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Abstract. In this paper, we consider the fractional Korteweg-de Vries-Burgers (KdVB) equation
as follows:

CDγρ,µ,ωu(x, t) = σ
∂2u(t, x)

∂x2
− 2u

∂u(t, x)

∂x
− δ ∂

3u(t, x)

∂x3
, 0 < µ ≤ 1,

where the operator CDγρ,µ,ω is a Caputo-Prabhakar fractional derivative of order µ. We obtain
the existence and uniqueness of the solutions of this kind of fractional differential equation by
using compositions of the fractional integration operator with the fractional derivative operator,
some sufficient conditions. Also, we are set up to simulate the unique solutions of the KdVB by
using the numerical approximation that this approximation is based on the two-step Lagrange
polynomial interpolation method. Finally, the numerical experiments are carried out to support
the theoretical claims.
2010 Mathematics Subject Classification. 26A33, 34k20, 44A10.
Key words and phrases. Prabhakar function; KdVB-equation; fractional derivative; Lagrange
polynomial interpolation.

1. Introduction

In the last decades, non-integer orders of differentiation and integration and fractional
differential systems have an important role in fractional calculus [2–5, 8–10, 14]. Also, due to
its application in engineering sciences and mathematical fields such as probability and the
study of stochastic processes attention many writers are located. A KdVB equation is defined
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as follows [7]:

(1-1) ∂u(t, x)

∂t
= σ

∂2u(t, x)

∂x2
− 2u

∂u(t, x)

∂x
− δ∂

3u(t, x)

∂x3
,

where σ and δ are the two perturbation parameters andwhen σ = 0, the relation (1-1) becomes
Korteweg-de Vries (KdV) equation, also when δ = 0, the relation (1-1) corresponds to the
Burgers equation. Hence, the KdVB equation are a type of combination of both Burgers
and Korteweg-de Vries equations. The KdVB equation was first introduced by Su & Gardner
(1969) [16]. The equation (1-1) considered as appropriate system for a wide range of nonlinear
systems in the weak nonlinearity and long wavelength approximations, since it contains both
damping and dispersion. The two states can be considered for the solutions of the differential
equation as follows [7]:

1) the steady state solutions of the KdVB equation are monotonic shocks, when diffusion
dominates dispersion,

2) the steady state solutions of the KdVB equation are oscillatory shocks, when dispersion
dominates diffusion.

These equations play an important role in the field of wave propagation through liquid filled
elastic tubes , shallow water waves on a viscous fluid [15], current flow in electrical flow and
pulse in biological chains. The numerical approximations results of fractional differential
systems have been the main goal in contributions. In [6] used the Ritz approximation for
numerical solutions of fractional partial differential equations (FPDEs)in the sense of the
Caputo fractional derivative to develop a scheme for solving the Burger’s equation. Artstein [1]
is implement the dispersive approximation scheme of Goodman and Lax [12] for solving
the KdVB equation. Soliman [17] used a variational iteration method for finding the wave
solution of the Lax´s seventh-order KdV (for short, LsKdV) and Korteweg-de Vries Burgers
(for short, KdVB)equations. In the end Goufo [7] are using the two-step Lagrange polynomial
interpolation method for solving the Korteweg-de Vries-Burgers equation and in this paper,
there is a study of the existence and uniqueness of this kind of equation. In this paper, we are
going to by replacing ∂u(t,x)

∂t
with CDγ

ρ,µ,ω in the definition of KdVB equation (1-1) and discuss
the existence, uniqueness and some numerical simulations approximating of the solutions
of this fractional equation. Here we introduce a fractional Korteweg-de Vries-Burgers in the
sense of Caputo-Prabhakar fractional derivative of order µ as follows:

(1-2) CDγ
ρ,µ,ωu(x, t)− σ∂

2u(t, x)

∂x2
+ 2u

∂u(t, x)

∂x
+ δ

∂3u(t, x)

∂x3
= 0, 0 < µ ≤ 1,



Asia Pac. J. Math. 2020 7:9 3 of 12

such that this kind of derivative CDγ
ρ,µ,ω is a novel generalization of derivatives of both Riemann-

Liouville and Caputo types. The Caputo-Prabhakar fractional derivative is obtained by mod-
ifying the Caputo derivative by extending its kernel with a three-parameter Mittag-Leffler
function that known as Prabhakar function and is defined as follows:

