STEPANOV-LIKE PSEUDO ALMOST AUTOMORPHIC DYNAMICS OF QVRNNS WITH MIXED DELAYS ON TIME SCALES VIA A DIRECT METHOD

MOHSSINE ES-SAIYDY, MOHAMED ZITANE*

Moulay Ismail University, Faculty of Sciences, Department of Mathematics,
MACS laboratory, Meknès, Morocco
*Corresponding author: m.zitane@umi.ac.ma

Received Aug. 14, 2020

ABSTRACT. In this paper, we are concerned with a class of quaternion-valued recurrent neutral neural networks (QVRNNs) with time-varying delays and infinite distributed delays on time scales. With the help of the Stepanov like pseudo almost automorphy on time scales, Banach’s fixed point theorem, the theory of time scale calculations, and constructing a suitable Lyapunov functional, a set of sufficient criteria that guarantee the existence, uniqueness and the globally \mathcal{S}^p-exponential stability of Stepanov-like pseudo almost automorphic solution on time scales of this class of neural networks are established via a direct method. In other words, we do not decompose the considered QVRNNs into real-valued systems or complex-valued systems. Finally, two numerical examples and simulations (for $\mathbb{T} = \mathbb{R}$ and \mathbb{Z}) are performed to verify our theoretical results.

2010 Mathematics Subject Classification. 43A60; 34C27; 34N05; 34C27; 34N05; 26A18; 26E70.
Key words and phrases. time scales; Bochner-like transform; quaternion-valued neural networks; Stepanov-like pseudo almost automorphy; global exponential stability.

1. INTRODUCTION

The artificial neural network has been used in recent decades to simulate the structure and function of the biological neural network. As a consequence, the neural networks (NNs) proposed by Chua and Yang ([2]) have attracted growing attention because of their broad range of applications in, for example, function approximation, pattern recognition, associative memory, computing technology, nonlinear programming and combinatorial optimization ([22, 24, 27]). Recently, recurrent neural networks (RNNs) have become a good tool for the approximating dynamical systems and are capable...
of learning the characteristics and modeling sequential data. They can be trained to reproduce any
target dynamics, up to a certain degree of accuracy. As a result they have become of increasing interest
to the various scientific research communities ([22, 29, 35]). As is well known, the time delays that
inevitably appear in both biological and artificial neural networks caused by the finite switching speed
of neurons and amplifiers will affect the stability of neural networks. Moreover, the effect of time-delay
on the dynamic behavior of systems has become a primary problem of delay, based on engineering
technology and natural sciences ([13, 15]). Consequently, over the last decades, neural networks with
different types of delay (discrete, distributed,...) and their dynamic characteristics have been widely
studied ([3, 20, 23]).

On the one hand, the theory of time scales, which originated in the work of Setefan Hilger in his
Ph.D. thesis in 1988 ([17]), has as its main goal the unification continuous analysis and discrete
analysis. Therefore, the study of dynamic equations on time scales allows us to avoid producing
separate results for differential equations on the one hand, and for difference equations on the other
hand ([5, 11, 19, 26]). Hence, when we choose $\mathbb{T} = \mathbb{R}$ (resp. $\mathbb{T} = \mathbb{Z}$), we get the result corresponding
to the differential equations (resp. difference equations). Besides, since there are other time scales,
not just the set of real numbers and the set of integers numbers, we have a much more general result.
Furthermore, discrete recurrent neural networks are more practical for computation and numerical
simulation than continuous recurrent neural networks. Then, it is useful to study the dynamics of neural
networks on time scales([10, 32]).

On the other hand, almost automorphy is a very important and powerful dynamic behavior of
neural networks that have been extensively investigated by a number of researchers ([8, 9, 34, 36, 37]).
The notion of Stepanov-like pseudo almost automorphy ($SPPA$) on time scales, which is a natural
generalization of the concepts of pseudo almost periodic, pseudo almost automorphic, Stepanov-like
almost automorphic and Stepanov-like pseudo almost periodic and much more general and plays a very
important role in better understanding the almost periodicity, was introduced in the literature by M.
Es-saiydy an M. Zitane ([12]).

Moreover, in 1840, the Irish mathematician Hamilton ([18]) invented the quaternion algebra, it
includes real numbers and complex numbers. Quaternion algebra has been widely used in a variety
of fields, including theoretical physics, modern mathematics, geometry, NNs, image processing and
robotics ([16, 21, 25]). Another practical application of applying quaternion is that it can exploit and
treat 3-or 4-dimensional vectors in a single entity, which facilitates computation in 3-or 4-dimensional
situations, so that the efficient processing of information can be carried out through quaternionic
variable operations. Nevertheless, because the multiplication of quaternion numbers does not satisfy the commutative law, the research of quaternion-valued NNs (QVNNs) has had great difficulties. In addition, most of the existing results are obtained by decomposing QVNNs into real-VNNs ([7, 33]) or a complex-VNNs ([14, 28]). As a result, current results on QVNNs dynamics through direct methods are still very rare.

To the best of our knowledge, no such work has been done on the S_P^{p} PAA solution and S_P^{p}-globally exponential stability of real-valued RNNs, complex-valued RNNs or quaternion-valued RNNs on time scales. It is therefore a difficult and important problem in theories and applications. Motivated by the above analysis and discussion, the main purpose of this paper is to study the existence and S_P^{p}-global exponential stability of S_P^{p} PAA solution of quaternion-valued recurrent neural networks (QVRNNs) with mixed time-varying delays on time scales by direct methods. Further, our methods proposed in this paper can be used to study the problem of Stepanov-like almost periodic solution and Stepanov-like almost automorphic solution for other types of discrete- or continuous- QVNNs such as quaternion-valued Hopfield NNs, Cohen-Grossberg NNs and quaternion-valued BAM.

This paper is organized as follows: In section 2, the QVRNNs with mixed time-varying delays on time scales are presented and we introduce some necessary definitions and lemmas which are needed in later sections. In section 3, we establish some sufficient conditions for the existence and S_P^{p}-global exponential stability of S_P^{p} PAA solution for QVRNNs with mixed time-varying delays on time scales. In section 4, two numerical examples and simulations are given to demonstrate the feasibility of our theoretical results.

2. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we shall first recall some fundamental definitions, lemmas which are used in what follows. Throughout this paper we fix $p \geq 1$ and $(X, \| \cdot \|)$ is a Banach space. We denote by \mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C} and \mathbb{H} the set of positive integers, the set of integers, the set of real, the set of complex numbers and the algebra of quaternion respectively. The skew field of the quaternion is determined by $\mathbb{H} := \{x; x = x^R + x^I i + x^J j + x^K k\}$, where x^R, x^I, x^J and x^K are real numbers and the elements i, j, and k obey the Hamilton’s multiplication rules: $ij = -ji = k$, $jk = -kj = i$, $ki = -ik = j$, $i^2 = j^2 = k^2 = -1$. Moreover, the quaternion conjugate is defined as $\bar{x} = x^R - x^I i - x^J j - x^K k$, and the norm of x is defined by $|x|_H = \sqrt{x\bar{x}}$.

In this paper, we consider the following quaternion-valued recurrent neural networks (QVRNNs) with mixed time-varying delays on time scales:

\[
x_l^A(t) = -a_l(t)x_l(t) + \sum_{m=1}^{n} b_{lm}(t)f_m(x_m(t)) + \sum_{m=1}^{n} c_{lm}(t)g_m(x_m(t - \xi_m(t))) \\
+ \sum_{m=1}^{n} d_{lm}(t) \int_{-\infty}^{t} N_{lm}(t-z)h_m(x_m(z))\Delta z + I_l(t), \quad t \in \mathbb{T}.
\]

(2.1)

Where \(l \in \{1, 2, ..., n\} \), \(n \) corresponds to the number of units in neural networks, \(\mathbb{T} \) is an almost periodic time scale; \(\mathbb{H} \) is a Quaternion algebra; \(x_l(t) \in \mathbb{H} \) corresponds to the state of the \(lth \) unit at time \(t \), \(a_l(t) = \text{diag}\{a_i(t)\}_{i=1}^{n} \) represents the rate with which the \(\text{ith} \) neuron will reset its potential to the resting state in isolation when they are disconnected from the network and the external inputs at time \(t \), \(f_m, \ g_m \) and \(h_m : \mathbb{H} \rightarrow \mathbb{H} \) are output transfer functions, \(b_{lm}(\cdot), \ c_{lm}(\cdot), \ d_{lm}(\cdot) \) present the connection weights, the discretely delayed connection weights, and the distributively delayed connection weights, of the \(mth \) neuron on the \(l \) neuron, respectively. \(\xi_m(\cdot) \) corresponds to transmission delays at time \(t \) and satisfy \(t - \xi_m(t) \in \mathbb{T} \) for \(t \in \mathbb{T} \), \(N_{lm} \) is the delay kernel function, \(I_l(\cdot) \) denote the state bias of the \(lth \) neuron. The initial condition of system (2.1) is of the form

\[
x_l(s) = \psi_l(s), \quad s \in (-\infty, 0]_{\mathbb{T}},
\]

where \(\psi_l \) is rd-continuous and \(\psi_l \in L^0_{\text{loc}}\left((-\infty, 0]_{\mathbb{T}}, \mathbb{H}\right) \ l = 1, ..., n.\)

Remark 2.1.

1) If \(\mathbb{T} = \mathbb{Z} \), Then sys.(2.1) can be transformed into the form below:

\[
x_l(k + 1) - x_l(k) = -a_l(k)x_l(k) + \sum_{m=1}^{n} b_{lm}(k)f_m(x_m(k)) \\
+ \sum_{m=1}^{n} c_{lm}(k)g_m(x_m(k - \xi_m(k))) \\
+ \sum_{m=1}^{n} d_{lm}(k) \int_{-\infty}^{k} N_{lm}(k-z)h_m(x_m(k))dz + I_l(k), \quad k \in \mathbb{Z}.
\]

2) If \(\mathbb{T} = \mathbb{R} \), Then sys.(2.1) can be transformed into the form below:

\[
x_l'(t) = -a_l(t)x_l(t) + \sum_{m=1}^{n} b_{lm}(t)f_m(x_m(t)) + \sum_{m=1}^{n} c_{lm}(t)g_m(x_m(t - \xi_m(t))) \\
+ \sum_{m=1}^{n} d_{lm}(t) \int_{-\infty}^{t} N_{lm}(t-z)h_m(x_m(z))dz + I_l(t), \quad t \in \mathbb{R}.
\]

2.1. **Time scales.**

Definition 2.1 ([6]). An arbitrary nonempty closed subset \(\mathbb{T} \) of the set of real numbers \(\mathbb{R} \) is called a time scale. The forward and backward jump operators \(\sigma, \psi : \mathbb{T} \rightarrow \mathbb{T} \) and the graininess \(\mu : \mathbb{T} \rightarrow \mathbb{R}^+ \).
are defined, respectively, by \(\sigma(t) = \inf\{s \in \mathbb{T} : s > t\} \), \(\psi(t) = \sup\{s \in \mathbb{T} : s < t\} \), \(\mu(t) = \sigma(t) - t \).

