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Abstract. In this paper, we define THA-surfaces in the 3-dimensional Euclidean space E3 and
completely classify minimal or flat THA-surfaces. We study the THA-surfaces in E3 under the
condition ∆ri = λiri, where λi ∈ R and ∆ denotes the Laplace operator. We obtain the complete
classification for those ones.
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1. Introduction

Let E3 be a three-dimensional Euclidean space. We recall some well-known formulas for
the surfaces in E3. Let r = r(u, v) be an isometric immersion of a surfaceM2 in E3. The inner
product on E3 is

g(X, Y ) = x1y1 + x2y2 + x3y3,

where X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3.

The Euclidean vector product X ∧ Y of X and Y is defined as follows:

X ∧ Y =
(
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

)
.

The notion of finite type immersion of submanifolds of a Euclidean space has been widely
used in classifying and characterizingwell knownRiemannian submanifolds [3]. AnEuclidean
submanifold is said to be of Chen finite type if its coordinate functions are a finite sum of
eigenfunctions of its Laplacian ∆ [3]. B.-Y. Chen posed the problem of classifying the finite
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type submanifolds in the 3-dimensional Euclidean space E3. These can be regarded as a
generalization of minimal submanifolds.

The notion of finite type immersion has played an important role in classifying and charac-
terizing the submanifolds in Euclidean space.

Since then the theory of submanifolds of finite type has been studied by many geometers.
A well known result due to Takahashi [16] states that minimal surfaces and spheres are the

only surfaces in E3 satisfying the condition

∆r = λr, λ ∈ R.

In [5] Ferrandez, Garay and Lucas proved that the surfaces of E3 satisfying

∆H = AH, A ∈Mat(3, 3)

are either minimal, or an open piece of sphere or of a right circular cylinder.
In [4] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in E3 satisfying

∆r = Ar +B, A ∈Mat(3, 3), B ∈Mat(3, 1),

are the minimal surfaces, the spheres and the circular cylinders.
In [1], the authors classified the factorable surfaces in the three-dimensional Euclidean and

Lorentzian spaces, whose component functions are eigenfunctions of their Laplace operator.
The authors in [2] studied the translation surfaces in the 3-dimensional Euclidean and Lorentz-
Minkowski space under the condition

∆IIIri = µiri, µi ∈ R,

where ∆III denotes the Laplacian of the surface with respect to the third fundamental form
III .
In this paper, we define THA-surfaces in the 3-dimensional Euclidean space E3 and com-

pletely classify minimal or flat THA-surfaces. We study the THA-surfaces in E3 under the
condition ∆ri = λiri, where λi ∈ R. We obtain the complete classification for those ones.

2. Preliminaries

A submanifoldM2 of a 3-dimensional Euclidean space E3 is said to be of finite type if each
component of its position vector field r can be written as a finite sum of eigenfunctions of the
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Laplacian ∆ ofM2, that is, if

r = r0 +
k∑
i=1

ri,

where ri are E3 −valued eigenfunctions of the Laplacian of (M2, r) [3]:

∆ri = λiri,

where λi ∈ R, i = 1, 2, .., k. If λi are different, thenM2 is said to be of k-type.
The coefficients of the first fundamental form and the second fundamental form are

E = g(ru, ru), F = g(ru, rv), G = g(rv, rv),

L = g(ruu,N), M = g(ruv,N), N = g(rvv,N),

where ru = ∂r
∂u
, rv = ∂r

∂v
and N is the unit normal vector toM2.

The Laplace-Beltrami operator of a smooth function ϕ : M2 → R, (u, v) 7→ ϕ(u, v) with
respect to the first fundamental form of the surfaceM2 is the operator ∆, defined in [13,15] as
follows:

(2.1) ∆ϕ =
−1√

|EG− F 2|

[
∂

∂u

(
Gϕu − Fϕv√
|EG− F 2|

)
+

∂

∂v

(
Eϕv − Fϕu√
|EG− F 2|

)]
.