(1-3) Eγ
ρ,µ(z) =

∞∑
n=0

(
γ
)
n

n!Γ(ρn+ µ)
zn, <(ρ),<(µ) > 0, γ > 0, z ∈ C,

where Γ
(
.
) denotes the Euleŕs gamma function and also this prabhakar function, a function

which extends the well-known two-parameter Mittag-Leffler function and this function are a
lot of applications in anomalous dielectrics of Havriliak-Negami, stochastic processes, some
fractional boundary-value problems, dynamical models of spherical stellar systems. For this
purpose, in Section 2 we recall the fundamental definitions in fractional calculus and in this
section introduces the fractional derivative with Prabhakar Kernel. In Section 3, we survey
the existence, uniqueness and the numerical approximation scheme based on the two-step
Lagrange polynomial interpolation for KdVB-equation with Caputo-Prabhakar fractional
derivative , also in this section the simulation results are discussed.

2. Preliminaries

In this section, we recall some definitions and lemmas of fractional integral and differential
operators which are used in the next sections.
Definition 2.1. [13,18]. For 0 < α ≤ 1 and f ∈ L1[a, b], 0 < t < b ≤ ∞, the left-sided and the
right-sided Riemann-Liouville fractional integrals and derivatives of order α are defined as

Iαa+f(t) =
1

Γ(α)

∫ t

a

f(τ)(t− τ)α−1dτ,(2-1)

Iαb−f(t) =
1

Γ(α)

∫ b

t

f(τ)(τ − t)α−1dτ,(2-2)

Dα
a+f(t) =

1

Γ(α)

d

dt

∫ t

a

f(τ)(t− τ)−αdτ,(2-3)

Dα
b−f(t) = − 1

Γ(α)

d

dt

∫ b

t

f(τ)(τ − t)−αdτ.(2-4)
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Also, for the absolutely continuous function f , the left-sided and the right-sided Caputo
fractional derivatives of order α are defined as follows

CDα
a+f(t) = I1−αa+

d

dt
f(t) =

1

Γ(1− α)

∫ t

a

(t− τ)−α
d

dτ
f(τ)dτ,(2-5)

CDα
b−f(t) = −I1−αb−

d

dt
f(t) = − 1

Γ(1− α)

∫ b

t

(τ − t)−α d
dτ
f(τ)dτ.(2-6)

Definition 2.2. [11]. Form− 1 < <(µ) ≤ m and f ∈ L1[0, b], 0 < t < b ≤ ∞, the left-sided and
the right-sided Prabhakar fractional integrals are defined as follows

(Eγ
ρ,µ,ω,a+f)(t) =

∫ t

a

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)f(τ)dτ,(2-7)

(Eγ
ρ,µ,ω,b−f)(t) =

∫ b

t

(τ − t)µ−1Eγ
ρ,µ(ω(τ − t)ρ)f(τ)dτ,(2-8)

where ρ, µ, ω, γ ∈ C and Eγ
ρ,µ is Prabhakar function(1-3).

Definition 2.3. [11]. For the function f ∈ L1[0, b], the left-sided and the right-sided Prabhakar
fractional derivatives are defined as

(Dγ
ρ,µ,ω,a+f)(t) =

dm

dtm
E−γρ,m−µ,ω,a+f(t),(2-9)

(Dγ
ρ,µ,ω,b−f)(t) = (−1)m

dm

dtm
E−γρ,m−µ,ω,b−f(t),(2-10)

where m − 1 < <(µ) ≤ m. For the absolutely continuous function f , the left-sided and the
right-sided Caputo-Prabhakar fractional derivatives are also defined as follows:

CDγ
ρ,µ,ω,a+f(t) = E−γρ,m−µ,ω,a+

dm

dtm
f(t),(2-11)

CDγ
ρ,µ,ω,b−f(t) = (−1)mE−γρ,m−µ,ω,b−

dm

dtm
f(t).(2-12)

Lemma 2.4. Let ρ, µ, γ, ν, σ, ω ∈ C that <(ρ),<(µ),<(ν) > 0. Then we have [13]:

(2-13) Eγ
ρ,µ,ω,a+E

σ
ρ,ν,ω,a+ψ = Eγ+σ

ρ,µ+ν,ω,a+ψ,

where ψ is summable function and ψ ∈ L1[a, b]. In particular, the following equation holds:

(2-14) Eγ
ρ,µ,ω,a+E

−γ
ρ,ν,ω,a+ψ = Iµ+νa+ ψ.

