Considering the question 2, we need to denote Ê1(r, w) = {z ∈ C|w(z + 1) = w(z) = 0, w(z + 1)/w(z) 6= 1}

and the corresponding counting function by N̂1(r, w), and use the following lemma.

Lemma 2.3. Suppose that w(z) is a nonconstant meromorphic function with finite order such that ∆w 6≡ 0. Then

(i) λ(1/∆w) ≤ λ(1/w), λ(w/∆w) ≤ max{λ(w), λ(1/w)},max{λ(∆w/w), λ(∆w)} ≤ ρ(w);

(ii) λ(∆w/w) = ρ(w)⇒ λ(∆w) = ρ(w), and if N̂1(r, w) = S(r, w), then λ(∆w) = ρ(w)⇒ λ(∆w/w) = ρ(w).

Proof. (i) Since w(z) is a nonconstant meromorphic function such that ρ(w) = ρ <∞, we get from lemma 2.1
that

N(r,∆w) = N(r, w(z + 1)− w(z))

≤ N(r, w(z + 1)) +N(r, w(z)) ≤ 2N(r, w(z) +O(rρ−1+ε) +O(log r).

This means that λ(1/∆w) ≤ λ(1/w).

N(r,∆w/w) = N(r, w(z + 1)/w(z)− 1) ≤ N(r, w(z + 1)) +N(r, 1/w(z)) +O(1)

≤ N(r, w(z)) +N(r, 1/w(z)) +O(rρ−1+ε) +O(log r).

This gives that λ(w/∆w) ≤ max{λ(w), λ(1/w)}.
From Lemma 2.1, we have

T (r, w/∆w) = T (r,∆w/w) +O(1) = T (r, w(z + 1)/w(z)− 1) +O(1)

≤ T (r, w(z + 1)) + T (r, w(z)) +O(1) ≤ 2T (r, w(z)) +O(rρ−1+ε) +O(log r).

which means that ρ(w/∆w) = ρ(∆w/w) ≤ ρ(w) = ρ. Thus, max{λ(∆w/w), λ(∆w)} ≤ ρ(w).
(ii) Suppose that λ(∆w/w) = ρ(w). Since λ(∆w) ≤ ρ(∆w) ≤ ρ(w), if λ(∆w) 6= ρ(w), then 0 ≤ λ(∆w) < ρ(w),

and there are at most S(r, w) many points such that

(2.1) ∆w(z) = w(z + 1)− w(z) = 0.

Therefore, there are at most S(r, w) many points such that

(2.2) ∆w(z)

w(z)
=
w(z + 1)

w(z)
− 1 = 0.

which means that λ(∆w/w) < ρ(w). This contradicts to λ(∆w/w) = ρ(w). Thus, λ(∆w) = ρ(w).
Now suppose that N̂1(r, w) = S(r, w) and λ(∆w) = ρ(w). Similarly, if λ(∆w/w) 6= ρ(w), then 0 ≤ λ(∆w/w) <

ρ(w), and there are at most S(r, w) many points satisfy (2.2).
Denote

E(r,∆w) = {|z| ≤ r|∆w(z) = 0},

E0(r,∆w) = {|z| ≤ r|w(z + 1) = w(z) = 0},
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Ec(r,∆w) = {|z| ≤ r|w(z + 1) = w(z) = c, c ∈ C \ {0}},

E∞(r,∆w) = {|z| ≤ r|∆w = 0, w(z + 1) = w(z) =∞}.

Then E(r,∆w) = E0(r,∆w) ∪ Ec(r,∆w) ∪ E∞(r,∆w).

Obviously, all points in Ec(r,∆w) ∪ E∞(r,∆w) must satisfy (2.2) and hence Ec(r,∆w) ∪ E∞(r,∆w) consists
of at most S(r, w) many points. On the other hand, each point of E0(r,∆w) is a point of E1(r, w) or satisfies
(2.2). Since N̂1(r, w) = S(r, w), there are at most S(r, w) many points in E0(r,∆w). To sum up, there are at most
S(r, w) many points in E(r,∆w). This indicates that λ(∆w) < ρ(w). This contradicts to λ(∆w) = ρ(w). Thus,
λ(∆w/w) = ρ(w).

The following lemma was proved by Chiang and Feng [3] and by Halburd and Korhonen [4] independently,
and plays a very important role in studying the difference analogues of Nevanlinna theory and difference
equations.

