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Abstract. Enlarging the set of items with new type of color coded items in a generalized exact
cover problem, that is, proposing the so-called exact cover problem with color codes greatly
enhances the modeling power of the generalized exact cover problem. It was pointed out that the
new type of exact cover problem with color codes can be reduced to back the generalized exact
cover problem without color codes. The reduction is accomplished by introducing tactically
chosen new secondary items. This paper will show that the number of newly introduced
secondary items is related to the chromatic number of a suitably defined auxiliary graph. The
arguments are constructive. Carrying out the construction of the auxiliary graph and coloring its
nodes in a greedy manner gives a practical algorithm for the above reduction. Since the number
of colors provided by the greedy coloring procedure is not equal to the chromatic number of
the auxiliary graph the number of the introduced secondary items in the reduction exceeds the
necessary optimal minimum.
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1. Introduction

The exact cover (or set partitioning) problem is the following decision problem.

Problem 1.1. Given a finite set U and a family of non-empty subsets A1, . . . , Am of U . Decide if there

are pair-wise disjoint subsets B1, . . . , Bk among A1, . . . , Am such that U = B1 ∪ · · · ∪Bk.

By the complexity theory of algorithms, Problem 1.1 is an NP-complete problem. D. E.
Knuth [6] proposed an algorithm for solving Problem 1.1. The procedure is referred as
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dancing links algorithm. D. E. Knuth went on and solved a large collection of puzzles with
his dancing links algorithm. It became clear that the algorithm is capable of solving highly
non-trivial size instances of the exact cover problem and so it has potential applications on
various fields others than puzzles. After a slight and natural modification of the dancing links
procedure can solve a more general problem the so-called generalized exact cover problem.
This extension significantly enhances the modeling power of the method.

Problem 1.2. Given two disjoint finite sets U1, U2 and a family of non-empty subsets A1, . . . , Am of

U = U1 ∪ U2. Decide if there are pair-wise disjoint subsets B1, . . . , Bk among A1, . . . , Am such that

(B1 ∩ U1) ∪ · · · ∪ (Bk ∩ U1) = U1,

(B1 ∩ U2) ∪ · · · ∪ (Bk ∩ U2) ⊆ U2.

The elements of U are referred as items and the subsets A1, . . . , Am are referred as options.
The elements of U1 are called primary items and the elements of U2 are called a secondary
items. In a typical situation it is assumed that each option contains at least one primary item.
In other words it is assumed that

A1 ∩ U1 6= ∅, . . . , Am ∩ U1 6= ∅

and consequently U1 6= ∅. The set U2 may be empty. In this case the generalized exact cover
problem reduces to the simple exact cover problem.

Motivated by applications [7] extends Problem 1.2. Namely, new type of secondary items
are introduced. Each of these secondary items receives a color code from a finite list of colors.
Two options containing the same secondary item with different color codes are defined to
be in conflict in the sense that the two options prohibited to appear together in a qualifying
exact cover. The original dancing links algorithm solves the color coded version without major
restructuring. The possibility of assigning color codes to secondary items is an intuitive tool
in recognizing situation where the exact cover methodology is applicable.
The solution of Exercise 99 in [7] points out that an exact cover instance with color codes

can be reduced to generalized exact cover instance without color codes. The price we pay for
this reduction is that the number of the secondary items may increase and the number of the
items in the options may increase.
The main objective of this paper is to investigate how many new secondary items makes

possible the above reduction. As it turns out the number of the necessary new items is equal
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to the chromatic number of a suitable constructed auxiliary graph. The construction of the
auxiliary graph is computationally not overly hard. However, finding the chromatic number
(as an NP-hard optimization problem) is computationally demanding. We will look for
procedures to locate approximate values of the number of the secondary items. We are not
on completely uncharted territory. We build on a result of P. Erdős, A. W. Goodman, and L.
Pósa [2]

2. Intersection graphs

In this paper only finite simple graphs will appear. In other words, we consider graphs only
with finitely many vertices and edges without double edges and loops.