Lemma 2.5. Let ρ, µ, γ, ω ∈ C that <(ρ),<(µ) > 0. Then [13]:

(2-15)
∫ t

0

zµ−1Eγ
ρ,µ(ωzρ)dz = tµEγ

ρ,µ+1(ωt
ρ).
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3. Existence, uniqueness for KdVB-equation with fractional derivative contain the
Prabhakar function in Kernel

In this section, we first show the existence of solutions of the KdVB-equation with fractional
derivative contain the Prabhakar function in Kernel and then show the uniqueness of it with a
theorem. In order to prove existence of solutions of the equation (1-2), We consider the initial
conditions of the equation (1-2) as follows:

(3-1) u(x, 0) = h(x).

For this purpose, using formulas (2-11), (2-14) and taking the integration of (1-2), then we
have:

(3-2) u(x, t)− u(x, 0) = Eγ
ρ,µ,ω,a+

[
σ
∂2u(t, x)

∂x2
− 2u

∂u(t, x)

∂x
− δ∂

3u(t, x)

∂x3

]
,

the equations (3-2) can be written as:

(3-3) u(x, t)− u(x, 0) =

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)

[
σuxx − 2uux − δuxxx

]
dτ.

We consider Q(x, t, u, σ, δ) = σuxx − 2uux − δuxxx and we show that the Lipschitz conditions
are established for the function Q(x, t, u, σ, δ) that the function u is bounded. Therefore the
following relation is established for bounded functions u, ū:

Q(x, t, u, σ, δ)−Q(x, t, ū, σ, δ)

=
(
σuxx − 2uux − δuxxx

)
−
(
σūxx − 2ūūx − δūxxx

)
=
(
σ(uxx − ūxx)− 2(uux − ūūx)− δ(uxxx − ūxxx)

)
.(3-4)

Using the features of the norm, we have:

‖ Q(x, t, u, σ, δ)−Q(x, t, ū, σ, δ) ‖

=‖ σ(uxx − ūxx) + 2(ūūx − uux) + δ(ūxxx − uxxx) ‖

≤ σ ‖ uxx − ūxx ‖ +2 ‖ ūūx − uux ‖ +δ ‖ ūxxx − uxxx ‖

= σ ‖ ∂xx(u− ū) ‖ + ‖ ∂x(ū2 − u2) ‖ +δ ‖ ∂xxx(ū− u) ‖ .(3-5)

Due to the fact that the functions u, ū are bounded, in this case there exists a non-negative
constants k0 > 0, k1 > 0 that the following relationship holds for them:

(3-6) ‖ u ‖≤ k0, ‖ ū ‖≤ k0.
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Hence, the partial derivative (of order one) ∂x satisfying in the Lipschitz condition , in this
case there exists a non-negative constant K1 > 0 that the following relationship holds:

‖ Q(x, t, u, σ, δ)−Q(x, t, ū, σ, δ) ‖

≤ σK2
1 ‖ u− ū ‖ +K1 ‖ ū2 − u2 ‖ +δK3

1 ‖ ū− u ‖

≤ σK2
1 ‖ u− ū ‖ +K1 ‖ ū− u ‖‖ ū+ u ‖ +δK3

1 ‖ ū− u ‖

≤
[
σK2

1 + 2k0K1 + δK3
1

]
‖ u− ū ‖ .(3-7)

We consider K = σK2
1 + 2k0K1 + δK3

1 , thus obtain:

(3-8) ‖ Q(x, t, u, σ, δ)−Q(x, t, ū, σ, δ) ‖≤ K ‖ u− ū ‖ .

It was shown that the function Q holds in the Lipschitz condition, it allows us to express the
following theorem for uniqueness and continuity of the solution of the KdVB-equation :
Theorem 3.1. IfKtµEγ

ρ,µ+1(ωt
ρ) < 1, then the non-linear KdVB-equation (1-2) under the initial

conditions (3-1) have an unique solution and that solution is continuous.

Proof. Using the relationship (3-3) and we convert it into a iterative scheme as follows:

u0(x, t) = u(x, 0),

un(x, t) =

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)Q(x, τ, un, σ, δ)dτ.(3-9)

Considering

(3-10) ū(x, t) = lim
n→∞

un(x, t),

we are now showing that ū(x, t) = u(x, t) is a solution to themodel and that it is also continuous.
For this purpose, we define the function Sn(x, t) as follows:

(3-11) Sn(x, t) = un(x, t)− un−1(x, t),

that relationship (3-11) can be rewritten as follows:

(3-12) un(x, t) =
n∑

m=0

Sn(x, t).