A point \(t \in \mathbb{T} \) is called left-dense if \(t > \inf \mathbb{T} \) and \(\psi(t) = t \), left-scattered if \(\psi(t) < t \), right-dense if \(t < \sup \mathbb{T} \) and \(\sigma(t) = t \), and right-scattered if \(\sigma(t) > t \). A function \(f : \mathbb{T} \rightarrow \mathbb{R} \) is called right-dense continuous if it is continuous at all right-dense points in \(\mathbb{T} \) and its left-side limits exist (finite) at left-dense points in \(\mathbb{T} \). A function \(f : \mathbb{T} \rightarrow \mathbb{R} \) is called continuous if and only if it is both left-dense continuous and right-dense continuous. A function \(p : \mathbb{T} \rightarrow \mathbb{R} \) is called regressive provided that it is continuous at all right-dense points in \(\mathbb{T} \). The set of all regressive and rd-continuous functions \(p : \mathbb{T} \rightarrow \mathbb{R} \) will be denoted by \(\mathcal{R} = \mathcal{R}(\mathbb{T}) = \mathcal{R}(\mathbb{T}; \mathbb{R}) \). We define the set \(\mathcal{R}^+ \) of all positively regressive elements by \(\mathcal{R}^+ = \mathcal{R}^+(\mathbb{T}) = \mathcal{R}^+(\mathbb{T}; \mathbb{R}) = \{ p \in \mathcal{R} : 1 + \mu(t)p(t) > 0 \) for all \(t \in \mathbb{T} \}. \)

Let \(a, b \in \mathbb{T} \), with \(a \leq b \), \([a,b],[a,b), (a,b], (a,b)\) being the usual intervals on the real line. The intervals \([a,a), (a,a], (a,a)\) are understood as the empty set, and we use the following symbols:

\[
[a,b]_\mathbb{T} = [a,b] \cap \mathbb{T} \quad [a,b)_\mathbb{T} = [a,b) \cap \mathbb{T} \\
(a,b]_\mathbb{T} = (a,b] \cap \mathbb{T} \quad (a,b)_\mathbb{T} = (a,b) \cap \mathbb{T}.
\]

Definition 2.2 ([6]). A time scale \(\mathbb{T} \) is called invariant under translations if

\[
\Pi = \{ \tau \in \mathbb{R} : t \pm \tau \in \mathbb{T}; \forall t \in \mathbb{T} \} \neq \{0\}.
\]

Definition 2.3 ([6]). For \(f : \mathbb{T} \rightarrow X \) and \(s \in \mathbb{T} \setminus \{\max \mathbb{T}\} \), \(f^\Delta(t) \in X \) is the delta derivative of \(f \) at \(s \) if for \(\varepsilon > 0 \), there is a neighborhood \(V \) of \(s \) such that for \(t \in V \),

\[
\| f(\sigma(s)) - f(t) - f^\Delta(s)(\sigma(s) - t) \| < \varepsilon | \sigma(s) - t | .
\]

Moreover, \(f \) is delta differentiable on \(\mathbb{T} \) provided that \(f^\Delta(s) \) exists for \(s \in \mathbb{T} \).

Lemma 2.1 ([6]). Considering that \(f, g \) be delta differentiable functions on \(\mathbb{T} \), then:

1) \((\lambda_1 f + \lambda_2 g)^\Delta = \lambda_1 f^\Delta + \lambda_2 g^\Delta \), for any constants \(\lambda_1, \lambda_2 \);

2)

\[
(fg)^\Delta(t) = (f)^\Delta(t)g(t) + f(\sigma(t))(g)^\Delta(t) \\
= f(t)(g)^\Delta(t) + (f)^\Delta(t)g(\sigma(t));
\]

3) If \(f \) and \(f^\Delta \) are continuous, then

\[
\left(\int_a^t f(t,s) \Delta s \right)^\Delta = f(\sigma(t), t) + \int_a^t f(t,s) \Delta s.
\]
Definition 2.4 ([6]). If \(p \in \mathcal{R} \), then we define the exponential function by:

\[
\hat{e}_p(t, s) = \exp \left\{ \int_s^t \xi\mu(t)(p(t)) \Delta \tau \right\},
\]

for \(s, t \in \mathbb{T} \), with the cylinder transformation

\[
\xi_m(z) = \begin{cases}
\frac{\log(1 + h)}{h}, & \text{if } h \neq 0, \\
z, & \text{if } h = 0.
\end{cases}
\]

Definition 2.5 ([6]). If \(p, q \in \mathcal{R} \), then we define a circle plus addition by

\[
(p \oplus q)(t) := p(t) + q(t) + p(t)q(t)\mu(t),
\]

for all \(t \in \mathbb{T} \setminus \max(\mathbb{T}) \). For \(p \in \mathcal{R} \), define a circle minus \(p \) by

\[
\ominus p = -\frac{p}{1 + \mu p}.
\]

Lemma 2.2 ([6]). Let \(p, q \in \mathcal{R} \), and \(t, s, r \in \mathbb{T} \). Then,

1) \(\hat{e}_0(t, s) = 1 \) and \(\hat{e}_p(t, t) = 1 \);
2) \(\hat{e}_p(\sigma(t), s) = (1 + p(t)\mu(t))\hat{e}_p(t, s) \);
3) \(\hat{e}_p(t, s) = \frac{1}{e_p(s, t)} = \hat{e}_{\ominus p}(s, t) \);
4) \(\hat{e}_p(t, r)\hat{e}_p(r, s) = \hat{e}_p(t, s) \);
5) \((\hat{e}_p(t, s))^{\Delta} = p(t)\hat{e}_p(t, s) \);
6) If \(a, b, c \in \mathbb{T} \). Then,

\[
\int_a^b \hat{e}_p(c, \sigma(t)) p(t) \Delta t = \hat{e}_p(c, a) - \hat{e}_p(c, b).
\]
7) For \(t_0 \in \mathbb{T} \), \(\hat{e}_{\ominus \lambda}(t_0, \cdot) \) is increasing on \((-\infty, t_0]_\mathbb{T}\).

Lemma 2.3 ([6]). Assume \(p \in \mathcal{R} \), and \(t_0 \in \mathbb{T} \). If \(1 + \mu(t)p(t) > 0 \) for all \(t \in \mathbb{T} \), then, \(\hat{e}_p(t, t_0) > 0 \) for all \(t \in \mathbb{T} \).

Definition 2.6 ([1]). Let \(F_1 = \{[t, s]_\mathbb{T} : t, s \in \mathbb{T} \text{ with } t \leq s\} \). Define a countably additive measure \(m_1 \) on \(F_1 \) by assigning to every \([t, s]_\mathbb{T} \in F_1\) its length, i.e;

\[
m_1([t, s]_\mathbb{T}) = s - t.
\]

Using \(m_1 \), we can generate the outer measure \(m_1^* \) on \(P(\mathbb{T}) \) (the power set of \(\mathbb{T} \)): for \(E \in P(\mathbb{T}) \),

\[
m_1^*(E) = \begin{cases}
\inf_\mathbb{R} \{\sum_{i \in I_\mathbb{B}} (s_m - t_m) \} \in \mathbb{R}^+, & \beta \notin E, \\
+\infty, & \beta \in E,
\end{cases}
\]
where $\beta = \sup \mathbb{T}$, and,

$$B = \left\{ \left[t_m, s_m \right]_{T \in F_1} : I_B \subset \mathbb{N}, E \subset \cup_{i \in I_B} \left[t_m, s_m \right]_{T} \right\}.$$

A set $A \subset \mathbb{T}$ is called Δ–measurable if for $E \subset \mathbb{T}$,

$$m^*_1(E) = m^*_1(E \cap A) + m^*_1(E \cap (\mathbb{T} \setminus A)).$$

Let

$$\mathcal{M}^*(m^*_1) = \{ A, \text{A is } \Delta - \text{measurable subset in } \mathbb{T} \}.$$

Restricting m^*_1 to $\mathcal{M}^*(m^*_1)$, we get the Lebesgue Δ–measure, which is denoted by μ_Δ.

Definition 2.7 ([1]). $f : \mathbb{T} \to X$ is a Δ–measurable function if there exists a simple function sequence $\{ f_k : k \in \mathbb{N} \}$ such that, $f_k(s) \to f(s)$ a.e. in \mathbb{T}.

Definition 2.8 ([1]). $f : \mathbb{T} \to X$ is a Δ–integrable function if there exists a simple function sequence $\{ f_k : k \in \mathbb{N} \}$ such that $f_k(s) \to f(s)$ a.e. in \mathbb{T} and,

$$\lim_{k \to \infty} \int_\mathbb{T} \| f_k(s) - f(s) \| \Delta s = 0.$$

Then, the integral of f is defined as

$$\int_\mathbb{T} f(s) \Delta s = \lim_{k \to \infty} \int_\mathbb{T} f_k(s) \Delta s.$$

Definition 2.9 ([1]). For $p \geq 1$, $f : \mathbb{T} \to X$ is called locally L^p Δ–integrable if f is Δ–measurable and for any compact Δ–measurable set $E \subset \mathbb{T}$, the Δ–integral

$$\int_E \| f(s) \|^p \Delta s < \infty.$$

The set of all L^p Δ–integrable functions is denoted by $L^p_{loc}(\mathbb{T};X)$.

Theorem 2.1 ([4]). If $a, b \in \mathbb{T}$, with $a \leq b$, then,

1. $\mu_\Delta ([a, b)) = b - a,$

2. $\mu_\Delta ((a, b)) = b - \sigma(a).$

Theorem 2.2 ([4]). If $a, b \in \mathbb{T} \setminus \{ \max \mathbb{T} \}$, with $a \leq b$, then,

1. $\mu_\Delta ([a, b]) = \sigma(b) - \sigma(a),$

2. $\mu_\Delta ([a, b]) = \sigma(b) - a.$
2.2. **Stepanov-like pseudo almost automorphic functions on** \(T \). This subsection is devoted to definitions, the important properties of Stepanov-like pseudo almost automorphic functions on time scales introduced by M. Essaïdy and M. Zitane (\cite{12}).

Definition 2.10 (\cite{12}). We say that \(f : T \to \mathbb{H} \) is almost automorphic if from every sequence \(\{s_n\}_{n=1}^{\infty} \subset \Pi \), we can extract a subsequence \(\{\tau_n\}_{n=1}^{\infty} \) such that:

\[
g(t) = \lim_{n \to \infty} f(t + \tau_n)
\]

is well defined for each \(t \in T \) and

\[
\lim_{n \to \infty} g(t - \tau_n) = f(t)
\]

for each \(t \in T \). Denote by \(AA(T, \mathbb{H}) \) the set of all such functions.

Definition 2.11 (\cite{12}). Let \(t_0 \in T \) and \(r \in \Pi \). A function \(f \in BC(T, \mathbb{H}) \), is said to be ergodic if

\[
\lim_{r \to +\infty} \frac{1}{2r} \int_{r_0-r}^{r_0+r} \|f(s)\|_{\mathbb{H}} \Delta s = 0
\]

The space of all such functions is denoted by \(PAA_0(T, \mathbb{H}) \).