The second differential parameter of Beltrami of a function ϕ : M2 → R, (u, v) 7−→ ϕ(u, v)

with respect to the second fundamental form of M2 is the operator ∆II which is defined
by [13,15]

(2.2) ∆IIϕ =
−1√

|LN −M2|

[
∂

∂u

(
Nϕu −Mϕv√
|LN −M2|

)
+

∂

∂v

(
Lϕv −Mϕu√
|LN −M2|

)]
,

where LN −M2 6= 0 since the surface has no parabolic points.
The mean curvature H and the Gaussian curvature KG are, respectively, defined by

H =
EN +GL− 2FM

2(EG− F 2)
and KG =

LN −M2

EG− F 2
.

3. THA-surfaces in E3

Let M2 be a 2-dimensional surface of the Euclidean 3-space E3. Using the standard coordi-
nate system of E3 we denote the parametric representation of the surface r(u, v) by

r(u, v) = (r1(u, v), r2(u, v), r3(u, v)).

In E3, a surface is called a translation surface if it is given by an immersion
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r : Ω ⊂ R2 → R3 : (u, v) 7→ (u, v, f(u) + g(v)),

where f and g are smooth functions on opens of R. One of the famous examples of minimal
surfaces in 3-dimensional Euclidean space E3 is a Scherk’s minimal translation surface. In fact,
Scherk showed in 1835 that except the planes, the only minimal translation surfaces are the
surfaces given by

r(u, v) = (u, v,
1

λ
log cos(λv)− 1

λ
log cos(λu)),

where λ is a nonzero constant. This surface is called a Scherk’s minimal translation surface.
R. López [8] studied translation surfaces in the 3-dimensional hyperbolic space H3 and clas-

sified minimal translation surfaces. R. López and M. I. Munteanu [9] constructed translation
surfaces in Sol3 and investigated properties of minimal one.
In a different aspect, H. Liu [6] considered the translation surfaces with constant mean

curvature in 3-dimensional Euclidean space and Lorentz-Minkowski space.
Recently, K. Seo [14] gave a classification of the translation hypersurfaces with constant

mean curvature or constant Gauss-Kronecker curvature in space forms.
Related works on minimal translation surfaces of E3 are [ [6], [11], [17]].

Theorem 3.1 ( [10]). i) The only translation surfaces with constant Gauss curvature K = 0 are

cylindrical surfaces.

ii) There are no translation surfaces with constant Gauss curvature K 6= 0 if one of the generating

curves is planar.

Definition 3.1. A homothetical (factorable) surface M2 in 3-dimensional Euclidean space E3 is a

surface that is a graph of a function

z(u, v) = f(u)g(v),

where f : I ⊂ R→ R and g : J ⊂ R→ R are two smooth functions.

Theorem 3.2 ( [10]). Planes and helicoids are the only minimal homothetical surfaces in Euclidean

space.

Accordingly, we define an extended surface in E3 using definitions as above and called it
THA-type surface.
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Definition 3.2. A surface M2 in 3-dimensional Euclidean space E3 is a THA-surface if it can be

parameterized by

(3.1) r(s, t) = (s, t, Af(s+ at)g(t) +B(f(s+ at) + g(t))),

where A and B are non-zero real numbers.

Remark 3.1. i) If A 6= 0 and B = 0 in (3.1), thenM2 is a affine factorable (homothetical) surface.

ii) If A = 0 and B 6= 0 in (3.1), thenM2 is a affine translation surface.

Theorem 3.3 ( [7]). Let r(x, y) = (x, y, z(x, y) = f(x) + g(ax+ y)) be a minimal affine translation

surface. Then either z(u, v) is linear or can be written as

(3.2) z(u, v) =
1

c
log

cos(c
√

1 + a2x)

cos[c(ax+ y)]
.