Thus

Sn(x, t) = un(x, t)− un−1(x, t)

=

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ

[
Q(x, τ, un−1, σ, δ)−Q(x, τ, un−2, σ, δ)

]
dτ,(3-13)



Asia Pac. J. Math. 2020 7:9 7 of 12

by getting the norm of Eq. (3-13) and applying relationship (3-8), we have:

‖ Sn(x, t) = un(x, t)− un−1(x, t) ‖

=‖
∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ

[
Q(x, τ, un−1, σ, δ)−Q(x, τ, un−2, σ, δ)

]
dτ ‖

≤
∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ ‖ Q(x, τ, un−1, σ, δ)−Q(x, τ, un−2, σ, δ) ‖ dτ

K

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ ‖ un−1 − un−2 ‖ dτ,(3-14)

equivalently

(3-15) ‖ Sn(x, t) ‖≤ K

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ ‖ Sn−1 ‖ dτ.

We use the relationship (2-15) and recursive iterations on the relationship (3-15), we get:

(3-16) ‖ Sn(x, t) ‖≤ K
(
tµEγ

ρ,µ+1(ωt
ρ)
)n
u(x, 0).

that completes the proof of existence and and continuity results of a solution. To prove the
continuity of the solutions of this KdVB-equation, we have:

u(x, t)−
∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)Q(x, τ, un, σ, δ)dτ

= Rn(x, t) +

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)

[
Q(x, τ, un−1, σ, δ)−Q(x, τ, u, σ, δ)

]
dτ,(3-17)

thus we have:

‖ u(x, t)−
∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)Q(x, τ, un, σ, δ)dτ ‖

≤‖ Sn ‖ +θ
(
tµEγ

ρ,µ+1(ωt
ρ)
)
‖ Sn−1 ‖ .(3-18)

Considering the initial conditions and taking the limit as n→ 0 we have:

(3-19) u(x, t) = u(x, 0) +

∫ t

0

(t− τ)µ−1Eγ
ρ,µ(ω(t− τ)ρ)Q(x, τ, un, σ, δ)dτ.

Assume that u and ū are two solutions of this KdVB-equation,then to prove the unique solution,
we have to show u = ū. Using of the Lipschitz condition for Q, we have:

(3-20) ‖ u− ū ‖≤ K
(
tµEγ

ρ,µ+1(ωt
ρ)
)
‖ u− ū ‖

which is equivalent to

(3-21)
[
1−K

(
tµEγ

ρ,µ+1(ωt
ρ)
)]
‖ u− ū ‖≤ 0,

then ‖ u− ū ‖= 0, if K(tµEγ
ρ,µ+1(ωt

ρ)
)
< 1 that the proof is complete. �
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Figure 1. Approximation of solution u(x, t) to system (1-2) for µ =

0.25, 0.5, 0.75, 0.95, 1.0 and ρ = 1, γ = 1, ω = 1.

4. The numerical simulations approximating the unique solution to the KdVB-equation

In this section, we construct a new numerical scheme for KdVB-equation that method
is based on the two-step Lagrange polynomial interpolation. For this aim we consider the
relation (3-3) and at a given point tn+1, n = 0, 1, 2, . . . , the relation (3-3) is reformulated as:

u(x, tn+1)− u(x, 0) =

∫ tn+1

0

(tn+1 − τ)µ−1Eγ
ρ,µ(ω(tn+1 − τ)ρ)Q(x, τ, u, σ, δ)dτ

=
n∑
k=0

∫ tn+1

tk

(tn+1 − τ)µ−1Eγ
ρ,µ(ω(tn+1 − τ)ρ)Q(x, τ, u, σ, δ)dτ,(4-1)

using the two-step Lagrange polynomial interpolation forQ(x, τ, u, σ, δ) in the interval [tk, tn+1],
thus we have:

Pk(τ) =
τ − tk−1
tk − tk−1

Q(x, tk, u(tk)), σ, δ)−
τ − tk
tk − tk−1

Q(x, tk−1, u(tk−1)

=
Q(x, tk, u(tk), σ, δ)

h
(τ − tk−1)−

Q(x, tk−1, u(tk−1), σ, δ)

h
(τ − tk)

' Q(x, tk, uk, σ, δ)

h
(τ − tk−1)−

Q(x, tk−1, uk−1, σ, δ)

h
(τ − tk).(4-2)
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Figure 2. Approximation of solution u(x, t) to system (1-2) for µ =

