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Abstract. This paper aimed to study fuzzy regression models including Tanaka model, Tanaka
modified model and other models, and build a fuzzy regression model using fuzzy and non-
fuzzy data. In this paper, a prediction model was constructed based on the application of the
Sanli and Apaydin idea which adopted the Shapiro proposal based on the square distances
provided by Diamond. It compared fuzzy regression model and regression model by using
normal least square model. The research found that the fuzzy regression is clearer and easier to
calculate, and does not differ much from the classical regression, which supports the idea of
fuzzy regression prediction, especially with regard to fuzzy data.
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1. Introduction

The probabilistic concept of an event depends on an expectation on previous information, so
uncertainty from a probabilistic perspective depends on the prediction, while the perception
of uncertainty depends on the inaccuracy of meaning for many concepts or measurements.
These include the results of medical tests for any disease or monitoring of any measurements
by electronic devices, the accuracy of the results may vary from one device to another due to
the efficiency and specifications of the devices. The study of this type of uncertain data and
the construction of predictive models for fuzzy regression model is the efficient model and for
any similar data.The regression is a common methodology for expressing the relationship
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between two or more independent variables and a dependent variable. Through the mathe-
matical model, the value of the dependent variable expected using the values of independent
variables. This makes the regression model the most appropriate method in many applications
such as process research, and complex systems such as agricultural, biological, technical and
engineering systems [8].
With such systems, it could be difficult to obtain accurate digital data because of the com-
plexity of their systems, the ambiguity of people’s thinking and judgment on the nature of
phenomena, and the influence of uncertain factors present in a border environment around
the systems involved.
The regression model using the traditional least-squares method may not be useful for dealing
with fuzzy data types. This encouraged researchers to find highly efficient ways to deal with
such data and to deal with their uncertain nature.
In 1982, Tanaka et al. Used linear programming to develop a fuzzy linear regression model,
relying on the deviation between the observed value and the estimated value of the depen-
dent variable as "ambiguity" (fuzzy) and dependent on the ambiguity (fuzzy) of the system
architecture. This is the main idea of the linear programming method (LP) [16].
In 1987 and 1989 Tanaka modified his first model where the total ambiguity of the parameters
in the first model was reduced minZ = c1 + c2 + ...+ cn where ci is the opacity of the blurry
parameters, and in the second model tried to minimize the overall mystery of the model. It
is called the fuzzy linear regression minZ =

∑p
i=1(c◦|X◦| + c1|X1i| + c2|X2i| + .... + cn|Xni|)

(Possibilistic Fuzzy Linear Regression) (PFLR) [14] , [15] . To solution of the problem of
the output of the second Tanaka model (PFLR), Peters modified the Tanaka method for the
input data that is not fuzzy where he presents a new variable and constants of this variable ?
represents the degree of membership of the solution in a set of good solutions so the Peters’
model tries to maximize λ, [12]. Another problem in the Peters’ Model (PFLR) was the
conflicting trends in the interpretation of the overall trend of the model due to shrinking or
expanding view trends. To avoid this problem, Lee and Chang proposed deleting the signal
restriction in the (PFLR) model. The new form is called Unrestricted in Sign Fuzzy Linear
Regression (UFLR) [9]. To develop the (UFLR) Chen proposed (Lee and Chang model), a
three-step procedure:

(1) Is the detection of abnormal data.
(2) Determine the expected number of extreme value.
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(3) The model is redrawn after modifying extreme data.

There are many other studies whose methods can be roughly categorized into two methods:
linear programming basedmethods (Probabilistic Approach) and Least Squares Approach [3].
In both approaches, the concept of better estimation involves improving the function associ-
ated with the problem. When the observed values are identified by probable distributions or
a mysterious organic function rather than classical probability distributions, the regression
models associated with the probability or fuzzy regression model are called, [8], particularly
in the Probabilistic Approach. For estimated outputs, either as a weighted linear sum com-
prising the coefficients estimated in the linear regression, or as a quadratic form in the case of
exponential probability regression [5]. Thus, the Tanaka method of probabilistic regression
analysis uses linear programming to incorporate relationships rather than measuring the
least squares of errors∑ e2i =

∑
(yi − ŷi)2 yet the least-squares method is not desirable for

probability regression analysis [17]. Many studies have shown that fuzzy regression may be
better than probability regression in the following cases:

(1) When the data set is insufficient to support the probability regression analysis.
(2) When we cannot assume and justify statistical distribution.
(3) If the regression model is poorly represented.
(4) When human judgments are involved (e.g., input / output ambiguous values.
(5) If errors are associated with defining the model structure and dispelling the human

perception of the model (unlike the statistical situation where the errors are associated
with observations) [11].

