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Abstract. In this paper, some important results of the classical power series are generalized for
the fractional power series. Some of these theorems are constructed by using conformable
fractional derivatives. The ratio test has been specifically established to calculate the radius of
convergence of a fractional power series, and several theorems of differentiability and
integrability of the sum of a power series have been discussed in the sense of conformable
fractional definition. In addition, the proposed series solution has been applied for the case of
conformable fractional Airy differential equation.
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1. Introduction

The idea of fractional derivative was raised first by L'Hospital in 1695. Since then,
several related definitions have been proposed. The most common ones are Riemann-
Liouville and Caputo definitions. For more information about the most commonly

known fractional definitions, we refer to [1,2]. Recently, a new definition of fractional
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derivative and fractional integral has been proposed by Khalil et al. in [3]. As a result,
several important elements of the mathematical analysis of functions of a real variable
have been proposed such as: Rolle's Theorem, Mean Value Theorem, chain rule,
fractional power series expansion and fractional integration by parts formulas, [3-5].
The conformable partial derivative of the order a € (0,1] of the real-valued functions of
several variables and conformable gradient vector are defined, as well as a conformable
version of Clairaut’s Theorem for partial derivative is proven in [6]. In [7], conformable
Jacobian matrix is defined and chain rule for multivariable conformable derivative is
given. In [8], the conformable version of Euler’s Theorem on homogeneous is
introduced. Furthermore, in a short time, many studies have been conducted on the
theory and applications of fractional differential equations based on this newly defined
fractional derivative, [9-18].

This paper is organized as follows: In Section 2, the main concepts of conformable
fractional calculus are presented. In Section 3, several important theorems are
discussed; in particular, ratio test is established for a fractional power series, and the
conformable differentiability and integrability of the sum of a power series is studied. In
Section 4, the series solutions of conformable fractional Airy differential equation are

obtained via the fractional power series technique.

2. Basic Definitions and Tools
Definition 2.1. Given a function f:[0,0) — R. Then the conformable fractional derivative of

order a, [3], is defined by
2.1) (T)(0) = lim L2 0=r©
e—0 €
forallt > 0,0 < a < 1. If f is a-differentiable in some (0,a), a > 0, and tlir(;}r (T, f)(t) exist,

then it is defined as
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(2.2) (Taf)(0) = lim (Tof)(©)
Theorem 2.1. [3]. If a function f: [0, ) — R is a-differentiable at ty > 0,0 < a < 1, then f is
continuous at t,.
Theorem 2.2. [3]. Let 0 < a < 1 and f, g be a-differentiable at a point t > 0. Then
(i) T,(af + bg) = a (T,f) + b (T,g), Va,b € R.
(ii) T,(tP) = ptP~™%, Vp €R.
(iii)  To(A) = 0, for all constant functions f(t) =A.
() To(fg) = f(Tag) + 9(Taf)

© T, (5) _ g(Taf)g—zf(Tag)_

(vi)  If, in addition, f is differentiable, then (T,f)(t) = t1™¢ % (0).
The conformable fractional derivative of certain functions for the above definition is
given as:

(i) T(1) =0,

i) T,(sin(at)) = at'%cos(at),

(iii) T,(cos(at)) — at*~%sin(at),

(iv) T,(e®)=ae, a€R.
Definition 2.2. The (left) conformable derivative starting from a of a function f:[a, ) - R

of f of order 0 < a < 1, [4], is defined by

a e f(tret-a)"*)-F ()
(23) (TE)(®) = lim L=

When a = 0, it is written as (T,f)(t). If f is a-differentiable in some (a, b), then let us define
the following:

23) (TF)(@ = lim (T2F)(®

Theorem 2.3 (Chain Rule). [4]. Assume f,g:(a,) - R be (left) a-differentiable
functions, where 0 < a < 1. Let h(t) = f(g(t)). The h(t) is a-differentiable for all t # a

and g(t) # 0, therefore, we have:
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(2.5) (Ten) (@) = TEN(g®) - (TEg) (). (g()* ™
If t = a, then
(2.6) (Teh)(a) = lim (T¢'f )(9(®) - (TEg)(@®). (g(t)*?