0.25, 0.5, 0.75, 0.95, 1.0 and ρ = 1, γ = 1, ω = 1.

by substituting (4-2) into (4-1) we obtain:

un+1 = u0

+
n∑
k=0

[Q(x, tk, uk, σ, δ)

h

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)µ−1Eγ
ρ,µ(ω(tn+1 − τ)ρ)dτ

− Q(x, tk−1, uk−1, σ, δ)

h

∫ tk+1

tk

(τ − tk)(tn+1 − τ)µ−1Eγ
ρ,µ(ω(tn+1 − τ)ρ)dτ

]
.(4-3)
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Using the relation (1-3) and since the Prabhakar function is convergent [13], thus we obtain:

un+1 = u0

+
n∑
k=0

∞∑
m=0

ωm
(
γ
)
m

m!Γ(ρm+ µ)

[Q(x, tk, uk, σ, δ)

h

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)ρm+µ−1dτ

− Q(x, tk−1, uk−1, σ, δ)

h

∫ tk+1

tk

(τ − tk)(tn+1 − τ)ρm+µ−1dτ
]
.(4-4)

Applying the integration by parts, thus we compute the integral in the relation (4-4)as follows:

∫ tk+1

tk

(τ − tk−1)(tn+1 − τ)ρm+µ−1dτ = −(τ − tk−1)
(tn+1 − τ)ρm+µ

ρm+ µ
|tk+1

tk

+

∫ tk+1

tk

(tn+1 − τ)ρm+µ

ρm+ µ
dτ.(4-5)

Also with the same process for the second part we obtain:

∫ tk+1

tk

(τ − tk)(tn+1 − τ)ρm+µ−1dτ = −(τ − tk)
(tn+1 − τ)ρm+µ

ρm+ µ
|tk+1

tk

+

∫ tk+1

tk

(tn+1 − τ)ρm+µ

ρm+ µ
dτ.(4-6)

Substitution relationships (4-5) and (4-6) into (4-4) and using the relation (2-15), thus we
get:

un+1 = u0

+
n∑
k=0

[Q(x, tk, uk, σ, δ)

h

{
− (τ − tk−1)(tn+1 − τ)µEγ

ρ,µ+1(ω(tn+1 − τ)ρ)|tk+1

tk

+ (tn+1 − τ)µ+1Eγ
ρ,µ+2(ω(tn+1 − τ)ρ)|tk+1

tk

}
− Q(x, tk−1, uk−1, σ, δ)

h

{
− (τ − tk)(tn+1 − τ)µEγ

ρ,µ+1(ω(tn+1 − τ)ρ)|tk+1

tk

+ (tn+1 − τ)µ+1Eγ
ρ,µ+2(ω(tn+1 − τ)ρ)|tk+1

tk

}]
.(4-7)
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Thus

un+1 = u0

+
n∑
k=0

[Q(x, tk, uk, σ, δ)

h

{
− hµ+1

[
2(n− k)µEγ

ρ,µ+1(ωh
ρ(n− k)ρ)

− (n− k)µ+1Eγ
ρ,µ+2(ωh

ρ(n− k)ρ)
]

+ hµ+1
[
(n− k + 1)µEγ

ρ,µ+1(ωh
ρ(n− k + 1)ρ)− (n− k + 1)µ+1Eγ

ρ,µ+2(ωh
ρ(n− k + 1)ρ)

]}
− Q(x, tk−1, uk−1, σ, δ)

h

{
− hµ+1

[
(n− k)µEγ

ρ,µ+1(ωh
ρ(n− k)ρ)

− (n− k)µ+1Eγ
ρ,µ+2(ωh

ρ(n− k)ρ)
]
− hµ+1

[
(n− k + 1)µ+1Eγ

ρ,µ+2(ωh
ρ(n− k + 1)ρ)

}]
.

(4-8)

Then, we obtained a numerical approximation for the solutions of this KdVB-equation. Now,
we consider the present method (4-8) and apply it to solve the model (1-2) under the initial
conditions (3-1). we obtain numerical solutions that are represented using h = 0.01 with the
perturbation parameters given by σ = 0, δ = 2 and the initial condition h(x) = sin(πx) for the
different µ = 0.25, µ = 0.5, µ = 0.75, µ = 0.95, µ = 1.0 which is shown in the figures 1 and 2.
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