Definition 2.12 (\cite{12}). A function \(f \in BC(T, \mathbb{H}) \) is called pseudo almost automorphic if \(f = g + h \) where \(g \in AA(T, \mathbb{H}) \) and \(h \in PAA_0(T, \mathbb{H}) \).

We set,

\[
K = \begin{cases}
\inf \{ |\tau| : \tau \in T, \tau \neq 0 \}, & \text{if } T \neq \mathbb{R}, \\
1, & \text{if } T = \mathbb{R}.
\end{cases}
\]

Let \(f \in L_{loc}^p(T, \mathbb{H}) \), for \(1 \leq p < \infty \). Define:

- \(\| \cdot \|_{Sp} : L_{loc}^p(T, \mathbb{H}) \to \mathbb{R}^+ \) as:
 \[
 \| f \|_{Sp} = \sup_{r \in \mathbb{T}_T} \left(\frac{1}{K} \int_{f^t}^{f^t+K} |f(s)|^p_{\mathbb{H}} \Delta s \right)^{\frac{1}{p}}.
 \]

- \(C_{rd}(T; \mathbb{H}) = \{ f : T \to \mathbb{H} : f \text{ is rd-continuous} \} \).

- \(BC_{rd}(T; \mathbb{H}) = \{ f : T \to \mathbb{H} : f \text{ is bounded and rd-continuous} \} \).

- \(L_{loc}^p(T; \mathbb{H}) = \{ f : T \to \mathbb{H} : f \text{ is locally } L^p \Delta - \text{integrable} \} \).

- \(BS^p(T; \mathbb{H}) = \{ f \in L_{loc}^p(T; \mathbb{H}) : \| f \|_{Sp} < \infty \} \).

Definition 2.13 (\cite{12}). Let \(f \in BS^p(T; \mathbb{H}) \) and \(F \in BS^p(T \times \mathbb{H}, \mathbb{H}) \).

1) We say that \(f : T \to \mathbb{H} \) is Stepanov-like almost automorphic if for every sequence \(\{s_n\}_{n=1}^{\infty} \subset \Pi \), we can extract a subsequence \(\{\tau_n\}_{n=1}^{\infty} \) such that

\[
\| g(t) - f(t + \tau_n) \|_{Sp} \to 0, \quad \text{as} \quad n \to \infty,
\]
is well defined for each \(t \in \mathbb{T} \) and
\[
\| g(t - \tau_n) - f(t) \|_{S^p} \to 0, \quad \text{as} \quad n \to \infty,
\]
for each \(t \in \mathbb{T} \). Denote by \(S^p{\text{AA}}(\mathbb{T}, \mathbb{H}) \) the set of all such functions.

2) A function \(F : \mathbb{T} \times \mathbb{H} \to \mathbb{H}, (t,x) \to F(t,x) \) is said to be Stepanov-like almost automorphic if \(t \to F(t,x) \) is Stepanov almost automorphic in \(t \in \mathbb{T} \) uniformly for each \(x \in \mathbb{H} \). Denote by \(S^p{\text{AA}}(\mathbb{T} \times \mathbb{H}, \mathbb{H}) \) the collection of such functions.

Definition 2.14 ([12]). A function \(f \in BS^p(\mathbb{T}, \mathbb{H}) \) is said to be Stepanov-like ergodic on \(\mathbb{T} \) if:
\[
\lim_{r \to +\infty} \frac{1}{2r} \int_{t-r}^{t+r} \left(\frac{1}{K} \int_{t-r}^{t+r} | f(s) |^p_{\mathbb{H}} \Delta s \right)^{\frac{1}{p}} \Delta t = 0.
\]
The space of all such functions will be denoted by \(S^p{\text{PAA}}_0(\mathbb{T}, \mathbb{H}) \).

Definition 2.15 ([12]). A function \(f \in BS^p(\mathbb{T}, \mathbb{H}) \) is said to be Stepanov-like pseudo almost automorphic on \(\mathbb{T} \) or briefly \(S^p \text{ pseudo almost periodic} \) if \(f \) is written in the following form:
\[
f = g + \phi,
\]
where \(g \in S^p{\text{AP}}(\mathbb{T}, \mathbb{H}) \) and \(\phi \in S^p{\text{PAA}}_0(\mathbb{T}, \mathbb{H}) \). The space of all such functions will be denoted by \(S^p{\text{PAA}}(\mathbb{T}, \mathbb{H}) \).

Definition 2.16 ([12]). A function \(f : \mathbb{T} \times \mathbb{H} \to \mathbb{H} \) such that \(f(\cdot, u) \in BS^p(\mathbb{T}, \mathbb{H}) \) for each \(u \in \mathbb{H} \) is said to be Stepanov-like pseudo almost automorphic if \(f \) is written in the following form:
\[
f = g + \phi,
\]
where \(g \in S^p{\text{AP}}(\mathbb{T} \times \mathbb{H}, \mathbb{H}) \) and \(\phi \in S^p{\text{PAA}}_0(\mathbb{T} \times \mathbb{H}, \mathbb{H}) \). The space of all such functions will be denoted by \(S^p{\text{PAA}}(\mathbb{T} \times \mathbb{H}, \mathbb{H}) \).

Next, we recall the Bochner-like transform for general time scales.

If \(\mathbb{T} \neq \mathbb{R} \), we fix a left scattered point \(\omega \in \mathbb{T} \), there is a unique \(n_t \in \mathbb{Z} \) such that \(t - n_t K \in (\omega, \omega + K)_{\mathbb{T}} \). Let
\[
N_t = \begin{cases}
 t, & \mathbb{T} = \mathbb{R}, \\
 n_t & \mathbb{T} \neq \mathbb{R}.
\end{cases}
\]

Definition 2.17 ([10]). Let \(f \in BS^p(\mathbb{T}, \mathbb{H}) \). The Bochner-like transform of \(f \) is the function \(f^c : \mathbb{T} \times \mathbb{T} \to \mathbb{H} \) defined for all \(t, s \in \mathbb{T} \) by
\[
f^c(t,s) = f(N_tK + s).
\]
And we have
\[\| f \|_{SP} = \| f^c \|_{\infty}. \]

Definition 2.18 ([12]). A function \(f \in BS^p(T, H) \) is said to be Stepanov-like pseudo almost automorphic if its Bochner-like transform \(f^c \) is pseudo almost automorphic in the sense that there exist two functions \(g, \phi \) such that \(f^c = g^c + \phi^c \), where \(g^c \in AA(T, BS^p(T, H)) \) and \(\phi^c \in PAA_0(T, BS^p(T, H)) \).

Lemma 2.4 ([12]).

1) If \(h, g \in SPAA(T, H) \), then \(h + g, hg \in SPAA(T, H) \).

2) If \(h \in SPAA(T, H) \) and \(g \in SPAP(T, H) \), then \(hg \in SPAA(T, H) \).

Proposition 2.1 ([12]). \((SPAA(T, H), \| \cdot \|_{SP}) \) is a Banach space.

3. Main Results

3.1. Existence of \(S^p \)-pseudo almost automorphic solution of (2.1) on \(T \).

In this section, we will study the existence and \(S^p \)-global exponential stability of Stepanov-like pseudo almost automorphic solution of system (2.1) on time scales.

We will list a few hypotheses which will be used for the rest of this paper.

\((S_1)\) : For all \(1 \leq l \leq n \), the function \(\xi_m(.) \in SPAA(T, H) \cap C^l_{rd}(T, H) \) such that
\[0 \leq \xi_m(.) \leq \xi, \quad 0 \leq \xi^* - \xi_m(.) < 1 - \xi^* m(.). \]

\((S_2)\) : For all \(1 \leq l, m \leq n \), the functions \(a_{lm}(.), b_{lm}(.), c_{lm}(.), d_{lm}(.) \in SPAA(T, H) \).

\((S_3)\) : There exist positive constants \(L^f_l, L^g_l, L^h_l \) such that for any \(u, v \in H \), the activity functions \(f_l, g_l, h_l \in C_{rd}(H, H) \) satisfy
\[|f_l(u) - f_l(v)|_H \leq L^f_l |u - v|_H, \]
\[|g_l(u) - g_l(v)|_H \leq L^g_l |u - v|_H, \]
\[|h_l(u) - h_l(v)|_H \leq L^h_l |u - v|_H. \]

Furthermore, we suppose that \(f_l(0) = g_l(0) = h_l(0) = 0 \).

\((S_4)\) : For all \(1 \leq l, m \leq n \), the delay kernel \(N_{lm} : [0, +\infty)_T \rightarrow [0, +\infty) \) is rd-continuous, \(\Delta - \)integrable and there exists \(\lambda > 0 \) such that \(\int_0^{+\infty} N_{lm}(z) \Delta z = N^* \).

\((S_5)\) : \(\varnothing < 1 \).

As a convenience, we have introduced these notations which simplify the writing of the equations:
\[b_{lm}^* = \sup_{t \in T} |b_{lm}(t)|_H, \quad c_{lm}^* = \sup_{t \in T} |c_{lm}(t)|_H, \quad d_{lm}^* = \sup_{t \in T} |d_{lm}(t)|_H, \quad \bar{\mu} = \sup_{t \in T} \mu(t). \]
\[\bar{a}_l = \inf_{t \in \mathbb{T}} a_l(t), \quad \bar{a}_l^* = \sup_{t \in \mathbb{T}} a_l(t) > 0, \quad \bar{a}_l = \inf_{t \in \mathbb{T}} a_l + \inf_{t \in \mathbb{T}} a_l \quad l = 1, ..., n, \]

\[\sigma = \max_{1 \leq t \leq n} \left\{ \frac{1}{r_l^*(q)} \left[\sum_{m=1}^{n} b_{lm}^L f_m + \sum_{m=1}^{n} \frac{c_{lm}^S L^h_m}{(1 - \xi^*_m)^{1/2}} + \sum_{m=1}^{n} d_{lm}^* L^h_m N^* \right] \right\}, \]

with \(r_l(q) = \frac{2 + \bar{a}_l \mu q}{\bar{a}_l q} \), \(\rho_l = \max_{1 \leq t \leq n} \frac{1}{r_l^*(q)} \left(r_l(q) r_l^*(p) \right) \| I \|_{S_p}, \)

\[r^* = \frac{\sigma \rho_l}{1 - \sigma}. \]

Lemma 3.1. Suppose that condition \((S_1)\) holds. If \(g \in S^p PAA(\mathbb{T}, \mathbb{H}) \) and \(\xi \in S^p PAA(\mathbb{T}, \mathbb{H}) \), then \(g(-\xi(\cdot)) \in S^p PAA(\mathbb{T}, \mathbb{H}) \).

