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Abstract. The purpose of this paper is essentially to studyα-modules that depend on the notions
of summability, purity, basic submodules, projectivity and injectivity. We call a QTAG-module
an α-closed module if it is the maximal closed submodule of its closure in the α-topology. It is
found that an α-closed α-module is an α-injective.
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1. Introduction and Background Material

Modules are the natural generalizations of abelian groups. The results for abelian groups
can be generalized for modules after imposing some conditions on modules/rings. In 1976
Singh [12] started the study of TAG-modules satisfying the following two conditions while
the rings were associative with unity.

(I) Every finitely generated submodule of any homomorphic image ofM is a direct sum
of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image ofM , for any
submoduleW of U , any non-zero homomorphism f : W → V can be extended to a
homomorphism g : U → V , provided the composition length d(U/W ) ≤ d(V/f(W )).

Later on Benabdallah, Singh, Khan etc. contributed a lot to the study of TAG-modules [7,14].
In 1987 Singh made an improvement and studied the modules satisfying only the condition (I)
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and called themQTAG-modules. The study ofQTAG-modules and their structure beganwith
work of Singh in [13]. This work, executed by many authors, clearly parallels the earlier work
on torsion abelian groups. They studied different notions and structures on QTAG-modules
and developed the theory of thesemodules by introducing different notions and characterizing
different submodules of QTAG-modules. Yet there is much to explore.

All the rings R considered here are associative with unity (1 6= 0) and modules M are
unital QTAG-modules. A module M in which the lattice of its submodule is totally or-
dered is called a serial module; in addition, if it has finite composition length, it is called
a uniserial module. An element x ∈ M is uniform, if xR is a non-zero uniform (hence
uniserial) module, and for any R-moduleM with a unique decomposition series, d(M) de-
notes its decomposition length. For a uniform element x ∈ M, e(x) = d(xR) and HM(x) =

sup
{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x inM, respec-

tively. Hk(M) denotes the submodule of M generated by the elements of height at least k
and Hk(M) is the submodule ofM generated by the elements of exponents at most k. Let
us denote byM1, the submodule ofM , containing elements of infinite height. The module
M is h-divisible ifM =M1 =

∞⋂
k=0

Hk(M). The moduleM is h-reduced if it does not contain
any h-divisible submodule. In other words, it is free from the elements of infinite height. The
moduleM is said to be bounded, if there exists an integer n such that HM(x) ≤ n for every
uniform element x ∈M .

The sum of all simple submodules ofM is called the socle ofM , denoted by Soc(M) and a
submodule S of Soc(M) is called a subsocle ofM . The cardinality of the minimal generating
set ofM is denoted by g(M). For all ordinals α, fM(α) is the αth-Ulm invariant ofM and it is
equal to g(Soc(Hα(M))/Soc(Hα+1(M))

).
A submodule N ofM is h-pure inM if N ∩Hk(M) = Hk(N), for every integer k ≥ 0. For

an ordinal α, a submodule N ⊆M is an α-high submodule ofM if N is maximal among the
submodules ofM that intersect Hα(M) trivially.
For an ordinal α, a submodule N ofM is said to be an α-pure, if Hβ(M) ∩N = Hβ(N) for

all β ≤ α and a submodule N ofM is said to be isotype inM , if it is α-pure for every ordinal
α [6]. A submodule B ⊆ M is a basic submodule [10] ofM , if B is h-pure inM , B = ⊕Bi,
where each Bi is the direct sum of uniserial modules of length i andM/B is h-divisible.
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Imitating [4], the submodules Hk(M), k ≥ 0 form a neighborhood system of zero, thus a
topology known as h-topology arises. Closed modules are also closed with respect to this
topology. Thus, the closure of N ⊆ M is defined as N =

∞⋂
k=0

(N + Hk(M)). Therefore the
submodule N ⊆M is closed with respect to h-topology if N = N .