Remark 3.2. If a = 0, the minimal affine translation surface given by (3.2) is the classical Scherk

surface.

Definition 3.3 ( [7]). The minimal affine translation surface (3.2) is called generalized Scherk surface

or affine Scherk surface in Euclidean 3 - space.

LetM2 be a THA-surface in E3 parameterized by (3.1). So

rs = (1, 0, fs(Ag +B)), rt = (0, 1, g′(Af +B) + aft(Ag +B)).

The unit normal vector is given by

N =
1

W
(−fs(Ag +B), − (g′(Af +B) + aft(Ag +B)), 1),

whereW 2 = 1 + (fs(Ag +B))2 + (g′(Af +B) + aft(Ag +B))2.

The coefficients of the second fundamental form are given by

L =
fss(Ag +B)

W
, M =

afst(Ag +B) + Ag′fs
W

,

N =
a2ftt(Ag +B) + 2aAftg

′ + g′′(Af +B)

W
.

By a transformation

(3.3)

 x = s+ at

y = t,
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and ∂(x,y)
∂(u,v)

6= 0.

From (3.3) and (3.1) we have

(3.4) r(x, y) = (x− ay, y, Af(x)g(y) +B(f(x) + g(y))).

The coefficients of the first fundamental form ofM2 are given by

(3.5) E =
α′2γ2 + A2

A2
, F =

−aA2 + αγα′γ′

A2
, G =

α2γ′2 + A2(1 + a2)

A2
,

where α = Af +B and γ = Ag +B.

The unit normal vector is given by

N =
1

WA
(−γα′, −(αγ′ + aγα′), 1),

whereW 2 = A−2((γα′)2 + (αγ′ + aγα′)2 + A2).

The coefficients of the second fundamental form are given by

L =
γα′′

AW
, M =

α′γ′

AW
, N =

αγ′′

AW
.(3.6)

4. THA-surfaces with zero Gaussian curvature in E3

A surface in Euclidean 3-space parameterized by (3.4) has Gaussian curvature

K =
αγα′′γ′′ − γ′2α′2

A2W 4
.

Hence that if K = 0, then

(4.1) αγα′′γ′′ − γ′2α′2 = 0.

We discuss the different cases according the functions α and γ.
The proof given in [12]. We can obtain the following:

Theorem 4.1 ( [12]). Let M2 be a THA-surface in Euclidean 3− space E3 with constant Gauss

curvature K. Then K = 0. Furthermore, the surface is plane or is a cylindrical surface over a plane

curve or parameterized as (3.4), where
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i) either f(x) = λ3e
k1x + λ4 and g(y) = λ5e

k2y + λ6 or

ii) f(x) = c3((1− λ)k1x+ c1)
1

1−λ + c4 and g(y) = c5((
λ−1
λ

)k2y + c2)
λ

λ−1 + c6.

5. Minimal THA-surfaces in E3

The expression of H is

(5.1) H =
αγ′′(α′2γ2 + A2)− 2α′γ′(−aA2 + αγα′γ′) + γα′′(α2γ′2 + A2(1 + a2))

2A3W 3
.

ThenM2 is a minimal surface if and only if

(5.2) αγ′′(α′2γ2 + A2)− 2α′γ′(−aA2 + αγα′γ′) + γα′′(α2γ′2 + A2(1 + a2)) = 0.

We give examples of non-trivial minimal THA-surfaces by distinguishing some special cases:

Proposition 5.1. LetM2 be a THA-surface in E3. IfM2 is minimal surface, thenM2 parameterized

as (3.4), where

i) either f(x) = x0 and g(y) = λ1y + λ2 or

ii) g(y) = y0 and f(x) = λ3x+ λ4 or

iii) f(x) = δ1x+ δ2 and g(y) = δ3 tan(δ4y + δ5) + δ6 or

iv) f(x) = ζ1 tan(ζ2x+ ζ3) + ζ3 and g(y) = ξ1y + ξ2.