Proof. Since \(f \in S^p PAA(\mathbb{T}, \mathbb{H}) \), then,

\[g(t - \xi(t)) = g_1(t - \xi(t)) + g_2(t - \xi(t)) := G_1(t) + G_2(t), \quad \forall t \in \mathbb{T} \]

where \(g_1 \in S^p PAA(\mathbb{T}, \mathbb{H}) \) and \(g_2 \in S^p PAA_0(\mathbb{T}, \mathbb{H}) \). It's obvious that \(G_1(t) = g_1(t - \xi(t)) \in S^p PAA(\mathbb{T}, \mathbb{H}) \).

It remains to show that \(G_2(.) = g_2(-\xi(\cdot)) \in S^p PAA_0(\mathbb{T}, \mathbb{H}) \). Since \(g_2 \in S^p PAA_0(\mathbb{T}, \mathbb{H}) \), we have for all \(t \in \mathbb{T} \),

\[F(t) = \left(\frac{1}{K} \int_t^{t+K} | g_2(s) |_{\mathbb{H}^p} \Delta s \right)^{\frac{1}{p}} \in S^p PAA_0(\mathbb{T}, \mathbb{H}). \]

Thus,

\[\lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | g_2(s - \xi(s)) |_{\mathbb{H}^p} \Delta s \right)^{\frac{1}{p}} \Delta t \]

\[\leq \frac{1}{(1 - \xi^* \Delta(s))} \lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K - \xi(t + k)} | g_2(z) |_{\mathbb{H}^p} \Delta z \right)^{\frac{1}{p}} \Delta t, \]

\[\leq \frac{1}{(1 - \xi^* \Delta(s))} \lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left| F(t - \xi) \right|_{\mathbb{H}^p} \Delta t, \]

\[\leq \frac{1}{(1 - \xi^* \Delta(s))} \lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left| F(t) \right|_{\mathbb{H}^p} \Delta t, \]

\[\leq \frac{1}{(1 - \xi^* \Delta(s))} \lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left| F(t) \right|_{\mathbb{H}^p} \Delta t, \]

\[= \frac{1}{(1 - \xi^* \Delta(s))} \lim_{r \to +\infty} \frac{r + \xi}{2(r + \xi)} \int_{t_0-r}^{t_0+r} \left| F(t) \right|_{\mathbb{H}^p} \Delta t, \]

\[= 0. \]

So, \(G_2 \in S^p PAA_0(\mathbb{T}, \mathbb{H}). \) \(\square \)
Lemma 3.2. If a function $g \in C_{rd}(\mathbb{H}, \mathbb{H})$ satisfies condition (S_4) and $x \in S^pPAA(\mathbb{T}, \mathbb{H})$, then $g \circ x \in S^pPAA(\mathbb{T}, \mathbb{H})$.

Proof. We have $x \in S^pPAA(\mathbb{T}, \mathbb{H})$, then $x = x_1 + x_2$ where $x_1 \in S^pPAA(\mathbb{T}, \mathbb{H})$ and $x_2 \in S^pPAA_0(\mathbb{T}, \mathbb{H})$. Hence,

$$g \circ x(.) = g \circ x_1(.) + g \circ x(.) - g \circ x_1(.) = G_1(.) + G_2(.),$$

where, $G_1(.) = g \circ x_1(.)$ and $G_2(.) = g \circ x(.) - g \circ x_1(.)$. Since $x_1 \in S^pPAA(\mathbb{T}, \mathbb{H})$, then for every sequence $\{s_n\}_{n=1}^{\infty} \subset \Pi$, we can extract a subsequence $\{\tau_n\}_{n=1}^{\infty}$ such that

$$\sup_{t \in \mathbb{T}} \left(\frac{1}{K} \int_t^{t+K} \left| x_1(s + \tau_n) - \varphi(s) \right|^p dx \right)^{\frac{1}{p}} \to 0, \quad \text{as} \quad n \to \infty.$$

We set $\varphi(.) := g \circ \varphi$, therefore,

$$\sup_{t \in \mathbb{T}} \left(\frac{1}{K} \int_t^{t+K} \left| g \circ x_1(s + \tau_n) - \varphi(s) \right|^p dx \right)^{\frac{1}{p}} \\
= \sup_{t \in \mathbb{T}} \left(\frac{1}{K} \int_t^{t+K} \left| g \circ x_1(s + \tau_n) - g \circ \varphi(s) \right|^p dx \right)^{\frac{1}{p}},$$

$$\leq L^g \sup_{t \in \mathbb{T}} \left(\frac{1}{K} \int_t^{t+K} \left| x_1(s + \tau_n) - \varphi(s) \right|^p dx \right)^{\frac{1}{p}}.$$

Then,

$$\sup_{t \in \mathbb{T}} \left(\frac{1}{K} \int_t^{t+K} \left| g \circ x_1(s + \tau_n) - \varphi(s) \right|^p dx \right)^{\frac{1}{p}} \to 0, \quad \text{as} \quad n \to \infty.$$

Because of that $x_1(.) \in S^pPAA(\mathbb{T}, \mathbb{H})$. Now,

$$\lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} \left| G_2(s) \right|^p dx \right)^{\frac{1}{p}} dt$$

$$= \lim_{r \to +\infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} \left| g \circ x(s) - g \circ x_1(s) \right|^p dx \right)^{\frac{1}{p}} dt,$$

$$\leq \lim_{r \to +\infty} \frac{L^g}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} \left| x(s) - x_1(s) \right|^p dx \right)^{\frac{1}{p}} dt,$$

$$\leq \lim_{r \to +\infty} \frac{L^g}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} \left| x_2(s) \right|^p dx \right)^{\frac{1}{p}} dt,$$

$$= 0.$$

As a consequence, $G_2(.) \in S^pPAA_0(\mathbb{T}, \mathbb{H})$. In conclusion, $g \circ x \in S^pPAA(\mathbb{T}, \mathbb{H})$. □

Lemma 3.3. Assume that (S_3) and (S_4) hold and $x(.) \in S^pPAA(\mathbb{T}, \mathbb{H})$, then for $l,m = 1,2,\ldots,n$, the function $t \to \int_{-\infty}^{t} N_{lm}(t-s) h_m(x_m(s)) ds$ belongs to $S^pPAA(\mathbb{T}, \mathbb{H})$, for all $t,s \in \mathbb{T}$.

Proof. We have $x_m \in S^p PAA(\mathbb{T}, \mathbb{H})$. Then,

$$
|\phi_{lm}(t)|_H \leq \left| \int_{-\infty}^{t} \left| N_{lm}(t - s) h_m(x_m(s)) \Delta s \right| \right|_H
$$

$$
\leq L^h \|x_m\|_{S^p} \int_{0}^{+\infty} |N_{lm}(s)| \Delta s
$$

$$
\leq N^* L^h \|x_m\|_{S^p}.
$$

which proves that the integral $\int_{-\infty}^{t} N_{lm}(t - s) h_m(x_m(s)) \Delta s$ is absolutely convergent and $\phi_{lm} \in BS^p(\mathbb{T}, \mathbb{H})$. Hence, it is easy to prove the rd-continuity of function ϕ_{lm}. Now, from lemma (3.2) we have, $h^c_m(x^c_m(\cdot)) \in PAA(\mathbb{T}, BS^p(\mathbb{T}, \mathbb{H}))$. Then, for all $1 \leq m \leq n$, we get

$$
h^c_m(x^c_m(\cdot)) = y^c_m(\cdot) + z^c_m(\cdot),
$$

Where $y^c_m(\cdot) \in AA(\mathbb{T}, BS^p(\mathbb{T}, \mathbb{H}))$ and $z^c_m(\cdot) \in PAA_0(\mathbb{T}, BS^p(\mathbb{T}, \mathbb{H}))$. Thus, for all $1 \leq m, l \leq n$, we can write ϕ_{lm} in the following form

$$
\phi_{lm}(t) = \int_{-\infty}^{t} N_{lm}(t - s) y^c_m(s) \Delta s + \int_{-\infty}^{t} N_{lm}(t - s) z^c_m(s) \Delta s
$$

$$
= y^c_{lm}(t) + z^c_{lm}(t).
$$

On the one hand, let us prove that $Y^c_{lm}(\cdot) \in AA(\mathbb{T}, BS^p(\mathbb{T}, \mathbb{H}))$. Since $y^c_m(\cdot) \in AA(\mathbb{T}, BS^p(\mathbb{T}, \mathbb{H}))$, so for every sequence $\{s_n\}_{n=1}^{\infty} \subset \Pi$, we can extract a subsequence $\{\tau_n\}_{n=1}^{\infty}$ such that

$$
\lim_{n \to \infty} y^c_m(t + \tau_n) = \varphi_m(t) \quad \text{and} \quad y^c_m(t) = \lim_{n \to \infty} \varphi_m(t - \tau_n).
$$

We pose $W_{lm} := \int_{-\infty}^{t} N_{lm}(t - s) \varphi_m(s) \Delta s$. Then we have

$$
\| Y^c_{lm}(t + \tau_n) - W_{lm}(t) \|_{S^p} = \| Y^c_{lm}(t + \tau_n) - W_{lm}(t) \|_{\infty}
$$

$$
= \left| \int_{-\infty}^{t + \tau_n} N_{lm}(t + \tau_n - s) y^c_m(s) \Delta s
$$

$$
- \int_{-\infty}^{t} N_{lm}(t - s) \varphi_m(s) \Delta s \right|_{\infty}
$$

$$
\leq \int_{-\infty}^{t} N_{lm}(t - s) \| y^c_m(s + \tau_n) - \varphi_m(s) \|_{\infty} \Delta s.
$$

By the Lebesgue dominated convergence theorem, we obtain

$$
\lim_{n \to \infty} Y^c_{lm}(t + \tau_n) = W_{lm}(t) \quad \forall t \in \mathbb{T}.
$$

Similarly, we can obtain

$$
y^c_{lm}(t) = \lim_{n \to \infty} W_{lm}(t - \tau_n) \quad \forall t \in \mathbb{T}.
$$
As a result, \(Y^{c}_{lm}(\cdot) \in AA(\mathbb{T}, BS^{p}(\mathbb{T}, \mathbb{H})) \).

