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Abstract. A dynamic Cournot oligopoly game, with hyperbolic demand and cubic cost, is
proposed. The main aim of this work is to consider the aforementioned problem under a
dynamical capital stock constraint (Ramsey’s model). We first investigate the existence and
uniqueness of optimal solution. Second we prove that the proposed model has two equilibria
(Ramsey’s and Nash equilibria). Finally, we study the stability of these equilibrium points
and their topological classifications. Phase diagrams are established to illustrate our analytical
results.
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1. Introduction

Interactions between companies can be conducted through quantities (competition in quan-
tities) or prices (price competition). These companies may also try to cooperate to deal with
monopoly status. In general, oligopolistic models allow companies to evaluate their strategies
theoretically before they are implemented in order to achieve their goals [1–3]. In particular,
in [4] Cournot’s oligopolistic models are often used to increase the profits of companies com-
peting in price and / or quantity as much as possible. In these models, companies compete
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with their production volumes. In this case, each company, at the same time independently of
its competitors, produces its own quantity. This quantity is achieved by knowing the structure
of the market (number of competitors) and the demand function, taking into account the
dynamical capital stock constraint (Ramsey’s model).
The existing literature in this field designs an ideal model for capital stock as a status variable
and quantities as control variables, we may cite, for instance, the models [6–8, 12]. All the
methods mentioned above, propose models with linear or semilinear demand and cost curves,
in addition to simplifying calculations and ease of treatment, also ensures existence of optimal
solution and the equilibrium, which, in general, is not obvious in the presence of non-linear
demand and cost curves [16]. In Industrial Organization, researchers mention the opportunity
of dealing with non-linear demand and cost curves. For instance in oligopoly market, the
demand for a commodity becomes unitary elastic when the percentage change in the quantity
demanded is equal to the percentage change in price. In this case, the numerical value of
unitary elastic demand is exactly one and the demand curve is a hyperbolic function [17,18].
On the other hand, [13,15] explain that declining average cost throughout the relevant range of
outputs is an indicator that the cost function is subadditive. What this requires, however, is that
the marginal cost also declines throughout a subset of this range of outputs. And necessary for
this is a twice-differentiable cost function, which yields the appropriately shaped average and
marginal cost curves. A cubic function has a very flexible specification for modelling total cost,
what it is allowed to yield the appropriately shaped average and marginal cost curves [9, 14].
In this paper, we propose a dynamic oligopoly model with hyperbolic demand, cubic cost and
Ramsey capital stock accumulation. and we give sufficient conditions to guarantee that the
proposed model has a unique optimal solution, which produces multiple equilibrium points:
the Cournot equilibrium of the static configuration and the Ramsey Golden Rule.
The rest of the paper is structured as follows. Section 2 introduces the basics of the model.
The open-loop solution is laid out in section 3. Section 4 contains the equilibria analysis:
Ramsey equilibrium and Cournot-Nash equilibrium. Section 5 presents the stability analysis
and finally we give some concluding remarks.

2. The setup

Consider an industrial structure in which N identical firms produce and sell individual
quantity qi(t) ∈ Ui = {u ∈ R, 0 ≤ u ≤ umax(i)}, i = 1, ..., N , under Cournot competition.
The good is homogeneous, the inverse market demand function for the good is defined by
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hyperbolic demand

(2.1) p(t) =
A

Q(t)
, where A ∈ R∗+ and Q(t) =

N∑
i=1

qi(t).

The total production cost for each firm i for i = 1, ..., N is given by a cubic function

(2.2) C(qi(t)) = aq3i (t)− bq2i (t) + cqi(t) + d,

with a > 0, b > 0, c > 0, d > 0 and b2 ≤ 3ac [9–11]. The total cost function is always
increasing, because marginal cost C ′

(qi(t)) = 3aq2i (t) − 2bqi(t) + c ≥ 0, and admits a graph
initially concave, then convex, as soon as q > b

3a
. The marginal cost and the average variable

cost initially decrease, reach their minimum points and its start to increase again.
The firm i must calculate the quantities that maximize its profit for each possible level of
production of its competitor (q1, ..., qi−1, qi+1, ..., qN), so as to determine in advance the best
answer it can give it for each of his strategies. It must also neglect the impact of its own
production on these quantities since these quantities will not be observed in advance by its
competitor. This firm can achieve its main goal by solving the following problem :