An h-reduced QTAG-moduleM is summable [11] if Soc(M) = ⊕β<αSβ , where Sβ is the set
of all elements of Hβ(M) which are not in Hβ+1(M), where α is the length ofM . Moreover,
M is called totally projective [3], if Hα(Ext(M/Hα(M),M ′)) = 0 for all ordinal α and QTAG-
modulesM ′.

It is interesting to note that almost all the results which hold for TAG-modules are also
valid for QTAG-modules [6]. Many results of this paper are the generalization of [5]. Our
notations and terminology generally agree with those in [8] and [9].

2. Chief Results

For facilitating the exposition and for the convenience of the readers, we recall the definition
of α-modules from [2].

Definition 2.1. Let α denote the class of all QTAG-modules M such that M/Hβ(M) is totally

projective for all ordinals β < α, a limit ordinal. These modules are called α-modules.

To develop the study, we need to prove some results, and we start with the following.

Proposition 2.1. If N is an α-pure submodule of an α-moduleM , then N is itself an α-module.

Proof. We actually only need that N ∩Hγ(M) = Hγ(N) for all γ < α. For then it is a simple
calculation to show that N + Hβ(M)/Hβ(M) is isotype in M/Hβ(M) for each β < α. And
therefore, N +Hβ(M)/Hβ(M) ∼= N/Hβ(N) is totally projective for all β < α. �

As generalized the notion of a basic submodule in [2], by defining B to be an α-basic
submodule of an α-module M if B is totally projective of length at most α, B is α-pure
submodule ofM , andM/B is h-divisible.
In order to establish the existence of α-basic submodules we require the following notion

for technical convenience.

Definition 2.2. Let α be a limit ordinal andM a QTAG-module. An α-high tower ofM is a well-

ordered ascending chain {Mβ}β<α of submodules ofM such that, for each β,Mβ is a β-high submodule

ofM .
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Now we need to prove the following lemma.

Lemma 2.1. Let α be a limit ordinal and {Mβ}β<α an α-high tower of a QTAG-moduleM . If each

Mβ is summable, then N =
⋃
β<α

Mβ is summable.

Proof. As α is a limit ordinal, we may choose a strictly increasing sequence β1 < β2 < · · · <

βn < . . . of ordinals having α as its limit. Then N =
⋃
n<ω

Mβn . Set T0 = Soc(Mβ1) and, for
n > 1, let Tn be such that Soc(Hβn(M)) = Tn ⊕ Soc(Hβn+1(M)) with Tn ⊆ Mβn+1 . Then
we have a direct-sum decomposition Soc(N) =

⊕
n<ω

Tn which is normal in the sense that
HM(t1 + · · ·+ tn) = min[HM(t1), . . . , HM(tn)] provided ti ∈ Ti for i = 1, . . . , n. Now eachMβ

is isotype, summable, and of countable length. Therefore, each subsocle ofMβ is a summable
subsocle ofM . In particular, each Tn is a summable subsocle ofM . Since the decomposition
Soc(N) =

⊕
n<ω

Tn is normal, it follows that Soc(N) is a summable subsocle ofM . Since each
Mβ is isotype, N is itself an isotype submodule ofM and consequently N is summable. �

We continue the study with the following corollary.

Corollary 2.1. Let α be a limit ordinal and {Mβ}β<α an α-high tower of a QTAG-moduleM , where

eachMβ is totally projective, then N =
⋃
β<α

Mβ is totally projective of length at most α.

Proof. As noted above, N is an isotype submodule ofM and clearly N has a length at most α.
ThusMβ is also a β-high submodule of N for each β < α. Since N is summable by Lemma 2.1
implies that N is totally projective. �

Now we prove the following.

Theorem 2.1. LetM be a QTAG-module. ThenM contains an α-basic submodule if and only ifM is

an α-module.