On the other hand, it remains to show that \(Z^{c}_{lm}(\cdot) \in PAA_{0}(\mathbb{T}, BS^{p}(\mathbb{T}, \mathbb{H})) \). Indeed,

\[
\lim_{r \to \infty} \frac{1}{2r} \int_{t_{0}-r}^{t_{0}+r} \| Z_{lm}(s) \|_{SP} \Delta t = \lim_{r \to \infty} \frac{1}{2r} \int_{t_{0}-r}^{t_{0}+r} \| Z^{c}_{lm}(s) \|_{\infty} \Delta t \\
\leq \lim_{r \to \infty} \frac{1}{2r} \int_{t_{0}-r}^{t_{0}+r} \int_{0}^{\infty} N_{lm}(s) \| z_{m}(t-s) \|_{\infty} \Delta s \Delta t, \\
\leq \int_{0}^{\infty} N_{lm}(s) \lim_{r \to \infty} \frac{1}{2r} \int_{t_{0}-r}^{t_{0}+r} \| z_{m}(t-s) \|_{\infty} \Delta t \Delta s, \\
= 0.
\]

Thus, \(Y^{c}_{lm}(\cdot) \in PAA_{0}(\mathbb{T}, BS^{p}(\mathbb{T}, \mathbb{H})) \), then \(\phi^{c}_{lm}(\cdot) \in PAA(\mathbb{T}, BS^{p}(\mathbb{T}, \mathbb{H})) \). Finally, the function \(\phi_{lm} \) belongs to \(SP^{p}AA(\mathbb{T}, \mathbb{H}) \). \(\square \)

Theorem 3.1. Let \(\psi = (\psi_{1}, \ldots, \psi_{n}) \in SP^{p}AA(\mathbb{T}, \mathbb{H}) \). Under assumptions \((S_{1})-(S_{4})\), the nonlinear operator defined by,

\[
(\Pi_{\psi})_{l}(t) = \int_{-\infty}^{t} e_{\otimes a_{l}}(t, \sigma(s))J_{l}(s) \Delta s, \quad l = 1, \ldots, n.
\]

Where

\[
J_{l}(t) = \sum_{m=1}^{n} b_{lm}(t)f_{m}(\psi_{m}(t)) + \sum_{m=1}^{n} c_{lm}(t)g_{m}(\psi_{m}(t) - \xi_{m}(t)) \\
+ \sum_{m=1}^{n} d_{lm}(t) \int_{-\infty}^{t} N_{lm}(t-s) h_{m}(\psi_{m}(s)) \Delta s + l_{l}(t)
\]

maps \(SP^{p}AA(\mathbb{T}, \mathbb{H}) \) into itself.

Proof. It’s easy to see that \((\Pi_{\psi})_{l} \) is well defined and continuous. Again from lemma (3.1) and Lemma (3.3), we have \(J_{l}(\cdot) \) belongs to \(SP^{p}AA(\mathbb{T}, \mathbb{H}) \). Now, let \(J_{l} = Y_{l} + Z_{l} \) with \(Y_{l} \in SP^{p}AA(\mathbb{T}, \mathbb{H}), \ Z_{l}(\cdot) \in SP^{p}AA_{0}(\mathbb{T}, \mathbb{H}) \). For the sake of convenience, we break the proof in two steps.

First: We will prove that \((F_{\psi})_{l}(t) = \int_{-\infty}^{t} e_{\otimes a_{l}}(t, \sigma(s))Y_{l}(s) \Delta s \in SP^{p}AA(\mathbb{T}, \mathbb{H}) \). Since \(Y_{l}(\cdot) \in SP^{p}AA(\mathbb{T}, \mathbb{H}) \), then for every sequence \(\{s_{n}\}_{n=1}^{\infty} \subset \Pi, \) we can extract a subsequence \(\{\tau_{n}\}_{n=1}^{\infty} \) such that

\[
\sup_{t_{1} \in \Pi} \left(\frac{1}{K} \int_{t_{1}}^{t_{1}+K} | Y_{l}(t + \tau_{n}) - \phi_{l}(t) |_{\mathbb{H}}^{p} \Delta t \right)^{\frac{1}{p}} \to 0, \quad \text{as} \quad n \to \infty.
\]
We set \((\mathcal{Y}_\psi)_I(t) = \int_{-\infty}^t \hat{e}_{\Theta t}(t, \sigma(s)) \varphi_I(s) \Delta s \). Thus,

\[
\left| (F_\psi)_I(t + \tau_n) - (\mathcal{Y}_\psi)_I(t) \right|_{H^n} = \left| \int_{-\infty}^t \hat{e}_{\Theta t}(t, \sigma(s)) Y_I(s + \tau_n) \Delta s - \int_{-\infty}^t \hat{e}_{\Theta t}(t, \sigma(s)) \varphi_I(s) \Delta s \right|_{H^n},
\]

\[
\leq \int_{-\infty}^t \hat{e}_{\Theta t}(t, \sigma(s)) \left| Y_I(s + \tau_n) - \varphi_I(s) \right|_{H^n} \Delta s,
\]

\[
\leq \int_{-\infty}^t \hat{e}_{\Theta t}(0, \sigma(s)) \left| Y_I(t + s + \tau_n) - \varphi_I(t + s) \right|_{H^n} \Delta s,
\]

\[
\leq r_I^\frac{q}{\bar{p}} \left(\int_{-\infty}^0 \hat{e}_{\Theta t}(0, \sigma(s)) \left| Y_I(t + s + \tau_n) - \varphi_I(t + s) \right|_{H^n} \Delta s \right)^{\frac{1}{\bar{p}}}.\]

Fubini’s theorem implies that

\[
\sup_{t_1 \in T} \left(\frac{1}{K} \int_{t_1}^{t_1 + K} \left| (F_\psi)_I(t + \tau_n) - (\mathcal{Y}_\psi)_I(t) \right|_{H^n} \Delta t \right)^{\frac{1}{\bar{p}}}
\]

\[
\leq \sup_{t_1 \in T} \left(\frac{1}{K} \int_{t_1}^{t_1 + K} \int_{-\infty}^0 \hat{e}_{\Theta t}(0, \sigma(s)) \left| Y_I(t + s + \tau_n) - \varphi_I(t + s) \right|_{H^n} \Delta s \Delta t \right)^{\frac{1}{\bar{p}}},
\]

\[
\leq \int_{-\infty}^0 \hat{e}_{\Theta t}(0, \sigma(s)) \sup_{t \in T} \frac{1}{K} \int_{t}^{t + K} \left| Y_I(t + \tau_n) - \varphi_I(t) \right|_{H^n} \Delta t \Delta s \right)^{\frac{1}{\bar{p}}},
\]

\[
\leq r_I^\frac{q}{\bar{p}} (p) \cdot \left(\sup_{t \in T} \frac{1}{K} \int_{t}^{t + K} \left| Y_I(t + \tau_n) - \varphi_I(t) \right|_{H^n} \Delta t \Delta s \right)^{\frac{1}{\bar{p}}},
\]

\[
< \max_{1 \leq l \leq n} r_I^\frac{q}{\bar{p}} (p) \left(\sup_{t \in T} \frac{1}{K} \int_{t}^{t + K} \left| Y_I(t + \tau_n) - \varphi_I(t) \right|_{H^n} \Delta t \Delta s \right)^{\frac{1}{\bar{p}}},
\]

Therefore,

\[
\sup_{t_1 \in T} \left(\frac{1}{K} \int_{t_1}^{t_1 + K} \left| (F_\psi)_I(t + \tau_n) - (\mathcal{Y}_\psi)_I(t) \right|_{H^n} \Delta t \right)^{\frac{1}{\bar{p}}} \to 0, \quad \text{as} \quad n \to \infty.
\]

Which means that \((F_\psi)_I(.) \in S^p PA_A (T, H^n) \).

Second: Let us prove that \((G_\psi)_I(t) = \int_{-\infty}^t \hat{e}_{\Theta t}(t, \sigma(s)) Z_I(s) \Delta s \in S^p PA_A (T, H^n) \). It follows from Hölder’s inequality and Fubini’s theorem that

\[
\int^{t_{0}+r}_{t_{0}-r} \left(\frac{1}{K} \int_{t}^{t+K} \left| (G_\psi)_I(s) \right|_{H^n} \Delta s \right)^{\frac{1}{\bar{p}}} \Delta t \leq (2r)^{\frac{1}{\bar{p}}} \left[\int^{t_{0}+r}_{t_{0}-r} \left(\frac{1}{K} \int_{t}^{t+K} \left| (G_\psi)_I(s) \right|_{H^n} \Delta s \right) \Delta t \right]^{\frac{1}{\bar{p}}}.
\]
Since,

\[
\int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | (G_P)_t(s) |^{\frac{p}{q}} \Delta s \right)^{\frac{1}{p}} \Delta t \\
\leq (2r)^{\frac{1}{q}} \left[\int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} r_i^q(q) \int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) | Z_m(s+z) |^{\frac{p}{q}} \Delta z \Delta s \right) \Delta t \right]^{\frac{1}{p}},
\]

\[
\leq (2r)^{\frac{1}{q}} r_i^q(q) \left[\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \int_{t_0-r}^{t_0+r} \frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \Delta t \Delta z \right]^{\frac{1}{p}}.
\]

According to Lebesgue dominated theorem and \(Z_l(.) \in S^p \text{PAA}_0(\mathbb{T}, \mathbb{H}) \), we get

\[
\lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | (G_P)_t(s) |^{\frac{p}{q}} \Delta s \right)^{\frac{1}{p}} \Delta t \leq \frac{1}{2r} (2r)^{\frac{1}{q}} (2r)^{\frac{1}{p}} r_i^q(q)
\]

\[
\times \left(\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \Delta t \Delta z \right) \left[\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \Delta t \Delta z \right]^{\frac{1}{p}},
\]

\[
\leq r_i^q(q) \left[\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \right)^{\frac{1}{q}} \Delta t \Delta z \right],
\]

\[
\leq r_i^q(q) \left[\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \right)^{\frac{1}{q}} \Delta t \Delta z \right],
\]

\[
\times \left(\frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \right)^{\frac{p-1}{q}} \Delta t \Delta z \right]^{\frac{1}{p}},
\]

\[
\leq r_i^q(q) \left[\int_{-\infty}^{0} \hat{\sigma}_t(\mathbb{N}_P)(0, \sigma(z)) \lim_{r \to \infty} \frac{1}{2r} \int_{t_0-r}^{t_0+r} \left(\frac{1}{K} \int_t^{t+K} | Z_l(s+z) |^{\frac{p}{q}} \Delta s \right)^{\frac{1}{q}} \Delta t \Delta z \right]^{\frac{1}{p}} = 0.
\]

Which yields that \((G_P)_t(.) \in S^p \text{PAA}_0(\mathbb{T}, \mathbb{H})\). This completes the proof of theorem. \(\square\)

Theorem 3.2. Assume that the conditions \((S_1)-(S_5)\) are satisfied. Then, system (2.1) has a unique \(S^p\)-pseudo almost automorphic solution in the region \(\mathcal{B} = \{ \psi : \psi \in S^p \text{PAA}(\mathbb{T}, \mathbb{H}), \| \psi - \psi_0 \|_{S^p} \leq r^* \} \).
Proof. First step: At first, we show that \((\Pi_{\psi})_t\) is a self-mapping from \(B\) to \(B\). Let \(\psi \in B\), by using Hölder’s and Minkowski’s inequality we can obtain

\[
| (\Lambda_{\psi})_t(t) - \psi_0(t) |_\mathbb{H} = \left| \int_{-\infty}^{t} \hat{e}_{\otimes a_l}(t, \sigma(z)) \times \left[\sum_{m=1}^{n} b_{lm}(z) f_m(\psi_m(z)) \right. \right. \\
+ \left. \sum_{m=1}^{n} c_{lm}(z) g_m(\psi_m(z - \xi_m(z))) \right. + \left. \sum_{m=1}^{n} d_{lm}(z) \int_{-\infty}^{z} N_{lm}(z - s) h_m(\psi_m(s)) \Delta s \cdot \left. \Delta z \right|_\mathbb{H},
\]

\[
\leq r_1^q \left(q \right) \times \left[\int_{-\infty}^{0} \hat{e}_{\otimes \frac{\partial}{\partial z}}(0, \sigma(z)) \sum_{m=1}^{n} b_{lm}(z) f_m(\psi_m(z + t)) \right. \\
+ \sum_{m=1}^{n} c_{lm}(z + t) g_m(\psi_m(z + t - \xi_m(z + t))) \\
+ \sum_{m=1}^{n} d_{lm}(z + t) \int_{-\infty}^{z+t} N_{lm}(z + t - s) h_m(\psi_m(s)) \Delta s \cdot \left. \Delta z \right|_\mathbb{H}^{\frac{1}{p}}.
\]