Theorem 2.4. [4]. Assume f is infinitely a —differentiable function, for some 0 < a <1 at a

neighborhood of a point to. Then f has the following fractional power series expansion:

o (P12)e) ka y
(2.7) f®) = Zk:ow(t —tp)"Y , ty <t <ty+Re

Here, ((k)Taf")(tO) means the application of the fractional derivative k times.

The following definition for the a-fractional integral of a function f starting from a > 0.

Definition 2.3. I3(f)(t) = fat;:l(—g_ct)l-dx, where the integral is the usual Riemann improper
integral, and a € (0,1], [3].

The most general sequential linear homogeneous conformable fractional differential
equation is

(2.8) MLy + a1 (O TVTEY + 4 @l (OTEy + ag(D)y = 0

where WT&y = TTS .. T3y, n times.

Definition 2.4. [9]. Let a € (0,1], ty € [a, b] € [0, 00), N(ty) be a neighborhood of t, and f(t)
be a real function defined on [a,4l. In this case f(t) is said to be a —analytic at t, if f(t) can be

expressed as a series of natural powers of (t — to)* for all t € N(ty). In other words, f(t) can be

expressed as follows:

[0e]

Z Ck(t - to)ka , Ck € R.

k=0

This series is definitely convergent for t, <t <ty + § (§ > 0) where § is the radius of
convergence of the series.

Definition 2.5. [9]. Let a € (0,1], ty € [a, b] c [0, ), and the functions a; (t) be a —analytic
at ty € [a,b] € [0,0) for k=0,1,2,..,n—1. In this case, the point t, is said to be an

a —ordinary point of (2.8).
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Theorem 2.5. [9]. Let a € (0,1], let cy,c; € R and let ty be an a —ordinary point of the

equation

(29) T'T"y +P(OT"y +q()y = 0
Then, there exists a solution to the Eq. (2.9) as:

(2.10) Y = Yiso ci(t — t)*®

for t € (ty, to + p) with p = min(dy,6,) and initial conditions: cy = y(ty), acy = Toy(ty)

where &, and &8, are the radii of convergence of p(t) and q(t), respectively.

3. Conformable Power Series Representation

In this section, we will generalize some important related definitions and theorems
from the classical power series into the fractional case in the conformable sense. New
results related to the convergent of the series Y5, ¢, t*® are also presented. After that,
some results which are particularly focused on the radii of convergence for the
conformable power series are utilized.

Definition 3.1. A power series representation of the form

(3.1) YicoCr(t — ) = co+ c1(t — tg)* + co(t — t)** +...

where 0 < a <1 and t >ty =0 is called conformable power series about ty, and c,’s are
constants known as the coefficients of the series.

As a special case, when t, =0, the expansion Yj_,c, t** is called a conformable
Maclaurin series. Notice that in writing out the term corresponding to k = 0 in equation
(3.1), we have adopted the convention (t — t,)° = 1 that even when t = t,. Also, when
t =ty, each term of Eq. (3.1) vanishes for k > 1 and so. On the other hand, the
conformable power series (3.1) is always convergent when t = t,. For simplicity, we
will only present the case when t, = 0 as follows:

Theorem 3.1. We have the following two cases for the conformable power series Yo ¢y t**,

t=>0:
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(i) If the conformable power series Yp—qcy t** converges when t =b >0, then it
converges whenever 0 < t < b.

(ii)  If the conformable power series Yooy t** diverges when t =d >0, then it
converges whenever t > d.

Proof. For the first part, suppose that }, ¢, b** converges. Then, we have: ’lim ch** = 0.