6. THA-surfaces satisfying ∆ri = λiri in E3

In this partwe explore the classification of the THA-surfacesM2 ofE3 satisfying the condition

(6.1) ∆ri = λiri.

Lemma 6.1. The Laplacian ∆ ofM2 can be expressed as follows:

(6.2) ∆ϕ =
−1

W 2
[Gϕxx + Eϕyy − 2Fϕxy] +

2H

WA
[Q(x, y)ϕx + P (x, y)ϕy] ,

where

Q(x, y) = aαγ′ + (1 + a2)γα′, P (x, y) = aγα′ + αγ′.
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Proof. From (2.1), we have

∆ϕ =
−1√

EG− F 2

[
∂

∂x

(
Gϕx − Fϕy√
EG− F 2

)
− ∂

∂y

(
Fϕx − Eϕy√
EG− F 2

)]
= − 1

2W 4
(2W 2(Gϕxx − 2Fϕxy + Eϕyy) + ((Gx − Fy)2W 2 −G2Ex − EGGx +

2FGFx + FGEy + FEGy − 2F 2Fy)ϕx + ((Ey − Fx)2W 2 − E2Gy − EGEy +

2FEFy + FGEx + FEGx − 2F 2Fx)ϕy).

By (3.5) we find

Gx =
2αγ′WM

A
, Ex =

2γα′WL

A
, Gy =

2αγ′WN

A
,

Ey =
2γα′WM

A
, Fx =

W (αγ′L+ γα′M)

A
, Fy =

W (αγ′M + γα′N)

A
.

Then

2(Gx − Fy)W 2 −G2Ex − EGGx + FG(2Fx + Ey) + FEGy − 2F 2Fy = A1

2(Ey − Fx)W 2 − E2Gy − EGEy + FE(2Fy +Gx) + FGEx − 2F 2Fx = A2,

where

A1 = −2WH1(aαγ
′ + (1 + a2)γα′)

A
, A2 = −2WH1(aγα

′ + αγ′)

A

and H1 = EN +GL− 2FM . �

Applying (6.2) on the coordinate functions
r1(x, y) = x − ay, r2(x, y) = y and r3(x, y) = Af(x)g(y) + B(f(x) + g(y)) = A−1(αγ − B2) of
the position vector r we find

(6.3)


∆(x− ay) = 2Hγα′

AW

∆(y) = 2H(aγα′+αγ′)
AW

∆(αγ−B
2

A
) = −2H

W
.

By using (6.1) and (6.3) we have the following equations
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2Hγα′

AW
= λ1(x− ay)(6.4)

2H(aγα′ + αγ′)

AW
= λ2(y)(6.5)

−2H

W
= λ3

(
αγ −B2

A

)
.(6.6)

Therefore, the problem of classifying the affine translation surfacesM2 satisfying (6.1) is
reduced to the integration of this system of ordinary differential equations. Next we study it
according to the constants λ1, λ2, λ3.
Case 1. Let λ3 = 0.

Then, the equation (6.6) gives rise to H = 0, which means that the surfaces are minimal.
We get also, by the equations (6.4) and (6.5), λ1 = λ2 = 0.

Case 2. Let λ3 6= 0. In this case we have four possibilities:
a) If λ1 = 0 and λ2 = 0 equations (6.4) and (6.5) imply that

2Hγα′

AW
= 0(6.7)

2H(aγα′ + αγ′)

AW
= 0.(6.8)

a- 1) If αγ −B2 = 0. Then α′ = 0 and γ′ = 0, which together with (5.1) leads to H = 0.

a- 2) If αγ −B2 6= 0, equations (6.7) and (6.8) imply that α′ = 0 and γ′ = 0. It then follows
that the functions α and γ are constants and that H = 0. From (6.6) we obtain λ3 = 0. So we
get a contradiction.

b) If λ1 = 0 and λ2 6= 0, then α′ = 0, so α(x) = λ ∈ R∗. In this case the system (6.5) and
(6.6) is reduced equivalently to

A2λ2γ′γ′′

(A2 + λ2γ′2)2
= λ2y(6.9)

−λγ′′

W 4
= λ3(λγ −B2).(6.10)

Equation (6.9) writes as



Asia Pac. J. Math. 2021 8:10 10 of 15

A2

(
1

A2 + λ2γ′2

)
y

= −2λ2y.