There aremany situations inwhich observations cannot be accurately described, for example,
when they depend on environmental conditions or individual responses. In such cases, we can
only provide a rough description of them, and feel uncertainty. This differs from randomness
and is sometimes referred to as ambiguity. For example, when "we measure a current with a
digital meter, we receive static data in theory but are actually discrete because themeasurement
procedures are not accurate [6]. Probability regression has been studied by many researchers
as a integratedmethod to traditional regression, and themain objective of traditional regression
is to capture the average behavior of the system. In the system under consideration, this view
is useful for example in civil engineering - when building bridges, we usually prefer not to fall
even in the worst case, rather than calculating the average life span [1].
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2. Materials and working methods

2.1. Fuzzy Linear Regression. Regression analysis is a commonly used method for analyzing
the relationship and correlations between two variables of the response variable, called the
dependent variable, and one or more explanatory variables, called independent variables,
called classical linear regression and takes the following form:

(2.1) Yi = β◦ + β1Xi1 + β1Xi1 + β2Xi2 + ......+ βiXij + εi

where: i = 1, 2, 3, ..., n (represents the number of views)
and j = 1, 2, 3, ..., p (represents the number of independent variables) and the model can be
expressed by the system of matrices in the image. Y = Xβ + U .

In classical linear regression (CLR) we express the deviations between the observed value
and the estimated value of the dependent variable, where these errors are usually distributed
with an average of zeroE(εi) = 0 and variance V ar(εi) = σ2

i . This error is a kind of uncertainty
and may be due to inaccuracies in measurement, or any other effects that are not accounted
for during the collection of the phenomenon data. The fuzzy regression works in a fuzzy
environment and is therefore called fuzzy regression, and can be divided into the following
cases [3] as shown in Table (1).

Table 1. Fuzzy Regression Cases

Type Sys- structure Ou- Variable In- Variable
1 Fuzzy Non fuzzy Non fuzzy
2 Fuzzy fuzzy Non fuzzy
3 Fuzzy fuzzy fuzzy

In 1982 Tanaka et al. used linear programming to develop a fuzzy linear regression model,
relying on the deviation between the observed value and the estimated value of the dependent
variable as "fuzzy" and dependent on the fuzzy of the system architecture. It has been studied
as symmetric trigonometric functions where the formula for the linear fog model (FLR) is:

(2.2) Ỹi = Ã◦ + Ã1xi1 + Ã2xi2 + Ã3xi3 + ...+ Ãpxip , Ỹ = Ã
′
X

Where: Ã = [Ã◦, Ã1, Ã2, ...., Ãp]
′ It is a fuzzy parameter vector. And that X = [1, x1, x2, ....., xp]

is the vector of independent variables, and the function of membership of fuzzy parameter at
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form:

(2.3) µÃi(ai)
=

 1− |αi−ai|
ci

; αi − ci ≤ ai ≤ αi + ci

0 otherwise

 ; i = 1, 2, 3, ..., n, ai > 0

where: αi, ci are the center value and spread value for fuzzy parameter respectively. Using

Figure 1. illustrates the parameter of the trigonometric regression model

the fuzzy parameters Ai as shown in equation (2.3) as fuzzy numbers, and equation (2.2) to
obtain the membership function of Y in the image:

(2.4) µYi(y) =


1− |y−x

′α|
c|x| ; x 6= 0

1 ;x, y = 0

0 otherwise

 ;Where|x| = (|x1|, |x2|, ..., |xp|)′

in this model, (Tanaka) and his colleagues hypothesized the second case shown in Table
(1). Thus, the function of membership to the response variable (dependent variable) is:

(2.5) µYi(yi) =

 1− |yi−y|
ei

; yi − ei ≤ y ≤ yi + ei

0 otherwise


Where yi, ei are the center vlue and spread value for fuzzy parameter respectively.

Figure 2. illustrates the function of membership to the dependent variable.
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Tanaka through this model was seeking to reduce the total spread value through the model:

MinJ = c1 + c2 + ...+ cp

subject to:

αtxi + (1−h)
∑
j

cj|xij| ≥ yi + (1− h)ei

−αtxi + (1− h)
∑
j

cj|xij| ≥ −yi + (1− h)ei

ci ≥ 0 ; i = 1, 2, 3, ..., n

(2.6)

h is an appropriate degree of fuzzy linear model [10], proposed by the decision maker, which
is the same level of confidence, (1− α) in the hypothesis tests, and may take the same concept,
α− level , see Figure 3.