According to the definition of the limit of sequences with € =1, there is a positive

integer N such that |c,b**| < 1 whenever k = N. Thus, for k = N, we have: ¢, t**| =

Ckbkatka

car |E1KE jeke . t|® ek
e |cib™%| |E| < |;| . Again, if we have: 0 <t < b, then |Z| <1,s0); |Z| is

a convergent geometric series. Therefore, by the comparison test, the series ;- vlcktke|
is convergent. Thus, the series Y ¢, t*? is absolutely convergent, and therefore, it is
convergent. To prove the remaining part, suppose that diverges. Now, if there is any
number such that t >d > 0, then ¥ ¢, t** cannot converge because, by case 1, the
convergence of Y, ¢, t*® would imply the convergence of ¥ ¢;d*®. Therefore, X ¢, t*®
diverges whenever t > d. This completes the proof.
Theorem 3.2. For the conformable power series Yo Cx th®  t >0, there are only three
possibilities:

(i) The series Y, ¢ tk® converges only when t = 0,

(ii)  The series ¥, ¢, t*® converges for each t > 0,

(iii) ~ There is a positive real number R such that the series converges whenever 0 < t < R

and diverges whenever t > R.

Proof. Suppose that neither case 1 nor case 2 is true. Then, there are non-zero numbers b
and d such that ¥, ¢, t**converges for t = b and diverges for t = d. Therefore, the set S =
{t: ¥ ¢, t*® converges} is not empty. By the preceding theorem, the series diverges if t >
d, so 0 <t <d for each t € S. This says that d is an upper bound for S. Thus, by the
completeness axiom, it has a least upper bound R. If t >R, then t € S, so Y ¢, thke

diverges. If 0 < t < b, then t is not an upper bound for S and so there exists b € S such
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that b > t. Since b € S and Y ¢, t**converges, so by the preceding theorem, Y, c,t**
converges, so the proof of the theorem is complete.

Remark 3.1. The number R in case 3 of theorem 3.2 is called the radius of convergence
of the conformable power series. By convention, the radius of convergence is R = 0 in
case 1 and R = oo in case 2.

Remark 3.2. Suppose that the following conformable power series Y5, ¢ t*%, t > 0 has
the radius of convergence R > 0. As in the classical case, [19], it is easy to prove that if
0 < p <R, then the conformable power series converges uniformly on the interval
[0, p], and the sum of the series is continuous in [0, R].

Remark 3.3. To study the convergence of the conformable power series, we test that by

ratio test as follows, [10]:

. tha _ | Cr |
im |————— im
k=0 |Cpy t*FDE| koo [opy 7
Now if we assume [ = lim , then:

k—oo Icgyql’

(i) If [ =0, the series will diverge for all t # 0.
(i) If 0 <l < oo, then ¢, t"* convergesif 0 <t < l% and diverges if t > lé.
(iii) If | = oo, the series converges for all t € [0, o).

Example 3.1.

(i) The geometric series Z,‘j’zo th* =1+t 4+ t2* + - has radius of convergence

R =1,sincel = Illm =1. Att =1, the seriesbecomes 1+ 1+ 1+ 1+ -,

Ck+1

which diverges. Thus, the interval of convergence of the power series is [0,1).
The series converges uniformly on [0, p] for every 0 < p < 1, but it does not

converge uniformly on [0,1).

. . o thka te t2a t3a
(i) Let 0 <a<1. The power series Y o =1+—+——+——+- has a
i . . ak i k+1)|
radius of convergence R = o0, since [ = lim = —| =
k—oo 1C41 kﬁw ak!

’lim alk+1) = oo,



Asia Pac. J. Math. 2020 7:31 8 of 14

(iii) The power series Ypro(kD)tk® = 1+ ¢t* + (2D)t2* + (3D¢3* + -+ has a radius of

Ck
Ck+1

) k! .
= lim |—| = lim —
k—oo | (k+1)! k—oo k+1

=0.

convergence R = 0, since [ = lim

k00
Remark 3.4. As in the classical case, we will show that the sum of a conformable power
series f(t) = co + c1t* + ct2* + ¢c3t3% + -+ is infinitely a —differentiable inside its
interval of convergence, and its @ —derivative (T, f)(t) = ac, + 2ac,t* + 3acst?® + -+ is
given by the term-by-term differentiation. To prove this, we first show that the term-by-
term a —derivative of a power series has the same radius of convergence as the original
power series.