(2.3) max
qi

Ji(qi) = max
qi

∫ +∞

0

e−ρtgi(t, qi(t)) dt,

under the dynamic constraint (Ramsey problem) [5,6]:

(2.4) k̇i(t) = f(ki(t))− qi(t)− δki(t),

where Ji is the own discounted flow of profit of the firm i, gi(t, qi(t)) = p(t)qi(t)− C(qi(t)) is
the profit of the firm i, ki is the capital stock of the firm i, δ is the positive depreciation rate of
capital stock, ρ is a positive parameter which represents the constant discount rate (possibly
depending on monetary factors such as the expected rate of currency depreciation ) and f is
the total output produced by firm i at time t, satisfying the hypotheses:

(H01) : f ′ > 0, (H02) : f ′′ < 0.

Therefore, the objective for each firm i is to choose the individual quantity qi witch maximizes
the discounted flow of profits.

(2.5) Ji(qi) =

∫ +∞

0

e−ρtgi(t, qi(t)) dt,

where

(2.6) gi(t, qi(t)) = p(t)qi(t)− C(qi(t)) =
Aqi(t)

Q(t)
− aq3i (t) + bq2i (t)− cqi(t)− d.
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Since the profit function gi is continuous with respect to quantity qi and qi(t) ∈ [0, umax(i)], the
profit gi is bounded at any time t, i.e there existsM > 0, such as

(2.7) |gi(t, qi(t))| ≤M, ∀t ∈ [0,+∞).

Then the improper integral in (2.5) might converge for any quantity qi,

(2.8) Ji(qi) = lim
T→+∞

Ji(T, qi) = lim
T→+∞

∫ T

0

e−ρtgi(t, qi(t)) dt ≤ lim
T→+∞

∫ T

0

Me−ρt.

3. The open-loop solution

The optimal control problem associated is given by

(3.1) max
qi

Ji(qi) = max
qi

∫ +∞

0

e−ρtgi(t, qi(t)) dt

under the dynamic constraints

(3.2) k̇(t) = f(k(t))− q(t)− δk(t),

where k(t) =
(
k1(t) ... ki(t) ... kN(t)

)T
and q(t) =

(
q1(t) ... qi(t) ... qN(t)

)T
are

the vectors of states and controls, f(k(t)) =
(
f(k1(t)) ... f(ki(t)) ... f(kN(t))

)T
, with

initial condition

(3.3) k(0) =
(
k01 ... k0i ... k0N

)T
.

For any control q̄(t), the above regularity assumptions of the function f guarantee that a
unique solution k̄ exists of the Cauchy problem (3.2), the pair (k̄, q̄) is called admissible pair
for the state equation, and satisfies the corresponding integral equation

(3.4) k̄i(t) = k0i +

∫ t

0

f(k̄i(s))− q̄i(s)− δk̄i(s) ds.

The current value Hamiltonian for each firm i is

(3.5) Hi(t, k, qi, λi) = e−ρtgi(t, qi(t)) + 〈λi|f(k(t))− q(t)− δk(t)〉,

where λi(t) =
(
λi1(t) ... λii(t) ... λiN(t)

)T
is the costate variables associated with states

by firm i, then

(3.6) Hi(t, k, q, λi) = e−ρtgi(t, qi(t)) +
N∑
j=1

λij
(
f(kj(t))− qj(t)− δkj(t)

)
.

The necessary conditions in order that (q, k, λi) to be optimal for (3.1) and (3.2), are:

(3.7) ∂Hi

∂qi
(t, q, k, λi) = e−ρt

∂gi
∂qi

(t, qi)− λii(t) = 0,
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(3.8) ∂Hi

∂ki
(t, q, k, λi) = λii(t)

(
f ′(ki(t))− δ

)
= −λ̇ii(t),

(3.9) ∂Hi

∂kj
(t, q, k, λi) = λij(t)

(
f ′(kj(t))− δ

)
= −λ̇ij(t) ∀j 6= i.

The following theorem gives a sufficient conditions to guarantee that the dynamic oligopoly
model proposed admits a unique optimal solution.