Furthermore

\[
\| (\Pi_{\psi})_t(t) - \psi_0(t) \|_{\mathcal{S}_p} = \sup_{\xi_1 \in \mathbb{T}} \left[\frac{1}{K} \int_{t_1}^{t_1 + K} \int_{-\infty}^{t} \hat{e}_{\otimes a_l}(t, \sigma(z)) \right. \\
\times \left(\sum_{m=1}^{n} b_{lm}(z) f_m(\psi_m(z)) + \sum_{m=1}^{n} c_{lm}(z) g_m(\psi_m(z - \xi_m(z))) \right. \\
+ \sum_{m=1}^{n} d_{lm}(z) \int_{-\infty}^{z} N_{lm}(z - s) h_m(\psi_m(s)) \Delta s \cdot \left. \Delta z \right|_\mathbb{H}^{\frac{1}{p}} \\
\leq r_1^q (q). \sup_{\xi_1 \in \mathbb{T}} \left[\int_{-\infty}^{0} \hat{e}_{\otimes \frac{\partial}{\partial z}}(0, \sigma(z)) \sum_{m=1}^{n} b_{lm}(z) f_m(\psi_m(z + t)) \right. \\
+ \sum_{m=1}^{n} c_{lm}(z + t) g_m(\psi_m(z + t - \xi_m(z + t))) \\
+ \sum_{m=1}^{n} d_{lm}(z + t) \int_{-\infty}^{z+t} N_{lm}(z + t - s) h_m(\psi_m(s)) \Delta s \cdot \left. \Delta z \right|_\mathbb{H}^{\frac{1}{p}} \\
\leq r_1^q (q). \sup_{\xi_2 \in \mathbb{T}} \left[\int_{-\infty}^{0} \hat{e}_{\otimes \frac{\partial}{\partial z}}(0, \sigma(z)) \sum_{m=1}^{n} b_{lm}(\tilde{\xi}) f_m(\psi_m(\tilde{\xi})) \right. \\
+ \sum_{m=1}^{n} c_{lm}(\tilde{\xi}) g_m(\psi_m(\tilde{\xi} - \xi_m(\tilde{\xi}))) \\
+ \sum_{m=1}^{n} d_{lm}(\tilde{\xi}) \int_{-\infty}^{\tilde{\xi}} N_{lm}(\tilde{\xi} - s) h_m(\psi_m(s)) \Delta s \cdot \left. \Delta z \right|_\mathbb{H}^{\frac{1}{p}}.
\]
On the other hand,

\[\begin{align*}
&\leq r^q_I(q) \times r^\varphi_I (p) \times \left(\sup_{t_2 \in T} \left[\frac{1}{K} \int_{t_2}^{t_2+K} \sum_{m=1}^{n} | b_{lm}(\hat{r}) | p_{H}^m \left| f_m(\psi_m(\hat{r})) \right| p_{H}^\Delta \hat{r} \right] \right)^{\frac{1}{p}} \\
&+ \sup_{t_2 \in T} \left[\frac{1}{K} \int_{t_2}^{t_2+K} \sum_{m=1}^{n} | c_{lm}(\hat{r}) | p_{H}^m g_m(\psi_m(\hat{r} - \xi_m(\hat{r}))) \left| p_{H}^\Delta \hat{r} \right] \right)^{\frac{1}{p}} \\
&+ \sup_{t_2 \in T} \left[\frac{1}{K} \int_{t_2}^{t_2+K} \sum_{m=1}^{n} | d_{lm}(\hat{r}) | p_{H}^m \int_{\hat{r}}^{\hat{r}+s} | N_m(\hat{r} - s) h_m(\psi_m(s) \Delta s) \left| p_{H}^\Delta \hat{r} \right] \right)^{\frac{1}{p}} \right) \\
&\leq \max_{1 \leq l \leq n} \left\{ \frac{1}{r^q_I(q)} \times r^\varphi_I (p) \left[\sum_{m=1}^{n} b_{lm}^{I_{f_m}} + \sum_{m=1}^{n} \frac{c_{lm}^{I_{h_m}}}{(1 - \xi_m(\hat{r}))^{\frac{1}{p}}} + \sum_{m=1}^{n} d_{lm}^{I_{h_m}N^*} \right] \right\} \times \| \psi \|_{S^p}, \\
&\leq \sigma \| \psi \|_{S^p}.
\end{align*} \]

So, for any \(\psi \in H \), we have

\[\| \psi \|_{S^p} \leq \| \psi - \psi_0 \|_{S^p} + \| \psi_0 \|_{S^p} \leq \frac{\sigma \rho f}{1 - \sigma} + \rho f = \frac{\rho f}{1 - \sigma}. \]

Hence,

\[\| (\Pi \psi)(t) - \psi_0(t) \|_{S^p} \leq \frac{\sigma \rho f}{1 - \sigma}, \]
which implies that \((\Pi_\psi)_I \in \mathbb{B}\).

Second step: we shall prove that \((\Pi_\psi)_I\) is a contraction mapping. In fact, For \(\psi, \phi \in \mathbb{B}\), we get

\[
\| (\Pi_\psi)_I(t) - (\Pi_\phi)_I(t) \|_{S^p} = \\
\sup_{t_1 \in \mathbb{T}} \left[\frac{1}{K} \int_{t_1}^{t_1+K} \int_{-\infty}^{t} \tilde{h}_i(t, \sigma(z)) \left(\sum_{m=1}^{n} b_{lm}(z) (f_m(\psi_m(z)) - f_m(\phi_m(z))) \right. \right. \\
- \sum_{m=1}^{n} d_{lm}(z) \int_{-\infty}^{z} N_{lm}(z-s) (h_m(\psi_m(s)) - h_m(\phi_m(s))) \Delta s \left. \right] \Delta \left[\int_{t}^{t+1} \frac{1}{H} \right]^p \\
\leq \max_{1 \leq I \leq n} \left\{ \frac{1}{r_1^z(q)} \left[\sum_{m=1}^{n} b_{lm}^z L_m^f + \sum_{m=1}^{n} \frac{c_{lm}^z L_m^g}{(1 - \xi_m^z)^p} \right. \right. + \sum_{m=1}^{n} d_{lm}^z L_m^{hN^s} \left. \right] \left. \right\} \\
\times \| \psi - \phi \|_{S^p} \leq \sigma \| \psi - \phi \|_{S^p} < 1.
\]

Hence, we obtain that \((\Pi_\psi)_I\) is a contraction mapping. Then, system (2.1) has a unique \(S^p\)-pseudo almost automorphic solution in the region \(\mathbb{B}\). The proof is complete. \(\square\)

3.2. **Global \(S^p\)-exponential stability.**

Lemma 3.4 ([31]). For any \(u, v \in \mathbb{H}\), if \(P \in \mathbb{H}^{n \times n}\) is a positive-definite Hermitian matrix, then

\[
\bar{u}v + \bar{v}u \leq \bar{u}Pu + \bar{v}P^{-1}v.
\]

Definition 3.1. The dynamical networks (2.1) is said to be \(S^p\)-globally exponentially stable, if there exist positive constants \(\lambda\) with \(\ominus \lambda \in \mathbb{R}^+\) and \(M > 0\) such that

\[
\| v(t) - u(t) \|_{S^p} \leq M \tilde{e}_{\ominus \lambda}(t, 0), \quad \forall t \in (0, \infty)_\mathbb{T}.
\]

Where \(u(.) = (u_1(.), u_2(.), ..., u_n(.))\) is a Stepanov-like pseudo almost automorphic solution of QVFRNNs (2.1) on \(\mathbb{T}\) and \(v(.) = (v_1(.), v_2(.), ..., v_n(.))\) is an arbitrary solution of QVRNNs (2.1) on \(\mathbb{T}\).

Theorem 3.3. Suppose that assumptions \((S_1)-(S_5)\) hold, and \(\sigma < 1\). Then the unique Stepanov-like pseudo almost automorphic solution of system (2.1) is \(S^p\)–globally exponentially stable on \(\mathbb{T}\) whenever

\[
(S_6) \quad \frac{1}{a_i^2} - \ddot{a}_i < - \sum_{m=1}^{n} a_i^z \left(b_{mi}^z L_i^f \right)^2 - \sum_{m=1}^{n} \frac{a_i^z \left(c_{mi}^z L_i^g \right)^2}{1 - \xi_m^z} \\
- \sum_{m=1}^{n} a_i^z \left(d_{mi}^z L_i^{hN^s} \right)^2 \int_{0}^{\infty} N_{im}^2(z) \Delta z.
\]
Proof. Let $u(.)$ be the S^p-pseudo almost automorphic solution on \mathbb{T} and let $y(.)$ be an arbitrary solution of sys. (2.1), $X(.) = u(.) - v(.)$, $F(X(.)) = f(u(.)) - f(v(.))$, $G(X(.)) = g(u(.)) - g(v(.))$, and $H(X(.)) = h(u(.)) - h(v(.))$. Let $x \in [0, \infty)$, we define the function $x \mapsto D_l(x)$ as follows:

$$D_l(x) = x + \frac{1}{a_l^*} \tilde{a}_l + \sum_{m=1}^{n} a_t^* \left(b_{lm}^* L_t^f \right)^2 + \frac{\exp(x(\bar{\mu} + \bar{\xi}))}{1 - \xi^*} \sum_{m=1}^{n} a_t^* \left(c_{lm}^* L_t^g \right)^2$$

$$+ \sum_{m=1}^{n} a_t^* \left(d_{lm}^* L_t^h \right)^2 \int_{t}^{\infty} \mathcal{N}_{lm}^2(z) \hat{e}_x(\sigma(z), 0) \Delta z < 0.$$

By (S_6), we have $D_l(0) < 0$. Since the function $D_l(.)$ is continuous on $[0, \infty)$, there exist $0 < \lambda < \min_{1 \leq l \leq n} a_l$, such that $\Theta_l(\lambda) < 0$.