Lemma 2.4 ( [3, 4]). Let w(z) be a meromorphic function of finite order ρ(w) = ρ, ε be a positive constant, η1 and η2 be

two distinct nonzero complex constants. Then

m
(
r,
w(z + η1)

w(z + η2)

)
= O(rρ−1+ε).

3. Results on the Question 1

Theorem 3.1. Suppose that h(z) is a nonzero rational function. If w(z) is a nonconstant meromorphic solution of (1.3),

then ρ(w) ≥ 1.

Proof. Suppose that w(z) is a nonconstant meromorphic solution of (1.3). If ρ(w) =∞, our conclusion holds.
Therefore, we assume that ρ(w) <∞, and discuss case by case in the following.

Case 1: m = 0. Now (1.3) is of the form

w(z + 1)w(z − 1) = h(z),

which gives

(3.1) w(z + 4)

w(z)
=
h(z + 3)

h(z + 1)
:= R1(z).

Subcase 1.1: h(z) ≡ c1 6= 0. Then from (3.1), we see that w(z + 4) = w(z), which means that w(z) is a
nonconstant periodic function of period 4. Thus ρ(w) = ρ ≥ 1.

Subcase 1.2: h(z) is a nonconstant rational function. Then log r = O(T (r, h)). Since every rational function f
satisfies T (r, w) = O(log r) and h ∈ S(w), w(z) must be a transcendental meromorphic function. Therefore, from
Theorem C, w(z) has infinitely many poles and zeros. Notice that R1(z) in (3.1) is a rational function. There
exists some r0 > 0 such that all zeros and poles of R1(z) belong to the disk |z| < r0. Choose a zero of w(z),
denoted by z0, such that |z0| > r0 +4. Then |z0±4| > |z0|−4 > r0 and hence w(z0±4) = 0. If |z0 +4| ≥ |z0| > r0,
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then for all k ∈ N, zk = z0 + 4k is a zero of w(z). If |z0 + 4| < |z0|, then for all k ∈ N, zk = z0 − 4k is a zero of
w(z). As a result, we see that

ρ(w) ≥ λ(w) = lim sup
r→∞

logN(r, 1/w)

log r
≥ lim sup

k→∞

logN(4k, 1/w)

log(4k + |z0|)
= 1.

Case 2: m = −1. Now (1.3) is of the form

w(z + 1)w(z − 1)w(z) = h(z),

which gives

w(z + 3)

w(z)
=
h(z + 2)

h(z + 1)
:= R2(z).

Similarly, we can prove that ρ(w) = ρ ≥ 1.
Case 3: m = −2. Now (1.3) is of the form

w(z + 1)w(z − 1)w2(z) = h(z),

which gives
w(z + 3)w(z + 2)

w(z + 1)w(z)
=
h(z + 2)

h(z + 1)
.

Set u(z) = w(z + 1)w(z), then on one hand, we get from the equation above that

(3.2) u(z + 2)

u(z)
=
h(z + 2)

h(z + 1)
:= R3(z).

On the other hand, from Lemma 2.1, we obtain

T (r, u) = T (r, w(z + 1)w(z)) ≤ T (r, w(z + 1) + T (r, w(z)) ≤ 2T (r, w) + S(r, w),

which means that ρ(w) ≥ ρ(u).
Subcase 3.1: h(z) ≡ c2 6= 0. Then from (3.2), we see that u(z + 2) = u(z) 6= 0. This indicates that u(z) is a

nonzero periodic function of period 2.
If u(z) ≡ c3 6= 0, then w(z + 1)w(z) ≡ c3 6= 0. From Theorem A, w(z) has infinitely many zeros and poles.

Suppose that w(z1) = 0. Then we can deduce from w(z + 1)w(z) = u(z) ≡ c3 6= 0 that for all k ∈ Z, zk = z1 + 2k

is a zero of w(z) while zk = z1 + 2k + 1 is a pole of w(z). This yields that

ρ(w) ≥ λ(w) = lim sup
r→∞

logN(r, 1/w)

log r
≥ lim sup

k→∞

logN(2k, 1/w)

log(2k + |z1|)
= 1.