A direct integration implies that there exist c1 ∈ R such that
A2

A2 + λ2γ′2
= −λ2y2 + c1,(6.11)

where 0 < −λ2y2 + c1 < 1.
Multiplying equation (6.10) by γ′ we get

− A4λγ′γ′′

(A2 + λ2γ′2)2
= λ3γ

′(λγ −B2).

By integrating, we obtain that there exists a constant c2 such that

A4

A2 + λ2γ′2
= λ3(λγ −B2)2 + c2.(6.12)

Comparing the equations (6.11) and (6.12) we get

A2(−λ2y2 + c1) = λ3(λγ −B2)2 + c2.

Then, we obtain

γ =
1

λ

B2 + ε

√
−A2λ2y

2 + c3
λ3

 ,
where c3 ∈ R and ε = ±1.

c) If λ2 = 0 and λ1 6= 0. In this case the system (6.4), (6.5) and (6.6) is reduced equivalently
to

2Hγα′

AW
= λ1(x− ay)(6.13)

2H(aγα′ + αγ′)

AW
= 0(6.14)

−2H

W
= λ3

(
αγ −B2

A

)
.(6.15)

Then from (6.13) and (6.14) we have γα′ 6= 0, and aγα′ + αγ′ = 0.
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c-1) If γ′ = 0, then aγα′ + αγ′ = 0 gives a = 0, a contradiction.

c-2) If γ′ 6= 0, then aγα′ + αγ′ = 0 and it follows that there exists c1 ∈ R∗ such that

−1

a

γ′

γ
= c1 =

α′

α
.

Hence
γ′ = −ac1γ, α′ = c1α.

Then (6.15) writes as

(−λ3A4B2) + A4(c21 + λ3)αγ − (2λ3A
2B2c21)α

2γ2 + (2λ3A
2c21)α

3γ3

− (λ3B
2c41)α

4γ4 + (λ3c
4
1)α

5γ5 = 0

For each fixed x, we can view this expression as a polynomial equation on γ(y) and thus, all
coefficients vanish. Then λ3A4B2 = 0, a contradiction.

d) If λ1 6= 0 and λ2 6= 0 equations (6.4) and (6.6) imply that

(6.16) −A2λ1(x− ay) = λ3(αγ −B2)γα′.

Equations (6.5) and (6.6) imply that

(6.17) −A2λ2y = λ3(αγ −B2)(aγα′ + αγ′).

Then from (6.16) and (6.17) we have

(6.18)
( α
α′

)(γ′
γ

)
=

λ2y

λ1(x− ay)
− a.

Differentiating (6.18) with respect to x, we get

(6.19)
( α
α′

)
x

(
γ′

γ

)
= − λ2y

λ1(x− ay)2
.

Differentiating (6.18) with respect to y, we get
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(6.20)
( α
α′

)(γ′
γ

)
y

=
λ2x

λ1(x− ay)2
.

From (6.19) and (6.20) we have

(6.21) −x
(
α
α′

)
x(

α
α′

) =
y
(
γ′

γ

)
y(

γ′

γ

) .

Since α and γ are functions of two independent variables, we may write

(6.22) −x
(
α
α′

)
x(

α
α′

) = k =
y
(
γ′

γ

)
y(

γ′

γ

) ,

where k ∈ R.

d-1) If k = 0, then (6.22) follows

α = δ1α
′, γ′ = δ2γ,

where δ1, δ2 ∈ R∗.
Substituting this into (6.18), we get

λ1(δ1δ2 + a)x− (aλ1(δ1δ2 + a) + λ2)y = 0.