Proof. If B is an α-pure submodule of M and if M/B is h-divisible, then it follows that
M/Hβ(M) ∼= B/Hβ(B) for all β < α. Consequently, only α-modules can have α-basic sub-
modules (see [2]). Suppose now thatM is an α-module and select an α-high tower {Mβ}β<α.
Now Mβ

∼= Mβ + Hβ(M)/Hβ(M), and since Mβ is isotype in M , Mβ + Hβ(M)/Hβ(M) is
isotype in M/Hβ(M). By Corollary 2.1, B =

⋃
β<α

Mβ is totally projective. It is easily seen
that Soc(M) ⊆ Soc(B) +Hβ(M) for each β < α, and therefore B is α-pure inM . Moreover,
B ∩H1(M) = H1(B) and Soc(M) ⊆ Soc(B) +Hβ(M) for β < ω imply thatM/B is h-divisible.
Thus, B is the required α-basic submodule ofM . �
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Lemma 2.2. Suppose N is an isotype submodule of a QTAG-module M and that {Nβ}β<α is an

α-high tower of N , then there exists an α-high tower {Mβ}β<α ofM such that, for each β, Nβ ⊆Mβ

and Nβ = N ∩Mβ .

Proof. Let us first note that Nβ = N ∩Mβ is a consequence of Nβ ⊆ Mβ. Indeed, Nβ ⊆ Mβ

implies Nβ ⊆ N ∩Mβ and (N ∩Mβ) ∩Hβ(N) = (N ∩Mβ) ∩Hβ(M) = 0. The maximality of a
β-high submodule then yields the equality. Assume now that β < α and that for each γ < β

we have a γ-high submoduleMγ ofM such that Nγ ⊆Mγ andMη ⊆Mγ for all η < γ. In order
to be able to choose the desiredMβ , it suffices to show that (Nβ +∪γ<βMγ)∩ Soc(Hβ(M)) = 0.
Suppose x + y ∈ Soc(Hβ(M)) where x ∈ Nβ and y ∈ Mγ for some γ < β. Then H(x′) =

−H(y′) ∈ H1(M) ∩ N ∩Mγ = H1(M) ∩ Nγ = H1(Nγ), where d
(
xR

x′R

)
= d

(
yR

y′R

)
= 1, and

hence there is u ∈ Nγ such that x − u ∈ Soc(N) = Soc(Nγ) ⊕ Soc(Hγ(N)). Thus we can
write x = u + v + z where v ∈ Soc(Nγ) and z ∈ Soc(Hγ(N)). Then u + v + y = x + y − z ∈

Hγ(M) ∩Mγ = 0 and x + y = z ∈ N . Therefore y ∈ N ∩Mγ = Nγ ⊆ Nβ and, consequently,
x+ y ∈ Nβ ∩Hβ(M) = Nβ ∩Hβ(N) = 0 as desired. �

Lemma 2.3. LetM be a totally projective QTAG-module such thatM =
⋃
β<α

Mβ where {Mβ}β<α is

an α-high tower. IfN is an α-pure submodule ofM such that for each β,N ∩Mβ is a β-high submodule

of N , then N is a direct summand ofM .

Proof. We need only show thatM/N is totally projective having length at most α. SinceN ∩Mβ

is (β + 1)-pure in N and N is α-pure in M , N ∩ Mβ is (β + 1)-pure in M and, a fortiori,
(β + 1)-pure in Mβ. Since Mβ is totally projective, Mβ is β-projective. Therefore, there is
direct decompositionMβ = (N ∩Mβ)⊕Kβ for each β < α. NowM/N =

⋃
β<α

Mβ +N/N and
Mβ +N/N ∼= Mβ/(Mβ ∩N) ∼= Kβ is totally projective for each β. By Corollary 2.1, it is enough
to show thatMβ+N/N is a β-high submodule ofM/N whenever ω ≤ β < α. SinceN is α-pure
inM , we have Soc(Hβ(M/N)) = Soc(Hβ(M)) +N/N for β < α and it then easily follows that
Soc(M/N) = Soc(Mβ + N/N) ⊕ Soc(Hβ(M/N)). Because of this direct decomposition, it is
enough to show thatMβ +N/N is an h-pure submodule ofM/N for β ≥ ω.
Now

Soc(Mβ +N) = Soc(Kβ ⊕N)

= Soc(Kβ)⊕ Soc(N)