Now, consider the Lyapunov function as follows:

$$V(t) = \sum_{l=1}^{n} \left| X_l(t) \right|^2_{\mathbb{H}} \hat{e}_\lambda(t, 0)$$

$$+ \frac{\exp(\lambda(\bar{\mu} + \bar{\xi}))}{1 - \xi^*} \sum_{l=1}^{n} \sum_{m=1}^{n} a_t^* \left(c_{lm}^* L_t^g \right)^2 \int_{t - \xi(t)}^{t} |X_l(z)|^2_{\mathbb{H}} \hat{e}_\lambda(\sigma(z), 0) \Delta z$$

$$+ \sum_{l=1}^{n} \sum_{m=1}^{n} \left(d_{lm}^* L_t^h \right)^2 \int_{t}^{\infty} \mathcal{N}_{lm}^2(z) \int_{t - z}^{t} |X_l(s)|^2_{\mathbb{H}} \hat{e}_\lambda(\sigma(s), 0) \hat{e}_\lambda(\sigma(s), 0) \Delta s \Delta z.$$

Consequently,

$$V^\lambda(t) = \lambda \hat{e}_\lambda(t, 0) \sum_{l=1}^{n} \left| X_l(t) \right|^2_{\mathbb{H}} + \hat{e}_\lambda(t, 0) \sum_{l=1}^{n} X_l^\lambda(t) X_l(t)$$

$$+ \frac{\exp(\lambda(\bar{\mu} + \bar{\xi}))}{1 - \xi^*} \sum_{l=1}^{n} \sum_{m=1}^{n} a_t^* \left(c_{lm}^* L_t^g \right)^2$$

$$\times \left[\hat{e}_\lambda(t, 0) \left| X_l(t) \right|^2_{\mathbb{H}} - (1 - \xi^\lambda_m(t)) \exp(-\lambda \xi_m(t)) \hat{e}_\lambda(t, 0) \left| X_l(t - \xi^\lambda_m(t)) \right|^2_{\mathbb{H}} \right]$$

$$+ \sum_{l=1}^{n} \sum_{m=1}^{n} a_t^* \left(d_{lm}^* L_t^h \right)^2 \int_{t}^{\infty} \mathcal{N}_{lm}^2(z) \left[\hat{e}_\lambda(t, 0) \hat{e}_\lambda(\sigma(z), 0) \left| X_l(t) \right|^2_{\mathbb{H}} - \hat{e}_\lambda(t, 0) \left| X_l(t - z) \right|^2_{\mathbb{H}} \right] \Delta z$$

According to lemma (3.4) and by using (S_1), $\exp(\lambda \bar{\xi}). \exp(-\lambda \xi_m(t)) > 1$, we have
\[V^\Delta(t) \leq \lambda \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \left| X_l(t) \right|_{\mathbb{H}}^2 - \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \ddot{a}_l \left| X_l(t) \right|_{\mathbb{H}}^2 \\
+ \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \left(\sum_{m=1}^{n} b_{lm}(t) F_m(X_m(t)) \cdot b_{lm}(t) F_m(X_m(t)) \cdot a_l^* + \frac{X_l(t) X_l(t)}{a_l^*} \right) \\
+ \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \left(\sum_{m=1}^{n} c_{lm}(t) G_m(X_m(t - \xi_m(t))) \cdot c_{lm}(t) G_m(X_m(t - \xi_m(t))) \cdot a_l^* \right) \\
+ \frac{X_l(t) X_l(t)}{a_l^*} \right) + \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \left(\sum_{m=1}^{n} d_{lm}(t) \int_{-\infty}^{t} N_l(m(t-z) H_m(X_m(t)) | \Delta z| d_l m(t) \right) \\
\times \int_{-\infty}^{t} N_l(t-z) H_m(X_m(t)) | \Delta z| a_l^* + \frac{X_l(t) X_l(t)}{a_l^*} \right) + \frac{\exp(\lambda \bar{\mu})}{1 - \xi^*} \sum_{l=1}^{n} \sum_{m=1}^{n} a_l^* \left(c_{lm} L_l^g \right)^2 \\
\times \left(\exp(\lambda \bar{\xi}) \dot{\varepsilon}_\lambda(t, 0) \left| X_l(t) \right|_{\mathbb{H}}^2 - (1 - \xi^\Delta(t)) \dot{\varepsilon}_\lambda(t, 0) \left| X_l(t - \xi^\Delta(t)) \right|_{\mathbb{H}}^2 \right) \\
+ \sum_{l=1}^{n} \sum_{m=1}^{n} a_l^* \left(d_{lm}^* L_l^h \right)^2 \int_{-\infty}^{\infty} N_l(z) \left(\dot{\varepsilon}_\lambda(t, 0) \dot{\varepsilon}_\lambda(\sigma(z), 0) \left| X_l(t) \right|_{\mathbb{H}}^2 - \dot{\varepsilon}_\lambda(t, 0) \left| X_l(t) \right|_{\mathbb{H}}^2 \right) \Delta z, \\
\leq \dot{\varepsilon}_\lambda(t, 0) \sum_{l=1}^{n} \left(\lambda + \frac{1}{a_l^*} - \ddot{a}_l + \sum_{l=1}^{n} a_l^* \left(b_{lm}^* L_l^f \right)^2 + \frac{\exp(\lambda (\bar{\mu} + \bar{\xi}))}{1 - \xi^*} \sum_{l=1}^{n} a_l^* \left(c_{lm} L_l^g \right)^2 \\
+ \sum_{m=1}^{n} a_l^* \left(d_{lm}^* L_l^h \right)^2 \int_{-\infty}^{\infty} N_l(\sigma(z)) \dot{\varepsilon}_\lambda(\sigma(z), 0) \Delta z \right) \left| X_l(t) \right|_{\mathbb{H}}^2, \\
< 0. \]

For this reason, \(\sum_{l=1}^{n} \left| X_l(t) \right|_{\mathbb{H}}^2 \leq \dot{\varepsilon}_{\ominus \lambda}(t, 0) V(0), \) with \(\ominus \lambda \in \mathfrak{R}^+, \ l = 1, \ldots, n. \) It follows that \(\sum_{l=1}^{n} \left| X_l(t) \right|_{\mathbb{H}}^p \leq \dot{\varepsilon}_{\ominus \lambda}(t, 0) V(0)^p, \ p \geq 2. \) Thus,

\[
\sum_{l=1}^{n} \frac{1}{K} \int_{t-\xi^h}^{t-\xi^h + K} \left| X_l(z) \right|_{\mathbb{H}}^p \Delta z \leq \sum_{l=1}^{n} \frac{1}{K} \int_{t}^{t+K} \left| X_l(z) \right|_{\mathbb{H}}^p \Delta z \\
\leq \int_{t}^{t+K} \frac{\dot{\varepsilon}_{\ominus \lambda}(t, 0) V(0)^p}{K}. \\
\]

Furthermore,

\[
\sum_{l=1}^{n} \frac{1}{K} \int_{t}^{t+K} \left| X_l(z) \right|_{\mathbb{H}}^p \Delta z \leq \frac{V(0)^p \dot{\varepsilon}_{\ominus \lambda}(t, 0) (\exp(-\lambda p K) - 1)}{\ominus \lambda p}. \\
\]

Besides,

\[
\max \sup_{l=1, \ldots, n_1 \in \mathfrak{R}} \left(\frac{1}{K} \int_{t_1}^{t_1 + K} \left| X_l(z) \right|_{\mathbb{H}}^p \Delta z \right)^{\frac{1}{p}} \leq \frac{V(0) \dot{\varepsilon}_{\ominus \lambda}(t, 0)}{K^\frac{1}{p}} \left(\frac{\exp(-\lambda p K) - 1}{\ominus \lambda p} \right)^{\frac{1}{p}}. \\
\]
We claim that
\[\|X\|_{S^p} \leq \frac{V(0)e_{\sigma\lambda}(t,0)}{K^{1/p}} \left(\frac{\exp(-\lambda pK) - 1}{\theta \lambda p} \right)^{1/p} \leq M e_{\sigma\lambda}(t,0). \]

Where \(M = \frac{V(0)}{K^{1/p}} \left(\frac{\exp(-\lambda pK) - 1}{\theta \lambda p} \right)^{1/p} \). Therefore, the unique Stepanov-like pseudo almost automorphic solution of QVRNNs (2.1) is \(S^p \)-globally exponentially stable on time scales. This completes the proof.

Remark 3.1. To our knowledge, there have been no results concentrated on the Stepanov-like almost periodic, Stepanov-like pseudo almost periodic, and weighted Stepanov-like pseudo-almost periodic solution for QVFRNNs with Mixed Delays on time scales. As a consequence, the obtained results in this work are essentially new and the methods used in this paper can also be applied to study the Stepanov-like pseudo almost automorphic solution on time scales for some other models of dynamical NNs.

\[\square \]

Corollary 3.1. If \(\mathbb{H} = \mathbb{R} \), then sys (2.1) is a real-valued RNNs on \(T \). Assume that the following conditions hold

\((F_1) \): For all \(1 \leq l \leq n \), the function \(\xi_m(.) \in S^p AA(T,\mathbb{R}) \cap C^1_{rd}(T,\mathbb{R}) \), such that

\[0 \leq \xi_m(.) \leq \Xi, \quad 0 \leq \xi^* - \xi_m(.) < 1 - \xi_m(\cdot). \]

\((F_2) \): For all \(1 \leq l, m \leq n \), the functions \(a_{lm}(\cdot), b_{lm}(\cdot), c_{lm}(\cdot), d_{lm}(\cdot) \in S^p PAA(T,\mathbb{R}) \).

\((F_3) \): There exist positive constants \(L_f^f, L_f^g, L_h \) such that for any \(u, v \in \mathbb{R} \), the activity functions \(f_i, g_i, h_i \in C_{rd}(\mathbb{R},\mathbb{R}) \) satisfying

\[| f_i(u) - f_i(v) | \leq L_f^f | u - v |, \]
\[| g_i(u) - g_i(v) | \leq L_f^g | u - v |, \]
\[| h_i(u) - h_i(v) | \leq L_h^h | u - v |. \]

Furthermore, we suppose that \(f_i(0) = g_i(0) = h_i(0) = 0 \).

\((F_4) \): For all \(1 \leq l, m \leq n \), the delay kernel \(N_{lm} : [0, +\infty) \rightarrow [0, +\infty) \) is rd-continuous, \(\Delta \)-integrable and there exists \(\lambda > 0 \) such that \(\int_0^\infty N_{lm}(z) \Delta z = N^* \).
\[(F_3) : \sigma < 1, \text{ and} \]
\[
\frac{1}{\alpha_l^*} - \dot{\alpha}_l < -\sum_{m=1}^{n} a_l^* \left(b_{lm}^* L_l^f \right)^2 - \sum_{m=1}^{n} a_l^* \left(c_{lm}^* L_l^g \right)^2 \frac{1}{1 - \xi^*} \]
\[
- \sum_{m=1}^{n} a_l^* \left(d_{lm}^* L_l^h \right)^2 \int_0^\infty N_{lm}^2(z) \Delta z. \]

Then, sys.\((2.1)\) has a unique \(S^p\)-pseudo almost automorphic solution on time scales and this solution is \(S^p\)-globally exponentially stable.