Figure 3. illustrates α− level = h− certain.

In 1987 and 1989, Tanaka modified his first model and attempted in the second model to
reduce the overall ambiguity of the model as:

Minimize J(c)=
∑

i c
t|xi|

subject to
yi + |L−1(h)|ei≥αtx− |L−1(h)|ct|xi|

yi − |L−1(h)|ei≤αtx+ |L−1(h)|ct|xi|

ct≥0 ; i = 1, 2, 3, ..., n

It is called the foggy linear regression model and is given in three cases: micro-optimal
solutions, super-optimal, simultaneous solutions, symbolized by:

Âj = (α̂j, ĉj)L , Aj = (αj, cj)L , Aj = (αj, cj)L respectively , [4].
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Figure 4. The relationship between the degree of suitability of the model and
the propagation function J(c).

2.2. Fuzzy Linear Regression Model: Diamond proposed the method of fuzzy least squares
using the (L2 −metric) standard [4], which exceeded many of the problems of the Tanaka
model such as the problems of linear multiplicity, where he proposed to estimate the parame-
ters of the model: Ỹi = Ã◦ + Ã1Xi1 + Ã2Xi2 + ...+ ÃnXip. Using the fuzzy least squares (FLR)
method based on squared distances, It was assumed that X̃ independent variables are fuzzy
numbers within a given spread with a left Lx , right Rx , and central value X = (x, Lx, Rx) ,
Similarly to a Ỹ dependent variable, fuzzy numbers are within a given spread with a left Ly ,
right Ry , and central value Ỹ = (y, Ly, Ry) , and a function of belonging to these variables.
Based on the Diamond Quadrature Proposal, Shapiro suggested that if estimating the spread
of upper points of data in a straight line YU and another line to estimate the spread of the
lower points in a straight line YL and a third line midway between the upper and lower lines:
Yh = 1

2
(YU + YL) ,Where h the coefficient of confidence (level of confidence), which explains

the level of data concentration, if we have the two variables X, Y and a function of triangular
belonging, the square distance is given by:

(2.7) d(X, Y )2 = [x− y − (Lx − Ly)]2 + [x− y + (Rx −Ry)]
2 + [x− y]2

To obtain the best matching model, we reduce the squared distances between the spread of
the variables. Example: Assuming we have two variables:
Xi, Yi , i = 1, 2, 3, ..., n , let us have the following model: Y = a + bX ; a, b ∈ R It is
using relationship (2.7): MinJ(a, b) =

∑
d(a+ bXi − Yi)2

Here are two cases to find the sum of squared distances:
when b ≥ 0, b < 0 it:
d(a+ bXi, Yi)

2 = [a+ bxi− yi− (Lx−Ly)]2 + [a+ bxi− yi + (Rx−Ry)]
2 + (a+ bxi− yi)2; b ≥ 0
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And also:
d(a+ bXi, Yi)

2 = [a+ bxi− yi + (Lx−Ly)]2 + [a+ bxi− yi− (Rx−Ry)]
2 + (a+ bxi− yi)2; b < 0

Applying the idea of Sanli , Apaydin , [7] to reduce the squared distances using the normal
squares method of the fuzzy model described in equation (2.2):
Ãi = Ã◦ + Ã1xi1 + Ã2xi2 + Ã3xi3 + ...+ Ãpxip

Then:

(2.8) MinJ(Ã◦ + Ã1 + Ã2 + ...+ Ãp) =
∑

d(Ã◦ + Ã1xi1 + Ã2xi2 + ...+ Ãpxip + Ỹi)
2

MinJ(At) =∑
[[Ã◦ + Ã1xi1 + Ã2xi2 + ...+ Ãpxip − Ỹi − (Ã1Lxi1 + Ã2Lxi2 + ...+ ÃpLxip)]2

+[Ã◦ + Ã1xi1 + Ã2xi2 + ...+ Ãpxip − Ỹi + (Ã1Rxi1 + Ã2Rxi2 + ...+ ÃpRxip)]2

+[Ã◦ + Ã1xi1 + Ã2xi2 + ...+ Ãpxip − Ỹi]2]

The partial differential of equation (2.8) for the parameters Ãj is obtained p+ 1 from the
differential equations: By setting each of the resulting equations to zero, we obtain a set of
equations that can be solved simultaneously using matrices to arrive at estimates of model
parameters as follows , [15]:

(2.9) ˆ́̃
A = (XL

tXL +XX +XR
tXR)−1(XL

tYL + X́Y +XR
tYR)

Where: X =


1 x11 x12 · · · x1p

1 x21 x22 · · · x2p
... ... ... ...... ...
1 xn1 xn2 · · · xnp

 , Y =


y1

y2
...
yn



XL =


1 x11 − Lx11 x12 − Lx12 · · · x1p − Lx1p
1 x21 − Lx21 x22 − Lx22 · · · x2p − Lx2p
... ... ... ...... ...
1 xn1 − Lxn1 xn2 − Lxn2 · · · xnp − Lxnp

 , YL =


y1 − Ly
y2 − Ly

...
yn − Ly


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XR =


1 x11 +Rx11 x12 +Rx12 · · · x1p +Rx1p

1 x21 +Rx12 x22 +Rx22 · · · x2p +Rx2p
... ... ... ...... ...
1 xn1 +Rx1n xn2 +Rxn2 · · · xnp +Rxnp

 , YR =


y1 +Ry

y2 +Ry

...
yn +Ry


The estimated fuzzy model is: ˆ̃Y =

ˆ́̃
AX

3. Results and discussion

The practical part presents an analysis and construction of the fuzzy model. The study
relied on the data published in the M. Sc. thesis of the linear regression of the researcher
Bekir [2], as shown in Table (2) which are meteorological data (humidity - wind speed -
rain amount - temperature). And there are study variables Y,X1, X2, X3 respectively, were
simulated by the following relationships: Y = 2X1 + 3X2 + 2X3 where:X1, X2 ∼ N(2, 1) and:
X3 ∼ N(4, 1) used the analytical method of the data based on the proposed misty ratio of 0.1
and 0.05 for the variables, and using MATLAB program was applied to the proposed model
according to equation (2.9):
ˆ́̃
A = (XL

tXL +XX +XR
tXR)−1(XL

tYL + X́Y +XR
tYR)

The data was fuzzed in two values:
Ry = Ly = Rxip = Lxip = 0.1 , Ry = Ly = Rxip = Lxip = 0.05 These values are suggested by
the researcher because the values of the variables cannot be adopted as actual accurate values
because of the efficiencies and competencies of the instruments used in the measurements.
Therefore, the fumigation has been proposed in the data values as a maximum or a minimum
of the two proposed values.
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Table 2. Study Variables

N Y X1 X2 X3 N Y X1 X2 X3
1 19.3 1.39 3.12 3.17 11 18.5 0.8 2.28 4.16
2 20.2 3 1.73 3.91 12 22.6 3.53 2.48 3.64
3 19.2 2.37 1.14 4.93 13 24.1 1.83 3.77 4.62
4 15.7 0.43 2.44 3.62 14 20.4 1.17 2.72 5.05
5 20.8 2.32 2.61 4.06 15 23.9 2.46 2.71 4.48
6 17.7 0.68 2.13 4.35 16 20.3 2.99 2.4 3.36
7 24.9 2.28 3.26 4.46 17 18.1 1.59 1.72 4.53
8 20.9 5.05 0.51 4.91 18 30.1 3.81 3.37 5.61
9 32.2 2.31 5.12 5.42 19 22.1 1.91 2.92 4.23
10 19.9 3.08 1.93 4.07 20 18.5 1.51 1.72 4.68