If u(z) is a nonconstant periodic function of period 2. Then we obtain ρ(w) = ρ ≥ ρ(u) ≥ 1 immediately.
Subcase 3.2: h(z) is a nonconstant rational function. With a similar arguing as in the subcase 1.2, we see that

w(z) has infinitely many poles and zeros.
If u(z) has finitely many zeros and poles, with a similar method as in the subcase 1.2, we can choose a zero

of w(z), denoted by z2, such that for k ∈ N, u(z2 + k) 6= 0,∞ or u(z2 − k) 6= 0,∞. Then we can deduce from
u(z) = w(z + 1)w(z) that for all k ∈ N, zk = z2 + 2k is a zero of w(z) while zk = z2 + 2k + 1 is a pole of w(z), or
zk = z2 − 2k is a zero of w(z) while zk = z2 − 2k − 1 is a pole of w(z). This yields that

ρ(w) ≥ λ(w) = lim sup
r→∞

logN(r, 1/w)

log r
≥ lim sup

k→∞

logN(2k, 1/w)

log(2k + |z2|)
= 1.
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If u(z) has infinitely many zeros or poles. We may assume that u(z) has infinitely many poles. Then we can
choose a pole of u(z), denoted by z3, such that for k ∈ N, R3(z3 + 2k) 6= 0,∞, or R3(z3 − 2k) 6= 0,∞. Then we
can deduce from (3.2) that for all k ∈ N, zk = z3 + 2k is a pole of u(z), or zk = z3 − 2k is a pole of u(z). This
yields that

ρ(u) ≥ λ(1/u) = lim sup
r→∞

logN(r, u)

log r
≥ lim sup

k→∞

logN(2k, u)

log(2k + |z3|)
= 1.

And hence ρ(w) = ρ ≥ ρ(u) ≥ 1.
Case 4: m = 1. Now (1.3) is of the form

w(z + 1)w(z − 1) = h(z)w(z),

which gives
w(z + 3)w(z) = h(z + 2)h(z + 1).

Subcase 4.1: h(z) ≡ c4 6= 0. With a similar reasoning as in the subcase 3.1, we can get ρ(w) = ρ ≥ 1.
Subcase 4.2: h(z) is a nonconstant rational function. With a similar reasoning as in the subcase 3.2, we can get

ρ(w) = ρ ≥ 1.
Case 5: m = 2. Now (1.3) is of the form

(3.3) w(z + 1)w(z − 1)

w2(z)
= h(z).

Subcase 5.1: h(z) ≡ c5 6= 0. From Theorem 1, w(z) is a transcendental meromorphic function. If w(z) has
no zeros and poles, then w(z) = eQ1(z), where Q1(z) is a nonconstant polynomial. Hence ρ(w) = ρ(eQ1) ≥ 1.
Otherwise, w(z) has at least one pole or zero.

Suppose that w(z) has a pole, denoted by z4, with multiplicity k0, then from (3.3), one can find that either
z4 + 1 or z4 − 1 is a pole of w(z). Without loss of generality, assume that z4 + 1 is a pole of w(z) with multiplicity
k1 ≥ 1. We should discuss two cases as follows: case (i): k1 ≥ k0; case (ii): k1 < k0.

Case (i): k1 ≥ k0. Then from (3.3), z4 + 2 is a pole of w(z) with multiplicity k2 = 2k1 − k0 ≥ k1 ≥ k0. By
induction, we can easily prove that for all l ∈ N, z4 + l is a pole of w(z) with multiplicity kl ≥ k0, and hence
ρ(w) ≥ λ(1/w) ≥ 1.

Case (ii): k1 < k0. Then from (3.3), z4−1 is a pole ofw(z) with multiplicity k−1 = 2k0−k1 > k0. Similarly, we
can easily prove that for all l ∈ N, z4− l is a pole ofw(z) with multiplicity k−1 ≥ k0, and hence ρ(w) ≥ λ(1/w) ≥ 1.

Suppose that w(z) has a zero. With a similar reasoning above, we can prove that ρ(w) ≥ λ(w) ≥ 1.
Subcase 5.2: h(z) is a nonconstant rational function. As reasoning in the subcase 1.2, we see that w(z) is a

transcendental meromorphic function. Applying Lemma 2.2, we can write w(z) as the form

(3.4) w(z) = zk
P1(z)

P2(z)
eQ(z),

where P1(z), P2(z) are entire functions and the canonical products of w formed with the non-null zeros and
poles of w, respectively, such that ρ(P1) = λ(P1) = λ(w), ρ(P2) = λ(P2) = λ(1/w), and Q(z) is a polynomial
such that degQ(z) = q ≤ ρ.

Suppose that w(z) has finitely many zeros and poles. Then both P1(z) and P2(z) are polynomials, and Q(z)

must be a nonconstant polynomial.This yields that ρ(w) = ρ(eQ) ≥ 1.
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Suppose that w(z) has infinitely many zeros or poles. Note that h(z) has finitely many zeros and poles, and
we can prove that either ρ(w) ≥ λ(1/w) ≥ 1 or ρ(w) ≥ λ(w) ≥ 1 by using the same ideas in the subcase 1.2 and
subcase 5.1.