Theorem 3.1. Let (q∗i , k
∗
i ) be an admissible pair for the state equation 2.4. Suppose that (q∗i , k

∗
i ) satisfy

the necessary conditions (3.7) and (3.8) with costate vector λ∗ii. If :

•

(3.10) ∂gi
∂qi

(t, q∗i ) ≥ 0, ∀t ∈ [0,+∞),

•

(3.11) lim
t−→+∞

∂gi
∂qi

(t, q∗i )k
∗
i (t) = 0,

•

(3.12) ∂2gi
∂2qi

(t, qi) < 0, ∀qi.

Then for every admissible pair (k̄i, q̄i) for the state equation 2.4

(3.13) Ji(q̄i) < Ji(q
∗
i ).

Proof. The condition (3.12) proves that for any admissible pair (k̄i, q̄i),

(3.14) gi(t, q̄i)− gi(t, q∗i ) <
∂gi
∂qi

(t, q∗i )
(
q̄i − q∗i

)
.

The necessary condition (3.7) implies that:

(3.15) e−ρtgi(q̄i)− e−ρtgi(q∗i ) < λ∗ii
(
q̄i − q∗i

)
,

then, for each T > 0 we have

(3.16) Ji(T, q̄)− Ji(T, q∗) =

∫ T

0

e−ρtgi(q̄i)− e−ρtgi(q∗i ) dt <
∫ T

0

λ∗ii
(
q̄i − q∗i

)
dt.

The necessary condition (3.8) implies that

λ∗ii
(
q̄i − q∗i

)
= λ∗ii

(
q̄i − q∗i

)
−
(
λ∗iif

′(k∗i )− λ∗iiδ + λ̇∗ii
)(
k̄i − k∗i

)
= λ∗ii

(
q̄i + δk̄i − q∗i − δk∗i

)
− λ̇∗ii

(
k̄i − k∗i

)
− λ∗iif ′(k∗i )

(
k̄i − k∗i

)
.
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The pairs (k̄, q̄) and (q∗, k∗) are two admissible pairs, thus

λ∗ii
(
q̄i − q∗i

)
= λ∗ii

(
f(k̄i)− ˙̄ki − f(k∗i ) + k̇∗i

)
− λ̇∗ii

(
k̄i − k∗i

)
− λ∗iif ′(k∗i )

(
k̄i − k∗i

)
= −λ̇∗ii

(
k̄i − k∗i

)
− λ∗ii

( ˙̄ki − k̇∗i
)

+ λ∗ii

(
f(k̄i)− f(k∗i )− f ′(k∗i )

(
k̄i − k∗i

))
.

The function f is concave so the expression f(k̄i)− f(k∗i )− f ′(k∗i )(k̄i − k∗i ) is negative. Hence,
noting that λ∗ii(t) = e−ρt ∂gi

∂qi
(t, q∗i ) ≥ 0 by assumption, we have

(3.17) λ∗ii
(
q̄i − q∗i

)
≤ −λ̇∗ii

(
k̄i − k∗i

)
− λ∗ii

( ˙̄ki − k̇∗i
)
.

The equalities (3.16) and (3.17) imply that

(3.18) Ji(T, q̄)− Ji(T, q∗) < −
∫ T

0

λ̇∗ii
(
k̄i − k∗i

)
+ λ∗ii

( ˙̄ki − k̇∗i
)
dt.

One has∫ T

0

λ̇∗ii
(
k̄i − k∗i

)
+ λ∗ii

( ˙̄ki − k̇∗i
)
dt = [λ∗ii(t)(k̄i(t)− k∗i )(t))]T0

= λ∗ii(T )
(
k̄i(T )− k∗i (T )

)
− λ∗ii(0)

(
k̄i(0)− k∗i (0)

)
.

and by admissibility we have k∗i (0) = k̄i(0) = k0i. Hence

(3.19)
∫ T

0

λ̇∗ii
(
k̄i − k∗i

)
+ λ∗ii

( ˙̄ki − k̇∗i
)

= λ∗ii(T )
(
k̄i(T )− k∗i (T )

)
,

and

(3.20) Ji(T, q̄)− Ji(T, q∗) < −λ∗ii(T )
(
k̄i(T )− k∗i (T )

)
.

Since λ∗ii = ∂gi
∂qi

(t, q∗i ) ≥ 0, one has

(3.21) Ji(T, q̄i)− Ji(T, q∗i ) < λ∗ii(T )k∗i (T )− λ∗ii(T )k̄i(T ) ≤ λ∗ii(T )k∗i (T ).