A subgraph ∆ is a k-clique of a finite simple graph G if two distinct vertices of ∆ are always
adjacent in G and ∆ has k vertices.
To a family of subsets A1, . . . , Am of a finite set U we assign an intersection graph H . The

vertices of H are the subsets A1, . . . , Am. Two distinct nodes of H are adjacent in H whenever
they are not disjoint. In notations the unordered pair {Ai, Aj} with i 6= j is an edge of H if
and only if Ai ∩ Aj 6= ∅.

We make an observation. Suppose that an element u of U is an element of k members of the
family A1, . . . , Am, say

u ∈ Aα(1), . . . , u ∈ Aα(k).

Now Aα(1), . . . , Aα(k) are vertices of a k-clique ∆ in the intersection graph H . Each element of
the set U gives rise to a clique in the intersection graph H .
The following result is due to E. Szpilrajn-Marczewski [11] and K. Čulik [1]. The proof

contains a construction what we need later and this is why we include it.

Lemma 2.1. For each finite simple graph G there is a finite set U and a family of subsets A1, . . . , Am

of U such that their intersection graph H is isomorphic to G.

Proof. Let ∆1, . . . ,∆s be cliques in G such that each edge of G is an edge of at least one of the
cliques. We set U = {∆1, . . . ,∆s} and we set

Ap = {∆i : p is a vertex of ∆i}

for each vertex p of G. Clearly, the sets of vertices of G and H have the same number of
elements. We consider a map h from H to G defined by h(Ap) = p and we consider a map g
from G to H defined by g(p) = Ap.
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It remains to prove that both h and g preserve the adjacency. Suppose that the unordered
pair {Ap, Aq} is an edge of H . This means that Ap ∩ Aq 6= ∅. There is an element ∆i in U with
∆i ∈ (Ap ∩ Aq). From ∆i ∈ Ap it follows that p ∈ ∆i. From ∆i ∈ Aq it follows that q ∈ ∆i. As
∆i is a clique we get that the unordered pair {p, q} is an edge of G.

Next assume that the unordered pair {p, q} is an edge of G. There is a clique ∆i among
∆1, . . . ,∆s such that {p, q} is an edge of ∆i. Now ∆i ∈ Ap, ∆i ∈ Aq must hold. ThusAp∩Aq 6= ∅
and so the unordered pair {Ap, Aq} is an edge of H .

In order to complete the proof note that the edges ofG are 2-cliques and the isolated vertices
are 1-cliques of G. Therefore all the isolated vertices and all the edges together can play the
role of the cliques ∆1, . . . ,∆s. �

Motivated by the result in Lemma 2.1 P. Erdős, A. W. Goodman, and L. Pósa [2] posed an
optimization problem.

Problem 2.1. Find a finite set U such that for each finite simple graphG withm vertices U has a family

of subsets A1, . . . , Am whose intersection graph is isomorphic to G and |U | is as small as possible.

They proved that the minimum of |U | is bm2/4c. When we reduce an exact cover problem
with color codes to a generalized exact cover problem without color codes we face a similar
minimization problem. But this time all information about the given graph G are available,
that is, our knowledge is not restricted solely to the number of nodes of G.

3. The edge auxiliary graph

Let G be a finite simple graph. Using G we construct a new graph Γ. The set of vertices of Γ

is equal to the set of edges of G. Two distinct vertices

w1 = {u1, v1}, w2 = {u2, v2}

of Γ are adjacent in Γ if the set X = {u1, v1, u2, v2} induces a clique in G. Since w1, w2 are
distinct edges of G the set X has either 3 or 4 elements. Thus X may induce a k-clique in G
with k = 3 or k = 4.

We are interested in the connection between the cliques in G and Γ.
Let ∆ be a k-clique in G and let x1, . . . , xk be all the nodes of ∆. Let us form the unordered

pairs

(3.1) {xi, xj}, 1 ≤ i < j ≤ k.
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Lemma 3.1. The unordered pairs (3.1) are the nodes of an s-clique Ω in Γ, where s = k(k − 1)/2.