Then λ2 = 0, obtaining a contradiction.

d-2) If k 6= 0. Then (6.22), we obtain

(6.23) α

α′
= c1x

−k,
γ′

γ
= c2y

k,

where c1, c2 ∈ R∗.

Equation (6.18) writes as

λ1c1c2x
−kyk(x− ay) = λ2y − aλ1(x− ay).
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Differentiating with respect to x, we get (1 − k)x + (k + 1)ay = 0, we conclude again a
contradiction.
Consequently, we have:

Theorem 6.1. Let M2 be a THA-surfaces given by (3.1) in E3. Then M2 satisfies the equation

∆ri = λiri (i = 1, 2, 3) if and only if the following statement is true:

1)M2 has zero mean curvature everywhere.

2)M2 is parametrized as

r(s, t) =

s, t, ε
A

√
−A2λ2t

2 + c3
λ3

 ; c3 ∈ R, ε = ±1.

7. J− Harmonic THA-surfaces in E3

In this section we classify THA-surfaces in a Euclidean 3-space E3 satisfying the equation
∆Jr = 0, J = I, II. A surface of in the three dimensional space is said to be J− Harmonic
if it satisfies the condition ∆Jr = 0, J = I, II ,where ∆J denotes the Laplace operator with
respect to the fundamental forms I and II.

7.1. I− Harmonic THA-surfaces in E3. Equation (6.3) writes as

(7.1) ∆r(x, y) = ∆Ir(x, y) = −2HN.

From (7.1), ∆Ir = 0 if and only if H = 0.

Theorem 7.1. Let r : M2 → E3 be an isometric immersion given by (3.4). Then ∆Ir = 0 if and only

ifM2 has zero mean curvature.

7.2. II−Harmonic THA-surfaces inE3. In this sectionwe are concernedwith non-degenerate
THA-surfacesM2 without parabolic points satisfying the condition ∆IIr = 0.

By a straightforward computation, the Laplacian ∆II of the second fundamental form II on
M2 with the help of (3.6) and (2.2) turns out to be

∆II = − 1

AWD2

(
αγ′′

∂2

∂x2
+ γα′′

∂2

∂y2
− 2α′γ′

∂2

∂x∂y

)
− 1

2D4

(
Q(x, y)

∂

∂x
+ P (x, y)

∂

∂y

)
,
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where

P (x, y) =
1

(AW )3
(αα′α′′γγ′γ′′′ − α2α′′′γγ′′2 − αα′α′′γγ′′2 − 2α′3γ′2γ′′ + 3αα′α′′γ′′γ′2),

Q(x, y) =
1

(AW )3
(γγ′γ′′αα′α′′′ − γ2γ′′′αα′′2 − γγ′γ′′αα′′2 − 2γ′3α′2α′′ + 3γγ′γ′′α′′α′2)

and D2 = LN −M2.

Accordingly, we get

∆IIr(x, y) =


∆II(x− ay)

∆II(y)

∆II(αγ
A
− B2

A
)



= − 1

2D4


Q(x, y)− aP (x, y)

P (x, y)

4WD4 + 1
A

(α′γQ(x, y) + αγ′P (x, y))

 .

∆IIr = 0, if and only if

(7.2)


P (x, y) = 0

Q(x, y) = 0

W = 0.

From (7.2) we have W = 0, which is a contradiction. Consequently, there are no THA-
surfaces in E3 without parabolic points, satisfying the condition ∆IIr = 0.

Finally, we mention the following classification:

Theorem 7.2. Let M2 be a THA-surface given by (3.4), in E3. There are no THA-surface in E3

without parabolic points, satisfying the condition ∆IIr = 0.
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