Letting T → +∞ yield Ji(q̄i) − Ji(q
∗
i ) < lim

t−→+∞
e−ρt

∂gi
∂qi

(t, q∗i )k
∗
i (t) = 0, then it follows that

Ji(q̄i) < Ji(q
∗
i ) for all admissible control path q̄i. �

Condition (3.11) is a transversality condition; we can better understand the meaning of this
condition if we consider our problemwith a finite horizon t ∈ [0, T ]. The function gi is concave,
and reaches its maximum at qmaxi solution of ∂gi

∂qi
(t, qi) = 0. Hence, if λ∗ii(T ) = e−ρT ∂gi

∂qi
(T, q∗i ) > 0,

then q∗i (T ) < qmax, in this cas k∗i (T ) = 0, because if the capital k∗i (T ) > 0, we can affect the
payoff gi by consuming this capital. Therefore, we have tree cases:

Case I:: λ∗ii(T ) = e−ρT ∂gi
∂qi

(T, q∗i ) > 0 and k∗i (T ) = 0.
Case II:: λ∗ii(T ) = e−ρT ∂gi

∂qi
(T, q∗i ) = 0 and k∗i (T ) > 0.
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Case III:: λ∗ii(T ) = e−ρT ∂gi
∂qi

(T, q∗i ) = 0 and k∗i (T ) = 0.
Hence, λ∗ii(T )k∗i (T ) = 0. The transversality condition can be seen as the limit of this condition
when T → +∞.

4. Equilibrium analysis

In this section we establish the state-control dynamic system of the open-loop solution, and
we use this system to determine the equilibrium points. for each t > 0 we have

(4.1) gi(t, qi(t)) = p(Q(t))qi(t)− C(qi(t)) = p(qi(t) +Q−i(t))qi(t)− C(qi(t))

where

(4.2) Q−i(t) = Q(t)− qi(t)

The first necessary condition (3.7), implies that

(4.3) λ̇ii(t) = −ρλii + e−ρt
∂2gi
∂2qi

q̇ + e−ρt
∂2gi

∂Q−i∂qi
Q̇−i.

Using the second necessary condition (3.8), the equation (4.3) can be rewritten as follows:

(4.4) λii
(
δ + ρ− f ′(ki)

)
= e−ρt

∂2gi
∂2qi

q̇ + e−ρt
∂2gi

∂Q−i∂qi
Q̇−i,

then, from the first necessary condition (3.7), we have

(4.5) ∂gi
∂qi

(
δ + ρ− f ′(ki)

)
=
∂2gi
∂2qi

q̇i +
∂2gi

∂Q−i∂qi
Q̇−i,

with

(4.6) ∂gi
∂qi

= A(qi +Q−i)
−1 − A(qi +Q−i)

−2qi − 3aq2i + 2bqi − c,

(4.7) ∂2gi
∂2qi

= −2A(qi +Q−i)
−2 + 2A(qi +Q−i)

−3qi − 6aqi + 2b,

(4.8) ∂2gi
∂Q−i∂qi

= −A(qi +Q−i)
−2 + 2A(qi +Q−i)

−3qi,

Substituting the above expressions in (4.5), one obtains:(
A(qi +Q−i)

−1 − A(qi +Q−i)
−2qi − 3aq2i + 2bqi − c

)(
δ + ρ− f ′(ki)

)
=(

− 2A(qi +Q−i)
−2 + 2A(qi +Q−i)

−3qi − 6aqi + 2b
)
q̇i

+
(
− A(qi +Q−i)

−2 + 2A(qi +Q−i)
−3qi

)
Q̇−i.
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Given the ex-ante symmetry, we impose that the choices made by the firms are symmetrical,
i.e.:

(4.9) qi = qj = q ∀i 6= j.

Under the above assumption, we obtain

(4.10) q̇(ÑAq−2 + 6aq − 2b) = l(q)
(
δ + ρ− f ′(k)

)
,

where

(4.11) l(q) = 3aq2 − 2bq + c− ÑAq−1,

and

(4.12) Ñ =
N − 1

N2
.