Corollary 3.2. If \(\mathbb{H} = \mathbb{C}\), then sys \((2.1)\) is a complex-valued RNNs on \(\mathbb{T}\). Assume that the following conditions hold

\((A_1) : \) For all \(1 \leq l \leq n\), the function \(\xi_m(.) \in S^{p} AA(\mathbb{T}, \mathbb{C}) \cap C_{rd}^1(\mathbb{T}, \mathbb{C})\), such that
\[
0 \leq \xi_m(.) \leq \xi, \quad 0 \leq \xi^* - \xi_{m}(.) < 1 - \xi_{m}(.) .
\]

\((A_2) : \) For all \(1 \leq l, m \leq n\), the functions \(a_{lm}(.), b_{lm}(.), c_{lm}(.), d_{lm}(.) \in S^{p} AA(\mathbb{T}, \mathbb{C})\).

\((A_3) : \) There exist positive constants \(L_l^f, L_l^g, L_l^h\) such that for any \(u, v \in \mathbb{C}\), the activity functions \(f_l, g_l, h_l \in C_{rd}(\mathbb{C}, \mathbb{C})\) satisfying
\[
| f_l(u) - f_l(v) | \leq L_l^f | u - v | \mathbb{C},
\]
\[
| g_l(u) - g_l(v) | \leq L_l^g | u - v | \mathbb{C},
\]
\[
| h_l(u) - h_l(v) | \leq L_l^h | u - v | \mathbb{C}.
\]

And \(f_l(0) = g_l(0) = h_l(0) = 0\).

\((A_4) : \) For all \(1 \leq l, m \leq n\), the delay kernel \(N_{lm} : [0, +\infty) \rightarrow [0, +\infty)\) is rd-continuous, \(\Delta\)-integrable and there exists \(\lambda > 0\) such that \(\int_0^{+\infty} N_{lm}(z) \Delta z = N^*\).

\((A_5) : \) \(\sigma < 1, \text{ and} \)
\[
1a_l^* - \dot{\alpha}_l < -\sum_{m=1}^{n} a_l^* \left(b_{lm}^* L_l^f \right)^2 - \sum_{m=1}^{n} a_l^* \left(c_{lm}^* L_l^g \right)^2 \frac{1}{1 - \xi^*} \]
\[
- \sum_{m=1}^{n} a_l^* \left(d_{lm}^* L_l^h \right)^2 \int_0^\infty N_{lm}^2(z) \Delta z. \]

Where
\[
b_{lm}^* = \sup_{t \in \mathbb{T}} | b_{lm}(t) | \mathbb{C}, \quad c_{lm}^* = \sup_{t \in \mathbb{T}} | c_{lm}(t) | \mathbb{C}, \quad d_{lm}^* = \sup_{t \in \mathbb{T}} | d_{lm}(t) | \mathbb{C}.
\]

Therefore, sys.\((2.1)\) has a unique \(S^p\)-pseudo almost automorphic solution on time scales and this solution is \(S^p\)-globally exponentially stable.
4. NUMERICAL EXAMPLE

In this section, we give two examples to illustrate the feasibility and effectiveness of our results derived in the previous sections.

Example 4.1. Let $n = l = m = 1$, $p = q = 2$, $\alpha = 1$ and the coefficients are taken as follows:

\[
\begin{align*}
 f_1(x_1) &= g_1(x_1) = \frac{1}{8} \sin^2(t), \\
 h_1(x_1) &= \frac{1}{8} (t-1) j, \\
 \xi_1 &= 1, \\
 a_1 &= 1 + j + i + k, \\
 b_{11}(t) &= \exp(-t) + i \cos(t), \\
 c_{11}(t) &= j \sin(t), \\
 d_{11}(t) &= i (\sin(t) + 1), \\
 I_{11} &= \exp(-t) \cos(t) + i \sin(t) + j \exp(-t) \cos(t) + 2 k \cos(t), \\
 N_{lm} &= \exp(-t).
\end{align*}
\]

If $T = \mathbb{R}$: We have $\mu(t) = \sigma(t) - t = t - t = 0 \quad \forall t \in \mathbb{T}$, then $\bar{\mu} = 0$ we have

\[
\begin{align*}
 L^f_1 &= L^g_1 = L^h_1 = \frac{1}{8}, \\
 \xi_1^* &= 0, \\
 N^* &= 1, \\
 b^+_{11} &= d^+_{11} = 1 \\
 c^+_{11} &= 2, \\
 a^*_1 &= a^*_1 = 4, \\
 \tilde{a}_1 &= 8.
\end{align*}
\]

Moreover, $L^* \simeq 0.156 < 1$.

Figure 1. Behavior of the state variable x_i^R of QVFRNNs (2.1) $T = \mathbb{R}$.

Figure 2. Behavior of the state variable x_i^I of QVFRNNs (2.1) $T = \mathbb{R}$.

Figure 3. Behavior of the state variable x_i^I of QVFRNNs (2.1) $T = \mathbb{R}$.
If $T = \mathbb{Z}$: We have $\mu(t) = \sigma(t) - t = 1 - t = 1$ \quad $\forall t \in T$, then $\bar{\mu} = 1$ Hence, $L^* \simeq 0.781 < 1$, and $\frac{1}{a_1} - \bar{a}_1 \simeq -7.75 < -0.43$. Then, whether $T = \mathbb{R}$ or $T = \mathbb{Z}$, all the conditions of Theorems (3.2) and (3.3) are satisfied. Thus, we know that system (2.1) has a unique Stepanov-like pseudo almost automorphic solution, which is S^p globally exponentially stable. So, the discrete-time neural network and its continuous-time analogue have the same dynamical behaviors for the S^p-pseudo almost automorphy.

Example 4.2. Let $n = 2$, $l = 1;2$, $p = q = 2$, $\lambda = 1$ and the coefficients are taken as follows:

$$f_m(x_m(\cdot)) = g_m(x_m(\cdot)) = h_m(x_m(\cdot))$$

$$= \frac{1}{5} \left(\cos(x_m^J(\cdot)) + j \tan(x_m^J(\cdot)) + \frac{k}{x_m^R(\cdot)} \right),$$

$$a_1(\cdot) = 10 + 3i \sin(\sqrt{2}t), \quad a_2(\cdot) = 6 + k \cos(\pi t),$$

$$I_l(t) = \frac{2 + \exp(it) + \exp(i\sqrt{2}t)}{2 + \exp(it) + \exp(i\sqrt{2}t)} + \exp(-t),$$

$$N_{lm} = \exp(-s), \quad b_{lm} = \frac{1}{20} \begin{bmatrix} \cos \left(\frac{1}{2 + \sin(t) + \sin(\sqrt{2}t)} \right) + \exp(-t) & \frac{1}{1 + \pi} + j \cos(\sqrt{2}t) \\ k \cos(\sqrt{3}t) + j \cos(\sqrt{5}t) & \sin(t) + \exp(-2t) \end{bmatrix},$$

$$c_{lm} = \frac{1}{20} \begin{bmatrix} j \cos(\sqrt{5}t) + \exp(-t \cos^2(t)) & k \sin \left(\frac{1}{2 + \sin(t) + \sin(\sqrt{5}t)} \right) + \exp(-t^4) \\ i \sin \left(\frac{1}{2 + \sin(t) + \sin(\sqrt{5}t)} \right) + i \exp(-t^4) & \cos(\pi t) + k \exp(-t^4) \end{bmatrix},$$
Figure 5. Behavior of the state variable x_1^R of QVFRNNs (2.1) for $T = \mathbb{Z}$

Figure 6. Behavior of the state variable x_1^I of QVFRNNs (2.1) for $T = \mathbb{Z}$

Figure 7. Behavior of the state variable x_1^I of QVFRNNs (2.1) for $T = \mathbb{Z}$
Figure 8. Behavior of the state variable x^K_i of QVFRNNs (2.1)

\[T = \mathbb{Z} \]

\[
d_{lm} = \frac{1}{20} \begin{bmatrix} i \sin(\sqrt{6}t) + \exp(-t^2 \sin^2(t)) & \frac{1}{1+t^2} + j \sin(\sqrt{8}t) \\ j \sin(\sqrt{8}t) + k \cos(\pi t) + \exp(-t^4 \cos^4(t)) & \sin(t) + i \cos(t) + \exp(-t^4 \cos^2(t)) \end{bmatrix}.
\]

Then, we have

\[
\begin{align*}
\bar{a}_1 &= 7, \quad \bar{a}_2 = 5, \quad \bar{a}_1 = 12, \quad \bar{a}_2 = 10, \quad a^*_1 = 13, \quad a^*_2 = 7, \quad L_f = L^g = L^h = \frac{1}{5}, \quad N^* = 1, \\
\end{align*}
\]

\[
\begin{align*}
b^*_{lm} &= 2 \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}, \quad d^*_{lm} = \frac{1}{1+t^2} \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix},
\end{align*}
\]

If $T = \mathbb{R}$: Take $\xi_1(t) = \xi_2(t) = 1$, then $\xi_1^* = \xi_2^* = 0$. Hence, $\varpi \simeq \max\{0.017; 0.028\} = 0.017 < 1$.

If $T = \mathbb{Z}$: Take $\xi_1(t) = \cos^2(\pi t + \frac{\pi}{2})$, $\xi_2(t) = 1$, then $\xi_1^* = \xi_2^* = 0$. Moreover, $\varpi \simeq \max\{0.137; 0.168\} = 0.168 < 1$.

Besides, $\frac{1}{a^*_1} - \bar{a}_1 \simeq -11.92 < -0.036$ and $\frac{1}{a^*_2} - \bar{a}_2 \simeq -9.85 < -0.013$.

Therefore, all of the conditions of theorem (3.2) and (3.3) are satisfied. So, system (2.1) has a unique S^p-pseudo almost automorphic solution which is S^p-globally exponentially stable.

References

(2014), Article ID 573517, 7 pages.

Neural Networks, 18 (2005), 61-69.

[29] S. Ruseti, M. Dascalu1, A.M. Johnson, R. Balyan, K.J. Kopp, D.S. McNamara, S.A. Crossley and S. Trausan-Matu1,
Predicting Question Quality Using Recurrent Neural Networks. In C. Penstein Rosé, R. Martínez-Maldonado, H.U.
Hoppe, R. Luckin, M. Mavrikis, K. Porayska-Pomsta,...B. du Boulay (Eds.), Artificial Intelligence in Education

Neural Netw. Learn Syst. 29(11) (2018), 5430-5440.

[32] S. Shen, B. Li and Y. Li, Anti-Periodic Dynamics of Quaternion-Valued Fuzzy Cellular Neural Networks with

[33] H. Toshani and M. Farrokhi, Real-time inverse kinematics of redundant manipulators using neural networks and

[34] C. Xu, and Y. Wu, On almost automorphic solutions for cellular neural networks with time-varying delays in leakage

[37] M. Zitane, A generalization of weighted Stepanov-like pseudo-almost automorphic space, New Zealand J. Math. 48