= Soc(Kβ)⊕ Soc(N ∩Mβ)⊕ Soc(Hβ(N))

= Soc(Mβ)⊕ Soc(Hβ(N)).
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If β ≥ ω and if x ∈ Soc(Mβ + N), then we can write x = y + z where y ∈ Soc(Mβ) and
z ∈ Soc(Hβ(N)) ⊆ Hω(N). If x has finite height inM , then this height is just the height of y in
M (= height of y inMβ) and thus just the height of x = y + z inMβ +N . On the other hand,
if x has infinite height inM , then y has infinite height inMβ and x = y + z has infinite height
inMβ +N , it follows thatMβ +N is an h-pure submodule ofM . ThusMβ +N/N is h-pure in
M/N . �

Proposition 2.2. Let N be an α-pure submodule of an α-moduleM such that N is totally projective of

length at most α. Then there exists a submodule K ofM such that N ⊕K is an α-basic submodule of

M .

Proof. Since N is totally projective of length ≤ α, N is the union of an α-high tower {Nβ}β<α
of itself. By Lemma 2.2, there exists an α-high tower {Mβ}β<α ofM such that Nβ = N ∩Mβ

for each β. Let B =
⋃
β<α

Mβ. By the proof of Theorem 2.1, B is an α-basic submodule ofM .
But {Mβ}β<α is also an α-high tower of B, and by Lemma 2.3 we have the required direct
decomposition B = N ⊕K. �

Now we prove the following result.

Theorem 2.2. If N is an α-pure submodule of an α-moduleM , thenM/N is an α-module.

Proof. Let B be an α-basic submodule of N and choose K such that B ⊕ K is an α-basic
submodule of M . Now if x ∈ Soc(N ∩ K), we can write for each β < α, x = yβ + zβ,
where yβ ∈ Soc(N) and zβ ∈ Hβ(N). Thus −yβ + x ∈ Hβ(B ⊕ K) = Hβ(B) ⊕ Hβ(K) and
x ∈

⋂
β<α

Hβ(K) = Hα(K) = 0. We then have a direct decompositionN ⊕K. IfH1(a
′) ∈ N ⊕K,

then H1(a
′) = y +H1(b

′) + c, where d
(
aR

a′R

)
= d

(
bR

b′R

)
= 1, y ∈ B, b ∈ N and c ∈ K. Since

H1(M) ∩ (B ⊕ K) = H1(B ⊕ K), we conclude that H1(M) ∩ (N ⊕ K) = H1(N ⊕ K). Now
Soc(M) ⊆ Soc(B⊕K)+Hβ(M) ⊆ Soc(N ⊕K)+Hβ(M) for all β < α, and thereforeN ⊕K is
an α-pure submodule ofM . Consequently, N ⊕K/N is α-pure inM/N . Also N ⊕K/N ∼= K

and (M/N)/(N ⊕K/N) ∼= (M/B⊕K)/[(N ⊕K)/(B⊕K)] is h-divisible. We have constructed
an α-basic submodule ofM/N and we conclude thatM/N is indeed an α-module. �

As a consequence of the above theorem, we have the following striking analog of a familiar
property of h-pure submodules.

Corollary 2.2. Let N be a submodule of an α-moduleM . Then N is an α-pure submodule ofM if

and only if N +Hβ(M)/Hβ(M) is a direct summand ofM/Hβ(M) for all β < α.
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Proof. N+Hβ(M)/Hβ(M) being a direct summandofM/Hβ(M) implies thatN+Hβ(M)/Hβ(M)

is β-pure inM/Hβ(M), which is equivalent to N being β-pure inM . Since α is a limit ordinal,
N is α-pure inM if and only if N is β-pure inM for all β < α.
Conversely, assume that N is α-pure inM . ThenM/N is an α-module and therefore, for

β < α,

(M/N)/Hβ(M/N) = (M/N)/(Hβ(M) +N/N) ∼= (M/Hβ(M))/(N +Hβ(M)/Hβ(M))

is totally projective of length at most β. Since N + Hβ(M)/Hβ(M) is β-pure in M/Hβ(M),
N +Hβ(M)/Hβ(M) is a direct summand ofM/Hβ(M). �

Proposition 2.3. If N is an α-pure submodule of an α-moduleM , and if Hβ(N) is a direct summand

of Hβ(M) for some β < α, then N is a direct summand ofM .