The condition (3.12) and the assumption (4.9), imply that

(4.13) ÑAq−2 + 6aq − 2b >
2Ñ

N
Aq−2 + 6aq − 2b = −∂

2gi
∂2q

(t, q) > 0.

Hence, the control dynamic equation is

(4.14) q̇ = h(q)(δ + ρ− f ′(k)),

where

(4.15) h(q) =
l(q)

ÑAq−2 + 6aq − 2b
=

3aq2 − 2bq + c− ÑAq−1

ÑAq−2 + 6aq − 2b
.

The state-control dynamic system of the model is the following one:

(4.16)

 k̇ = f(k)− q − δk,

q̇ = h(q)
(
δ + ρ− f ′(k)

)
.

Imposing stationarity on (4.16), we see that

(4.17) q̇ = 0⇐⇒

 δ + ρ− f ′(k) = 0,

l(q) = 3aq2 − 2bq + c− ÑAq−1 = 0.

The first equation characterizes the Ramsey golden rule, and the second equation characterizes
the Cournot-Nash equilibrium of the static version of the Cournot gamewith the same demand
and cost functions

(4.18) max
qi

gi(t, qi).
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4.1. Ramsey golden rule equilibrium. Since the function f is strictly concave, there is only
one value of k such that the f ′(k) is equal to (δ + ρ) . this value is the symmetric closed-loop
Ramsey golden rule solution kR, the corresponding quantity is qR = f(kR)− δkR. Since f is
concave, decreasing k will raise f ′(k). therefore, we must have

(4.19) f ′(k)− δ − ρ > 0, ∀k < kR,

(4.20) f ′(k)− δ − ρ = 0, k = kR,

(4.21) f ′(k)− δ − ρ < 0, ∀k > kR.

4.2. Cournot-Nash equilibrium. The following theorem prove that the open-loop solution
admits a unique symmetric Cournot-Nash equilibrium.

Theorem 4.1. The differential oligopoly game with capital accumulation (3.1) and (3.2 ) admits a

unique symmetric closed-loop Cournot-Nash equilibrium:

(4.22) qCN =
3

√
−µ+

√
∆

2
+

3

√
−µ−

√
∆

2
+

2b

32a
,

where

(4.23) ∆ = µ2 +
22

33
β3 > 0,

(4.24) µ =
−24b3 − 35Ña2A+ 332abc

36a3
; Ñ =

N − 1

N2
,

(4.25) β =
32ac− 22b2

33a2
.

Proof. The Cournot-Nash equilibrium is given by the solution of equation l(q) = 0. One has

l(q) = 3aq2 − 2bq + c− ÑAq−1 = 0 ⇐⇒ l̃(q) = 3aq3 − 2bq2 + cq − ÑA = 0.

If 9ac < 4b2, the quadratic equation l̃′(q) = 9aq2 − 4bq + c = 0 has two strictly positive roots
q1 = 2b−

√
4b2−9ac
9a

> 0 and q2 = 2b+
√
4b2−9ac
9a

> 0. Hence, the function l̃′(q) is strictly positive in
]−∞, q1[∪]q2,+∞[, and the property (4.13) implies that

l̃(q1) = l̃(q1) + l̃′(q1) = −6aq21 + 2bq1 − ÑA < 0,
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and
l̃(q2) = l̃(q2) + l̃′(q2) = −6aq22 + 2bq2 − ÑA < 0.

If 9ac ≥ 4b2 the function l̃′(q) is strictly positive in ]−∞+∞[.
As lim

q−→−∞
l̃(0) = −∞, l̃(q1) < 0, l̃(q2) < 0 and l̃ strictly increases to +∞ when q −→ +∞, the

cubic equation l̃(q) = 0 admits a unique real root qCN > 0.
The change of variable y = q − 2b

32a
, transforms the equation l̃(q) = 0 to reduced form

(4.26) y3 + βy + µ = 0,

where

(4.27) β =
32ac− 22b2

33a2
and µ =

−24b3 − 35Ña2A+ 332abc

36a3
.

The algebraic solution of the cubic equation (4.26) giving by Cardano’s Method. The numbers
of real and complex roots are determined by the discriminant of the cubic equation

(4.28) ∆ = µ2 +
22

33
β3.