Proof. Let {xi(1), xj(1)}, {xi(2), xj(2)} be distinct unordered pairs from list (3.1). The set X =

{xi(1), xj(1), xi(2), xj(2)} induces a clique inG and so the unordered pairs {xi(1), xj(1)}, {xi(2), xj(2)}
are adjacent in Γ. �

Let Ω be an s-clique in Γ and let {x1, y1}, . . . , {xs, ys} be all the nodes of Ω. Let

(3.2) z1, . . . , zr

be all the distinct elements among x1, y1, . . . , xs, ys.

Lemma 3.2. The elements (3.2) are the nodes of an r-clique ∆ in G.

Proof. We show that the unordered pair {zi, zj} is an edge of G for each i, j, 1 ≤ i < j ≤ r. As
zi is on the list (3.2) there is an {xp, yp} such that either zi = xp or zi = yp. We may assume
that zi = xp since this is only a matter of exchanging the roles of xp and yp. If zj = yp, then the
unordered pair {xp, yp} = {zi, zj} is an edge of G. For the remaining part of the proof we may
assume that zj 6= yp.
As zj is on the list (3.2) there is an {xq, yq} such that either zj = xq or zj = yq. Again we

may assume that zj = xq. If zi = yq, then the unordered pair {xq, yq} = {zi, zj} is an edge of
G. For the remaining part of the proof we may assume that zi 6= yq. From zi = xp, zj = xq,
zi 6= zj it follows that {xp, yp} and {xq, yq} are distinct nodes of the clique Ω and so the set
X = {xp, yp, xq, yq} induces a clique in G. In particular, the unordered pair {xp, xq} = {zi, zj}

is an edge of G. �

For each finite simple graph G there is an integer s satisfying the following conditions.
(1) There are cliques ∆1, . . . ,∆s in G such that each edge of G is an edge of at least one of

the cliques.
(2) There are no cliques ∆1, . . . ,∆s−1 in G such that each edge of G is an edge of at least

one of the cliques.
This well defined integer s can be called the edge covering clique number of G and can be
denoted by ρe(G). From the proof of Lemma 2.1we know that ρe(G) is theminimum cardinality
of the set U when we want to represent G as an intersection graph of a family of subsets of U .

For each finite simple graph G there is an integer s satisfying the following conditions.
(1) There are cliques ∆1, . . . ,∆s in G such that each vertex of G is a vertex of at least one

of the cliques.
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Table 1. The adjacency matrix of the conflict graph G in Example 4.1.

1 2 3 4 5 6 7 8 9

1 × • • • • • •

2 • × • • • •

3 • • × • • •
4 • • × • •

5 • • • • ×
6 • • × • •

7 • • • × • •

8 • • × •

9 • • • • ×
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Figure 1. A graphical representation of the conflict graph G in Example 4.1.

(2) There are no cliques ∆1, . . . ,∆s−1 in G such that each vertex of G is a vertex of at least
one of the cliques.

This well defined integer s can be called the vertex covering clique number of G and can be
denoted by ρv(G).

Lemma 3.3. Using the notations introduced above the equation ρv(Γ) = ρe(G) holds.
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Table 2. The adjacency matrix of the edge auxiliary graph Γ of G.

1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 6 6 7 7 8

2 3 5 7 8 9 3 4 5 7 4 5 6 5 6 7 9 8 9 9

1,2 × • • • • • • •

1,3 • × • • • •

1,5 • • × • • •

1,7 • × • • • • • •

1,8 • × • • • •

1,9 • • × • • •

2,3 • • • × • • • • •

2,4 • × • • • •

2,5 • • • • • × • • •

2,7 • • ×

3,4 • • • × • • • •

3,5 • • • • • • • × •

3,6 • × •

4,5 • • • • • ×

4,6 • • ×

6,7 × • •

6,9 • × •

7,8 • • • × • •

7,9 • • • • • • × •

8,9 • • • • • ×

Proof. Set s = ρe(G). There are cliques ∆1, . . . ,∆s in G such that each edge of G is an edge
of at least one of the cliques. By Lemma 3.1, there are cliques Ω1, . . . ,Ωs in Γ such that each
vertex of Γ is a vertex of at least one of the cliques. It follows that ρv(Γ) ≤ s = ρe(G).