X =



1 1.39 3.12 3.17

1 3.0 1.73 3.91

1 2.37 1.14 4.93

1 0.43 2.44 3.62

1 2.32 2.61 4.06

1 0.68 2.13 4.35

1 2.28 3.26 4.46

1 5.05 0.51 4.91

1 2.31 5.12 5.42

1 3.08 1.93 4.07

1 0.8 2.28 4.16

1 3.53 2.48 3.64

1 1.83 3.77 4.62

1 1.17 2.72 5.05

1 2.46 2.71 4.48

1 2.99 2.4 3.36

1 1.59 1.72 4.53

1 3.81 3.37 5.61

1 1.91 2.92 4.23

1 1.51 1.72 4.68



, Y =



19.3

20.2

19.2

15.7

20.8

17.7

24.9

20.9

32.2

19.9

18.5

22.6

24.1

20.4

23.9

20.3

18.1

30.1

22.1

18.5



, YL =



19.2

20.1

19.1

15.6

20.7

17.6

24.8

20.8

32.1

19.8

18.4

22.5

24.0

20.3

23.8

20.2

18.0

30.0

22.0

18.4



, YR =



19.4

20.3

19.3

15.8

20.9

17.8

25.0

21.0

32.3

20.0

18.6

22.7

24.2

20.5

24.0

20.4

18.2

30.2

22.2

18.6


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XL =



1 1.29 3.02 3.07

1 2.9 1.63 3.81

1 2.27 1.04 4.83

1 0.33 2.34 3.52

1 2.22 2.51 3.96

1 0.58 2.03 4.25

1 2.17 3.16 4.36

1 4.95 0.41 4.81

1 2.21 5.02 5.32

1 2.98 1.83 3.97

1 0.7 2.18 4.06

1 3.43 2.38 3.54

1 1.73 3.67 4.52

1 1.07 2.62 4.95

1 2.36 2.61 4.38

1 2.89 2.3 3.26

1 1.49 1.62 4.43

1 3.71 3.27 5.51

1 1.81 2.82 4.13

1 1.41 1.62 4.58



, XR =



1 1.39 3.12 3.17

1 3.0 1.73 3.91

1 2.37 1.14 4.93

1 0.43 2.44 3.62

1 2.32 2.61 4.06

1 0.68 2.13 4.35

1 2.28 3.26 4.46

1 5.05 0.51 4.91

1 2.31 5.12 5.42

1 3.08 1.93 4.07

1 0.8 2.28 4.16

1 3.53 2.48 3.64

1 1.83 3.77 4.62

1 1.17 2.72 5.05

1 2.46 2.71 4.48

1 2.99 2.4 3.36

1 1.59 1.72 4.53

1 3.81 3.37 5.61

1 1.91 2.92 4.23

1 1.51 1.72 4.68



,

The model parameters are estimated using equation (2.9):
ˆ́̃
A =

(
0.8164 1.8417 3.1020 2.0141

)
Similarly when: Ry = Ly = Rxpi = Lxpi = 0.05

The model parameters are estimated according to the same model:
ˆ́̃
A =

(
0.4344 1.8645 3.1330 2.0722

)
The parameters of the model were estimated in the traditional way (least squares) according
to the model: ÂOLS = (X́X)−1.X́Ŷ

His results were as follows: ˆ́
AOLS =

(
0.3450 1.8720 3.1470 2.0817

)
The sum of the error boxes was calculated (see Table 3).
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predicted values by Fuzzy model predicted Fuzzy model predicted
Ordinary values at: values at:

squares OLS Ry = Ly = Rxip = Lxip = .1 Ry = Ly = Rxip = Lxip = .05

Y ŶOLS e2iOLS ŶFL.1 e2iFL.1 ŶFL.05 e2iFL.05

19.3 19.36471 0.004187255 0.01938 19.4392 0.0048845 19.369889
20.2 19.54476 0.429343389 0.3807 19.583 0.3805767 19.583091
19.2 18.632 0.322622864 0.3059 18.6469 0.3057847 18.647022
15.7 16.36439 0.441419387 0.59006 16.4682 0.5902127 16.468253
20.8 21.35341 0.306264842 0.31642 21.3625 0.31653 21.36261
17.7 17.37647 0.104674896 0.06904 17.4373 0.0689845 17.437351
24.9 24.15676 0.552402725 0.62287 24.1108 0.6227072 24.110882
20.9 21.62472 0.52521473 0.47353 21.5881 0.4736688 21.588236
32.2 32.06477 0.018286071 0.10937 31.8693 0.1093036 31.869389
19.9 20.65699 0.573032346 0.5975 20.673 0.5976573 20.673083
18.5 17.67763 0.676289127 0.57627 17.7409 0.5761174 17.740976
22.6 22.33511 0.070167772 0.06667 22.3418 0.0666234 22.341885
24.1 25.2524 1.328034979 1.18003 25.1863 1.1802498 25.186393
20.4 21.60767 1.458454752 1.39177 21.5797 1.3920083 21.579834
23.9 22.80451 1.200107104 1.26232 22.7765 1.262095 22.77657
20.3 20.48959 0.035945126 0.0553 20.5352 0.0553468 20.535259
18.1 18.16442 0.004150065 0.0108 18.2039 0.0108193 18.204016
30.1 29.76105 0.114889136 0.26418 29.586 0.2640747 29.586118
22.1 21.91535 0.034095253 0.03556 21.9114 0.0355209 21.91153
18.5 18.32692 0.029958071 0.01997 18.3587 0.0199389 18.358795
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