Theorem 3.3. Suppose that the power series Y=o Cx t** has radius of convergence R. Then the

(k-1Da

power series Y- kacy t also has radius of convergence R.

Proof. Suppose 0 < t < R. Choose p suchthat 0 <t <p <R,and letr = % , 0<r<1

To estimate the terms in the a —differentiated power series by the terms in the original

series, we re-write their absolute values as follows:

ka /t (k—-Da kar(k—l)a
L o N
The ratio test shows that ¥ kac,t*~D? converges since lim fer e = lim [(1—
k & k—oo | (k+1)rka k—oo
L)i =151
k+1/ re ra

Hence, the sequence kr*~D¢ is bounded, say by M. It follows that |kac,t*D%| <

M . . .
pr lckp¥¥| for all k € N. The series Y|c,p**| converges, since p < R, so the comparison

test implies that ¥ kac,t®*~V* converges absolutely. On the contrary, suppose that t >
R. Then, ¥|c,t*¥| diverges (since ¥, ¢, t*® diverges) and |kac,t®*~D%| > % lc, t*¥| for k >
1, so the comparison test implies that ¥, kac,t ¥~D* diverges. Thus, the series have the
same radius of convergence.

Theorem 3.4. Suppose that the power series f(t) = Yqeo Cx t** for all t € [0, R), has the radius

of convergence R > 0 and sum f. Then, f is a —differentiable in [0, R), and
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(Tef)(®) = Xty kacy t D,

Proof. The term-by-term differentiated conformable power series converges in [0, R) by
theorem 3.3. Denote its sum by g(t) = Yp; kac, t ¥~ Let 0 < p < R. Then, by remark
3.2, the power series for f and g both converge uniformly in [0,p). Applying the
classical result on the differentiability of the sequences of functions, [19], to their
succession of partial sums, we conclude that f is differentiable in [0, p) and (T, f)(t) =
g(t). Since this holds for every 0 < p <R, it follows that f is differentiable in [0, R) and
(T.f)() = g(t), which proves the result. Repeated application of theorem 3.4 implies
that the sum of a power series is infinitely a —differentiable inside its interval of
convergence and its derivatives are given by the term-by-term differentiation of the
conformable power series. Furthermore, we can get an expression for the coefficients cj,
in terms of the function f; they are simply known as the conformable Taylor coefficients
of f at 0.

Theorem 3.5. If the power series f(t) = Yo Cx t** has a radius of convergence R > 0, then f

(“15 )0
akk!

is infinitely a —differentiable in [0, R), and ¢}, =
Proof. By applying theorem 3.4 to the power series f(t) = ¢y + c1t% + c,t** + c3t3* +
o+ t** + ..., n times, we find that f has a —derivatives of every order in [0, R), and
(DT () = acy + 2ac,t* + 3acst?® + - + kac t®=Da 4 ...
(PT, @) = 2a2c, + (3 2)a?cst?® + -+ k(k — Dact*k—Da 4 ...

OT,H® = 32 - Dadest® + -+ k(k — Dk — 2)a3c t k=2 + ...

k!

alc, tk—ma 4 ...
(k —n)! k

(DT () = (Darc, + -+

where all of these power series have the same radius of convergence R. Finally, we
obtain:

(1)Ta 0 (n)Ta 0
co=f(0),c; = % e, Cp = %, which proves the result.
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Remark 3.5. If the power series is centered at point t, > 0, from the above theorem, it is
easy to obtain:

_ (*Tep) (o)
k= "ann

, forevery k = 0,1,2, ...
Finally, we will show that the conformable power series can be integrated term by term
on every closed interval that contains in its interval of convergence.

Theorem 3.6. Suppose that the power series Yp-q cj t“* has a radius of convergence R > 0.