Set s = ρv(Γ). There are cliques Ω1, . . . ,Ωs in Γ such that each vertex of Γ is a vertex of at
least one of the cliques. By Lemma 3.2, there are cliques ∆1, . . . ,∆s in G such that each edge
of G is an edge of at least one of the cliques. It follows that ρe(G) ≤ s = ρv(Γ). �
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Figure 2. A possible geometric representation of the edge auxiliary graph Γ of
the graph G in Example 4.1.

4. A toy example

In this section we work out a small size toy example in details to illustrate the constructions
and results we have seen so far.

Example 4.1. Let us consider an instance of the generalized exact cover problem with colors codes. The

primary items are 1, 2, 3, 4. The secondary items are (5), (6) without color codes. The secondary items

with color codes are (7), (8), (9). The colors are a, b, c, d. The options are O1, . . . , O9.

Here is a list how the options O1, . . . , O9 are composed from the primary items 1, 2, 3, 4 and
from the secondary items (5), (6) without color codes and from the secondary items (7), (8), (9)

with color codes a, b, c, d.
O1 = {1, (5), (9, a)}

O2 = {1, (8, a)}

O3 = {1, 2, (7, b)}

O4 = {2, (7, c), (8, b)}

O5 = {2, (8, c), (9, b)}

O6 = {4, (6), (7, a)}

O7 = {3, 4, (7, d), (8, d), (9, c)}

O8 = {3, (9, d)}

O9 = {3, (5), (6)}
Using this list of the optionsO1, . . . , O9 we constructed a conflict graphG. The vertices ofG are
the options. Two options are connected by an edge if the options are in conflict. For example



Asia Pac. J. Math. 2021 8:1 9 of 14

options O1 and O2 are adjacent inG because the primary item 1 appears in both options. Table
1 contains the adjacency matrix of the conflict graph G. In Table 1 we suppressed the letter
O in the labels of rows and columns. We used only the subscripts of the options. A possible
geometric representation of G can be seen in Figure 1.
From the conflict graph G we constructed the edge auxiliary graph Γ. Table 2 exhibits

the adjacency matrix of Γ. Figure 2 is a geometric version of Γ. We have spotted 6 cliques
Ω1, . . . ,Ω6 that cover all nodes of Γ. We listed the nodes of these cliques below.

Ω1 : {6, 7}, {6, 9}

Ω2 : {1, 7}, {1, 8}, {1, 9}, {7, 8}, {7, 9}, {8, 9}

Ω3 : {2, 7}

Ω4 : {1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 5}, {3, 5}

Ω5 : {2, 4}, {4, 5}

Ω6 : {3, 4}, {3, 6}, {4, 6}

To each clique Ωi in Γ we constructed a clique ∆i in G following the instructions of Lemma 3.2.
The nodes of the cliques ∆1, . . . ,∆6 can be seen in the following list.

∆1 : 6, 7, 9

∆2 : 1, 7, 8, 9

∆3 : 2, 7

∆4 : 1, 2, 3, 5

∆5 : 2, 4, 5

∆6 : 3, 4, 6

As a next step we used the ideas in the proof of Lemma 2.1 to construct a family of subsets
A1, . . . , A9 of the set U = {∆1, . . . ,∆6}. The incidence matrix of the family is given in Table
3. The intersection graph H of this family is isomorphic to the conflict graph G. Adding the
appropriate primary items to A1, . . . , A9 we get the new options O′1, . . . , O′9 below. (We do not
intend to change the primary items in the options during the transformation.) The secondary
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Table 3. The incidence matrix of the family A1, . . . , A9.

∆1 ∆2 ∆3 ∆4 ∆5 ∆6

A1 • •

A2 • • •

A3 • •

A4 • •

A5 • •

A6 • •

A7 • • •

A8 •

A9 • •

items in these new options are all without color codes.

O′1 = {1, (2), (4)}

O′2 = {1, (3), (4), (5)}

O′3 = {1, 2, (4), (6)}

O′4 = {2, (5), (6)}

O′5 = {2, (4), (5)}

O′6 = {4, (1), (6)}

O′7 = {3, 4, (1), (2), (3)}

O′8 = {3, (2)}

O′9 = {3, (1), (2)}

Thus, the original generalized exact cover instance with color codes is reduced to a generalized
exact cover instance without color codes.