Since the cubic equation l̃(q) = 0 has unique real root, the cubic equation(4.26) has unique
real root, two non-real complex conjugate roots and the discriminant ∆ > 0. We pose

(4.29) u =
3

√
−µ+

√
∆

2
and v =

3

√
−µ−

√
∆

2
.

The real root is y0 = u+ v, and the two non-real complex conjugate roots are: y1 = ju+ j̄v,

y2 = j2u+ j2v.
where j = ei

2π
3 and j2 = ei

4π
3 .

Hence,
qCN = y0 +

2b

32a
= u+ v +

2b

32a
.

�

Notice that for the symmetric closed-loopCournot-Nash equilibrium qCN , the corresponding
capital stock given by solving the equation

(4.30) qCN = F (kCN),

with

(4.31) F (k) = f(k)− δk.
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Since F is strictly concave and reaches its maximum in k = kor solution of f ′(kor) = δ, if
qCN < F (kor) there exist two corresponding capital stocks kCN1 < kor and kCN2 > kor, and
unique corresponding capital stock kCN = kor if qCN = F (kor). As f is strictly concave, the
equations f ′(kor) = δ and f ′(kR) = ρ+ δ imply that kR < kor.

The graph Cl of the polynomial l̃(q) = 3aq3 − 2bq2 + cq − ÑA starts by −ÑA, moves steeply
upward, crosses the q-axis at the root qCN , and then moves steeply upward again. Changing
the coefficient −ÑAmove Cl vertically-up or down, and Changing a, b, c alter the curvature
of the parabolic element. Therefore the symmetric closed-loop Cournot-Nash equilibrium
qCN = 0 if ÑA = 0, and increases when −ÑA shifts downwards and the coefficients a, b, c are
increase. We obtain one out of five possible regimes:

(1) Case 1: If qCN < qR we have kCN1 < kR < kor < kCN2 and there exist three steady state
points, with E1 = (qCN , kCN1), E2 = (qR, kR) and E3 = (qCN , kCN2).

(2) Case 2: If qCN = qR we have kCN1 = kR < kor < kCN2 and there exist two steady state
points, with E1 = E2 = (qCN , kCN1) = (qR, kR) and E3 = (qCN , kCN2).

(3) Case 3: If qR < qCN < F (kor) we have kR < kCN1 < kor < kCN2 and there exist three
steady state points, with E1 = (qCN , kCN1), E2 = (qR, kR) and E3 = (qCN , kCN2).

(4) Case 4: If qR < qCN = F (kor) we have kR < kCN1 = kCN2 = kor and there exist two
steady state points, with E2 = (qR, kR) and E1 = E3 = (qCN , kor).

(5) Case 5: If qR < F (kor) < qCN there exists a unique steady state point, E2 = (qR, kR).

Proposition 4.1. For all q ∈ (0,+∞), one has:

(4.32) h(q) =

(
q − qCN

)(
3aq2 + (−2b+ 3aqCN)q + ÑA/qCN

)
ÑAq−1 + 6aq2 − 2bq

;

and

(4.33) 3aq2 + (−2b+ 3aqCN)q + ÑA/qCN > 0.

Proof. Since the cubic polynomial l̃ has one real root qCN and two non-real complex conjugate
roots, there exist three scalars ã, b̃ and c̃ such that l̃(q) = (q − qCN)(ãq2 + b̃q + c̃).
As (q−qCN)(ãq2+b̃q+c̃) = 3aq3−2bq2+cq−ÑA, one has ãq3+(b̃−ãqCN)x2+(c̃−b̃qCN)q−c̃qCN =
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3aq3 − 2bq2 + cq − ÑA, therefore one can identify the values of ã, b̃ and c̃

ã = 3a

b̃− ãqCN = −2b

c̃− b̃qCN = c

c̃qCN = ÑA

=⇒


ã = 3a,

b̃ = −2b+ 3aqCN

c̃ = ÑA/qCN

Hence,

h(q) =
l̃(q)

ÑAq−1 + 6aq2 − 2bq
=

(
q − qCN

)(
3aq2 + (−2b+ 3aqCN)q + ÑA/qCN

)
ÑAq−1 + 6aq2 − 2bq

.