Combining Theorem A and Theorem 3.1, we get

Corollary 3.1. Suppose that h(z) is a nonconstant rational function. If w(z) is a nonconstant meromorphic solution with

finite order of (1.3), wherem = −2,−1, 0, 1, then λ(w) = λ(1/w) = λ(∆w) = λ(1/∆w) = λ(∆w/w) = λ(w/∆w) =

ρ(w) ≥ 1.

4. Results on the Question 2

Theorem 4.1. If w(z) is a nonconstant meromorphic solution with finite order of (1.3), wherem = −2,−1, 0, 1 and h(z)

is a nonzero constant, then

(i) λ(1/w) = λ(w) = λ(1/∆w) = λ(w/∆w) = ρ(w) ≥ 1;

(ii) λ(∆w/w) = ρ(w)⇒ λ(∆w) = ρ(w), and if N̂1(r, w) = S(r, w), then λ(∆w) = ρ(w)⇒ λ(∆w/w) = ρ(w).

Remark 3. We are sorry that we fail to prove that λ(∆w/w) = λ(∆w) = ρ(w) or negate it with some counterex-
amples directly. For the proof of Theorem 4.1, from Theorem A, Theorem 3.1 and Lemma 2.3, we only need to
prove that λ(1/∆w) = λ(w/∆w) = ρ(w). However, since the idea to prove it is mainly due to [13], all details are
omitted here.

Theorem 4.2. If w(z) is a nonconstant meromorphic solution with finite order of (1.3), wherem = 2 and h(z) is a nonzero

constant, then

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

More precisely, one or the following case holds:

(i) w(z) has no zeros and poles, ρ(w) ∈ {1, 2} and

λ(∆w) = λ(∆w/w) = ρ(w)− 1.

(ii) w(z) has at least one pole but no zeros, and

max{λ(1/∆w), λ(∆w/w)} ≥ ρ(w)− 1.

(iii) w(z) has at least one zero but no poles, and

max{λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

(iv) w(z) has at least one zero and at least one pole, and

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

Proof. We will use (3.3) and (3.4) by writing h(z) = h 6= 0 and denoting

(4.1) Q1(z) = Q(z + 1) +Q(z − 1)− 2Q(z)
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and d = degQ(z), d1 = degQ1(z). With a simple calculation, we can see that: (i) d = 0, 1, 2 ⇒ d1 = 0; (ii)
d ≥ 3⇒ d1 = d− 2. We discuss case by case in the following.

Case 1: w(z) has no zeros and poles. Then λ(w) = λ(1/w) = 0. From (3.4), w(z) = eQ(z), where Q(z) is a
nonconstant polynomial. Submitting it and (4.1) into (3.3), we obtain

eQ1(z) = h.

Since h is a constant, Q1(z) must be a constant. This indicates that Q(z) must be of degree degQ(z) ∈ {1, 2}.

Thus ρ(w) ∈ {1, 2}.

Notice that
∆w(z) = (eQ(z+1)−Q(z) − 1)eQ(z), ∆w(z)/w(z) = eQ(z+1)−Q(z) − 1.

We can deduce that λ(∆w) = λ(∆w/w) = d− 1 = ρ(w)− 1.
Case 2: w(z) has at least one pole but no zeros. Then λ(w) = 0. From (4.4), w(z) = zkeQ(z)/P2(z), whereQ(z)

is a polynomial.Submitting it and (4.1) into (3.3), we get

(4.2) (z + 1)k(z − 1)kP 2
2 (z)

z2kP2(z + 1)P2(z − 1)
= he−Q1(z).

This implies that P2(z) = 0⇔ P2(z + 1) = 0⇔ P2(z − 1) = 0 except S(r, P2) many points. Keep in mind that

∆w(z) =
(z + 1)kP2(z)eQ(z+1)−Q(z) − zkP2(z + 1)

P2(z)P2(z + 1)
eQ(z),

w(z)

∆w(z)
=

zkP2(z + 1)

(z + 1)kP2(z)eQ(z+1)−Q(z) − zkP2(z + 1)
.