5. Numerical experiments

We say that the vertices of a finite simple graph are legally colored if each vertex receives
exactly one color and adjacent vertices cannot have the same color. For each finite simple
graph G there is an integer k such that the vertices of G can be legally colored using k colors
and the vertices of G cannot be colored legally using k − 1 colors. This number k is called the
chromatic number of G and it is denoted by χ(G).



Asia Pac. J. Math. 2021 8:1 11 of 14

Table 4. Monoton matrices

n |V | |E| s

3 27 189 69
4 64 1 296 233
5 125 5 500 563
6 216 17 550 1 151
7 343 46 305 2 074
8 512 106 624 3 400
9 729 221 616 5 232
10 1 000 425 250 7 736
11 1 331 765 325 10 971
12 1 728 1 306 800 15 067
13 2 197 2 135 484 20 238
14 2 744 3 362 086 26 536
15 3 375 5 126 625 34 046

Table 5. Deletion error correcting codes

n |V | |E| s

3 8 9 9
4 16 57 29
5 32 305 75
6 64 1 473 153
7 128 6 657 294
8 256 28 801 518
9 512 121 089 844

10 1 024 499 713 1 278
11 2 048 2 037 761 1 904
12 4 096 8 247 297 2 735
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Table 6. Johnson codes

n |V | |E| s

6 15 45 15
7 35 385 87
8 70 1 855 175
9 126 6 615 241
10 210 19 425 342
11 330 49 665 464
12 495 114 345 613
13 715 242 385 794
14 1 001 480 480 1 000
15 1 365 900 900 1 226
16 1 820 1 611 610 1 476
17 2 380 2 769 130 1 757
18 3 060 4 594 590 2 069

For each finite simple graph G one can define a complement graph G. The vertex sets of G
and G are the same. Two vertices of G are adjacent exactly when the vertices are not adjacent
in G. The set of vertices receiving the same color is called a color class of the coloring. A color
class of a legal coloring cannot contain adjacent vertices. So the elements of a color class in
G are vertices of a clique in G. This leads to the observation that the equation χ(G) = ρv(G)

holds. The equations
ρe(G) = ρv(Γ) = χ(Γ)

show that the number ρe(G), we are interested in, is equal to the chromatic number of Γ. It is
well-known from the complexity theory of computations that the optimization problem of
computing the chromatic number belongs to the NP-hard complexity class. (See [3], [8].) So
instead of computing χ(Γ) we try to establish upper bound for it.
From the proof of Lemma 2.1 we know that the sum of the number of edges and the

number of isolated nodes of the conflict graph G is an upper bound for ρe(G). In the exact
cover problem the isolated nodes of the associated conflict graph G can be ignored. Thus
the number of edges of G, which is the number of vertices of Γ, is an upper bound of ρe(G).
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Sorting the nodes of Γ into color classes improves on this estimate even if the number of the
color classes is not the smallest possible.
Exact cover problems involving thousands of items are routinely solved. Therefore the

associated conflict graph Gmay have thousands of nodes and the edge auxiliary graph Γ may
have millions of nodes. Using a simple greedy coloring procedure we legally colored the
nodes of a few graphs to see whether it is practically feasible in this range.

We used three families of graphs for testing. They are related to coding theory. The graphs
associated with monoton matrices are taken from [10]. The graphs connected to deletion error
correcting codes are from [9]. The graphs related to Johnson codes are borrowed from [4]. In
Table 4 the first column headed by n records the parameter of the graph, the second column
headed by |V | contains the number of vertices of the graph, the third column labeled by |E|
holds the number of edges. Using the graph we constructed the associated edge auxiliary
graph. The greedy coloring procedure provided a legal coloring of the nodes of the edge
auxiliary graph. The fourth column labeled by s records the number of colors. Tables 5 and 6
should be interpreted analogously.
The conclusion we draw from the numerical experiments is that the edge auxiliary graph

can be constructed and its nodes can be legally colored in connection with such non-trivial
size graphs that appear in practical exact cover applications.
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