Then:

t(k+1)a'

(i) The a —integrated power series Y,p—g converges for all t, € [0, R).

(k+1)a

(ii) If t € [0, R), it is verified that

t o (o] t [ee]
f Z Cie xka dx — Z ] Ckxka dx — 2 Ck t(k+1)a
0 xi-@ i xi-@ i (k+1a

k=0

Proof.

(k+Da to | kl

t kto

|(k+1)a - (k+1)a ¢

(i) From a certain k, — —5 =1 Then, we have:

According to the comparison test, the integrated series converges.
(ii) Since Y, ¢, x** is a series of continuous functions that converge uniformly in the

closed interval [0,t], we can integrate term by term. The above equality is a

consequence of the convergence of }; t (kK+D@ at both 0 and t.

(k+1)

Example 3.2. Let 0 < a <1. The power series Yg_,(k + 1) at*® has a radius of

(k+Da
k—oo (k+2)a -

Ck
Ck+1

convergence R = 1 since we have: [ = lim

k—oo

By taking f(t) = X(k + 1)at*® forall t € [0,1), we have:

j <Z(k +1) at"“)

By differentiating both sides of the above equality, we obtain: (T, f)(t) =
t* a
(Ta f) (l—t“) = -t

o0}

dt t*
k 1 tka — t(k+1)a'=
f (k+Dat =" —

k=0
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4. Conformable Sequential Fractional Airy Differential Equation

Consider the following conformable fractional Airy differential equation:

4.1) (P, y)®©) - a?t%y(t) = 0

where a € [0,1). If a =1, then Eq. (4.1) becomes the classical Airy differential equation,
which has many applications in diffraction theory, [20]. t = 0 is an ordinary point of
(4.1). Now, by using the power series method, [9,10], and proposing the following
solution:

(4.2) y(6) = X et

By substituting (4.2) and its conformable fractional derivatives in (4.1), we have

2¢, + Z[(k +2)(k + 1)Chuy — Cpq] 54 = 0

k=1
. . . Cl—

The above equation implies: ¢, = 0; cp4, = m k=123, ..

Hence, we obtain the following: c; = ¢ =cg =¢y; =+ =0
(Bk—2)(3k—5)...1
C3p = (3]{)' Co ,k = 1,2,3,
Bk—-1)Bk—-4)..1
C3k+1 = (Sk n 1)| Cq ,k = 1,2,3,

As a result, we have the following general solution of (4.1):

O) = o (1 . z (3k —2)(3k - 5) ... 1 t3k“>
k=1

(3k)!

e, (1 . Z (3k — D)3k — 4) ...1 t(3k+1)“>
k=1

Gk + 1)!
Remark 4.1. Note that the above equation can be written in the following form:

y(t) = coy1 (1) + c1y,(0)

where

_ o (Bk—2)(3k-5)..1 3 _ o (Bk-1)(3k-4)..1  (3k+1
43) y®O=1+X (G5 7O =1 +Zk=1Wt( ta
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To find the radius of convergence of the series (4.3), we will use the ratio test as

follows:

Bk+3)!(3k—-2)(3k—5)...1

‘ = ’lim(Bk +3)(Bk+2)=

k—oo | (Bk)!(Bk+1)Bk—-2)..1
Bk +4)! Bk -1)GBk—4)..1|
M Gk DIGk+ @k —D . 1| Ak T HEk+3) =

Thus, the radius of convergence is oo in both cases.

5. Conclusions

The main goal of this work has been achieved by providing a generalized fractional
power series formulation. The conformable fractional derivatives have been used in
constructing some of important theorems and relations. The ratio test has been
successfully established for this generalized formulation, and all conformable
differentiability and integrability theorems of the sum of a power series have been
successfully proved. All proposed theorems have been used for approximating the
fractional derivatives and integrals of functions that are represented as a fractional
power series. These results have been validated as efficient and simple tool for solving
fractional differential equations such as the conformable fractional Airy differential

equation.
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