Obviously, each pole of ∆w(z) must be a zero of P2(z) or P2(z + 1), and N(r,∆w/w) ≤ N(r,∆w).
If λ(1/∆w) < λ(P2), then N(r,∆w) = S(r, P2) and hence

N(r, 1/P2) = N(r, w) ≤ N(r,∆w) +N(r, w/∆w) = N(r, w/∆w) + S(r, P2),

which yields that λ(∆w/w) ≥ λ(P2). Therefore,

(4.3) max{λ(1/∆w), λ(∆w/w)} ≥ λ(P2)

always holds.
By lemma 2.4, for any given ε > 0, we have

(4.4)
T (r, e−Q1(z)) = m(r, e−Q1(z))

= m

(
r,

(z + 1)k(z − 1)kP 2
2 (z)

z2kP2(z + 1)P2(z − 1)

)
= O(rρ(P2)−1+ε).

Noting now from (4.4), if d = 0, 1, then ρ(P2) ≥ 1; if d ≥ 2, then ρ(P2) ≥ d− 1. Therefore,
If d = 0, 1, then ρ(P2) = ρ(w). By lemma 2.3, we get from (4.3) that

max{λ(1/∆w), λ(∆w/w)} = λ(P2) = ρ(P2) = ρ(w).

If d ≥ 2, then ρ(w) = max{d, ρ(P2)}. Since ρ(P2) ≥ d− 1, we get

(4.5) max{λ(1/∆w), λ(∆w/w)} ≥ λ(P2) ≥ ρ(w)− 1.
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Case 3: w(z) has at least one zero but no poles. Then with a similar arguing as in the above case 2, we can get

max{λ(∆w), λ(w/∆w)} ≥ λ(P1) ≥ ρ(w)− 1.

Case 4: w(z) has at least one zero and one pole. Turn back to the subcase 5.1 in the proof Theorem 3.1, we
see that w(z) must have infinitely many zeros and poles such that ρ(P1) = λ(P1) = λ(w) ≥ 1, ρ(P2) = λ(P2) =

λ(1/w) ≥ 1. From (3.3) and (4.1), we have

(4.6) (z + 1)k(z − 1)kP 2
2 (z)P1(z + 1)P1(z − 1)

z2kP 2
1 (z)P2(z + 1)P2(z − 1)

= he−Q1(z).

Set ρ1,2 = max{ρ(P1), ρ(P2)}. Applying Lemma 2.4, we see that

T (r, e−Q1(z)) = m(r, e−Q1(z))

= m

(
r,

(z + 1)k(z − 1)kP 2
2 (z)P1(z + 1)P1(z − 1)

z2kP 2
1 (z)P2(z + 1)P2(z − 1)

)
= O(rρ1,2−1+ε).

Thus, if d = 0, 1, then

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} = ρ1,2 = ρ(w).

If d ≥ 2, then ρ(w) = max{d, ρ1,2}. Since ρ1,2 ≥ d− 1, we get

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} ≥ ρ1,2 ≥ ρ(w)− 1.

Theorem 4.3. If w(z) is a nonconstant meromorphic solution with finite order of (1.3), where m = 2 and h(z) is a

nonconstant rational function, then

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

More precisely, one or the following case holds:

(i) w(z) has finitely many zeros and finitely many poles, ρ(w) ∈ {1, 2} and

λ(∆w) = λ(∆w/w) = ρ(w)− 1.

(ii) w(z) has finitely many zeros and infinitely many poles, and

max{λ(1/∆w), λ(∆w/w)} ≥ ρ(w)− 1.

(iii) w(z) has infinitely many zeros and finitely many poles, and

max{λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

(iv) w(z) has infinitely many zeros and infinitely many poles, and

max{λ(1/∆w), λ(∆w/w), λ(∆w), λ(w/∆w)} ≥ ρ(w)− 1.

Remark 4. We omit the proof of Theorem 4.3 because it is quite similar as the proof of Theorem 4.2.
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Example 2. (1) w1(z) = ez
2

, w2(z) = ez
2

/ sin(πz), w3(z) = sin(πz)ez
2

, w4(z) = ez
2

tan(πz) satisfy the equation

w(z + 1)w(z − 1) = e2w2(z)

and the conclusion (i)-(iv) in Theorem 4.2 respectively.
(2) w1(z) = zez

2

, w2(z) = zez
2

/ sin(πz), w3(z) = z sin(πz)ez
2

, w4(z) = zez
2

tan(πz) satisfy the equation

w(z + 1)w(z − 1) = e2
z2 − 1

z2
w2(z)

and the conclusion (i)-(iv) in Theorem 4.3 respectively.

Remark 5. In the examples above, h(z) is either a nonzero constant or a non-polynomial rational function. We
try hard but fail to give corresponding example with a nonconstant polynomial.
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