The quadratic equation 3aq2 + (−2b + 3aqCN)q + ÑA/qCN = 0 has two non-real complex
conjugate roots, therefore the sign of polynomial 3aq2 + (−2b+ 3aqCN)q+ ÑA/qCN is the same
as the sign of the coefficient a. �

Since the reason why the locus q̇ = 0 is k = kR or q = qCN , the curve q̇ = 0 is two straight
lines given by k = kR and q = qCN . The locus k̇ = 0 is given by the solutions of the equation
q = F (k) = f(k)− δk. Therefore the curve k̇ = 0 is strictly concave and reaches its maximum
in kor.

The state-control dynamic system (4.16) and proposition 3.1 imply that

• Above the curve k̇ = 0; k̇ < 0 and below this curve k̇ > 0.
• if k < kR, Above the straight line q = qCN ; q̇ < 0 and below this straight line q̇ > 0, and
the opposite if k > kR.
• if q < qCN , to the left of the straight line k = kR; q̇ > 0 and to the right q̇ < 0, and the
opposite if q > qCN .

5. Stability

To assess the stability properties of the steady states, consider the Jacobian matrix associated
to (4.16):

(5.1) J(k, q) =

 ∂k̇
∂k

∂k̇
∂q

∂q̇
∂k

∂q̇
∂q

 =

 f ′(k)− δ −1

h(q)f ′′(k) h′(q) (δ + ρ− f ′(k))

 .

Evaluating J in the Ramsey golden rule Equilibrium yields

(5.2) JR = J(kR, qR) =

 ρ −1

h(qR)f ′′(kR) 0

 .
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Since JR a square matrix of order 2, its characteristic polynomial PR(X) = det(JR −XI2) can
write explicitly in terms of its determinant and its trace .

(5.3) PR(X) = X2 − tr(JR)X + det(JR).

The nature of the two roots η1 and η2 is determined by the discriminant ∆R = tr(JR)2−4det(JR)

and knowing the determinant and trace of JR allows us to deduce their signs,

(5.4)

 η1 + η2 = tr(JR) = ρ,

η1η2 = det(JR) = h(qR)f ′′(kR).

Evaluating J in the Cournot-Nash equilibrium yields

(5.5) JCNi = J(kCNi, qCN) =

 f ′(kCNi)− δ −1

0 h′(qCNi)(δ + ρ− f ′(kCNi))

 i ∈ {1, 2}.

As h′(q) = 1−h(q)
6a− 2ÑAq−3

ÑAq−2 + 6aq − 2b
, the properties h(qCNi) = 0, f ′(kor) = δ and f ′(kR) = δ+ρ

imply that

(5.6) JCNi =

 f ′(kCNi)− f ′(kor) −1

0 f ′(kR)− f ′(kCNi)

 .

The matrix JCNi has two real eigenvalues µ1i = f ′(kCNi)− f ′(kor) and µ2i = f ′(kR)− f ′(kCNi).

5.1. Case 1: qCN < qR. As det(JR) = h(qR)f ′′(kR) < 0, the matrix JR has two real eigenvalues
η1 =

ρ−
√

∆R

2
and η2 =

ρ+
√

∆R

2
, with η1η2 < 0 and η1 + η2 = ρ. In this case the eigenvalues

have opposite signs. Therefore the steady state point (kR, qR) is a saddle point.
The corresponding capital stocks, check kCN1 < kR < kor < kCN2. Since f is strictly concave,

(5.7)

 µ21 = f ′(kR)− f ′(kCN1) < 0 < µ11 = f ′(kCN1)− f ′(kor),

µ12 = f ′(kCN2)− f ′(kor) < 0 < µ22 = f ′(kR)− f ′(kCN2).

Therefore the steady state points (kCNi, qCN) are saddle points. E1 is saddle point with the
vertical line as the stable manifold and horizontal line as the unstable manifold, E3 is again
a saddle point with the horizontal line as the stable manifold and the vertical line as the
unstable manifold, while E2 is saddle point with the line q =

ρ+
√

∆R

2
(k − kR) + qR as the

stable manifold and the line q =
ρ−
√

∆R

2
(k − kR) + qR as the unstable manifold. In Figure 1,

we plot the phase stability diagram in this case.
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Figure 1. The phase stability diagram with qCN < qR

5.2. Case 2: qR = qCN . The discriminant ∆R is equal to ρ2. Then the eigenvalues η1 and η2
are two real with η1 + η2 = ρ and η1η2 = det(JR) = h(qR)f ′′(kR) = 0. In this case one of the
eigenvalues is zero and the other is equal to ρ. Therefore the line q = ρ(k− kR) + qR is unstable
critical line.
The corresponding capital stocks, check kR = kCN1 < kor < kCN2. Since f is strictly concave,

(5.8)

 µ21 = f ′(kR)− f ′(kCN1) = 0 < µ11 = f ′(kCN1)− f ′(kor) = ρ

µ12 = f ′(kCN2)− f ′(kor) < 0 < µ22 = f ′(kR)− f ′(kCN2).

Therefore the line q = ρ(k − kCN1) + qCN is unstable critical line, and (kCN2, qCN) is a saddle
point.
E1 coincides with E2, in this case the line q = ρ(k − kR) + qR is unstable critical line, while

E3 is a saddle point with the horizontal line as the stable manifold and the vertical line as the
unstable manifold. Figure 2, a summarizes these results.

5.3. Case 3: qR < qCN < F (kor). The corresponding capital stocks, check kR < kCN1 < kor <

kCN2. Since f is strictly concave,

(5.9)

 0 < µ21 = f ′(kR)− f ′(kCN1) and 0 < µ11 = f ′(kCN1)− f ′(kor),

µ12 = f ′(kCN2)− f ′(kor) < 0 < µ22 = f ′(kR)− f ′(kCN2).

Therefore the steady state points (kCN1, qCN) is an unstable node and (kCN2, qCN) is a saddle
point.
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Figure 2. The phase stability diagram with qR = qCN .

• If ∆R = ρ2 − 4h(qR)f ′′(kR) > 0, the eigenvalues η1 and η2 are two real, such that
η1 + η2 = ρ and η1η2 = h(qR)f ′′(kR) > 0. Therefore (kR, qR) is an unstable node.
• If ∆R = ρ2 − 4h(qR)f ′′(kR) = 0, there exist a repeated real eigenvalue equal to ρ

2
with

only one eigenvector (1,
ρ

2
). Therefore (kR, qR) is an unstable improper node.

• If ∆R = ρ2−4h(qR)f ′′(kR) < 0, we have two complex conjugate eigenvalues η1 = α+ iβ

and η2 = α− iβ, with η1 + η2 = 2α = ρ > 0.Therefore (kR, qR) is an unstable focus.
E1 is a unstable node, and E3 is a saddle point with the horizontal line as the stable manifold
and the vertical line as the unstablemanifold, whileE2 is an unstable node if 4h(qR)f ′′(kR) < ρ2,
an unstable improper node if 4h(qR)f ′′(kR) = ρ2 and an unstable focus if 4h(qR)f ′′(kR) > ρ2,
as shown in figure 3.



Asia Pac. J. Math. 2020 7:10 16 of 19

Figure 3. The phase stability diagram with qR < qCN < F (kor).
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5.4. Case 4: qCN = F (kor). The corresponding capital stocks, check kR < kCN1 = kor = kCN2.
Since f is strictly concave,

u1i = f ′(kCNi)− f ′(kor) = 0 < u2i = f ′(kR)− f ′(kCNi) = ρ.

In this case one of the eigenvalues is zero and the other is equal to ρ. Hence the line q = qor is
unstable critical line.
E1 coincides with E3, the line q = qor is unstable critical line, while E2 is an unstable node if

4h(qR)f ′′(kR) < ρ2, an unstable improper node if 4h(qR)f ′′(kR) = ρ2 and an unstable focus if
4h(qR)f ′′(kR) > ρ2, as illustrated in figure 4.

Figure 4. The phase stability diagram with qR < qCN = F (kor).

5.5. Case 5: qCN > F (kor). Here, there exists a unique steady state point E2, which is an
unstable node if 4h(qR)f ′′(kR) < ρ2, an unstable improper node if 4h(qR)f ′′(kR) = ρ2 and an
unstable focus if 4h(qR)f ′′(kR) > ρ2, as in regimes case 3 and 4.
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6. Conclusion

In this paper we have studied the properties of a dynamic oligopoly game with hyperbolic
demand, cubic cost and Ramsey capital stock accumulation. We proved that the proposed
model has an unique optimal solution and we also shown that equilibria produced by this
model, Ramsey’s and Nash equilibria, are stable in the saddle point sense.
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