Proof. Assuming the conditions of the Theorem 2.2, we have for some β < α:

(i) (M/N)/Hβ(M/N) is totally projective;
(ii) N ∩Hβ(M) = Hβ(N);
(iii) N +Hβ(M)/Hβ(M) is a direct summand ofM/Hβ(M); and
(iv) Hβ(M) = Hβ(N)⊕K.

It follows thatM = N ⊕ Lwhere L ⊇ K. �

As a corollary, we have the following generalization of the well-known fact that bounded
h-pure submodules are direct summands.

Corollary 2.3. If N is an α-pure submodule of an α-moduleM and if Hβ(N) = 0 for some β < α,

then N is a direct summand ofM .

As defined in [3], aQTAG-moduleM is fully transitive if for every pair of uniform elements
x, y ∈M, HM(xi) ≤ HM(yi) for all i ≥ 0 implies that there exists an endomorphism ofM that
maps x onto y. Here d

(
xR

xiR

)
= d

(
yR

yiR

)
= i.

The next corollary tells us that α-modules of length α are fully transitive (see [1]). This, of
course, is merely a reflection of the fact that modules of length ≤ α behave in the α context
exactly as modules without elements of infinite height in the classical situations.

Corollary 2.4. If M is an α-module of length α, then every finite subset of M is contained in a

countably generated direct summand.
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Proof. Let S be a finite subset of M . Then S ⊆ T for some countably generated, α-pure
submodule T ofM . We may assume that T has length α. Then T is a direct sum of modules
of length less than α. Consequently, T is contained in a direct summandK of T having length
less than α. By the preceding corollary, K is a direct summand ofM . �

For a limit ordinal α, an α-module M is an α-projective if Hα(Ext(M,M ′)) = 0 for all
α-modulesM ′, that is, there exists a submodule N bounded by α such thatM/N is totally
projective, and an α-moduleM is an α-injective if Hα(Ext(M

′,M)) = 0 for all α-modulesM ′,
that is, it is a direct summand of every α-module in which it occurs as an α-pure submodule.
To characterize the α-injective modules we must generalize the notion of a closed module.

Mimicking [2], for any QTAG-moduleM , the submodules {Hk(M)}k, k = 0, 1, 2, . . . ,∞ from
a neighborhood system of zero, giving rise to h-topology. If k is replaced by an arbitrary
limit ordinal less than or equal to α, then h-topology may be extended to α-topology, and all
the definitions and results which hold for h-topology may be extended for α-topology. In
α-topology, for any submodule N ofM , the closure of N as ⋂

β<α

(N +Hβ(M)) denoted by N .

Definition 2.3. We call a QTAG-module an α-closed module if it is the maximal closed submodule of

its closure in the α-topology.

With the help of the above discussion, we are able to infer the following.

Proposition 2.4. LetM be an α-closed α-module. ThenM is an α-injective.

Proof. We first show thatHα(Ext(T,M)) = 0 for all α-modules T . Assume thatM is an α-pure
submodule ofM ′ withM ′/M ∼= T for all α-modulesM ′. Since α is a limit ordinal, it follows
that M ′ = Hβ(M

′) +M for all β < α. Therefore, if y ∈ M ′, we can find for each β < α a
xβ ∈M such that y−xβ ∈ Hβ(M

′). Moreover, we can assume that the exponent of xβ does not
exceed that of y. Indeed, if y has exponent n, thenHn(x

′
β) ∈ Hβ+n(M

′)∩M = Hβ+n(M), where

d

(
xβR

x′βR

)
= n and Hn(x

′
β) = Hn(z

′
β), where d

(
xβR

x′βR

)
= d

(
zβR

z′βR

)
= n for some zβ ∈ Hβ(M).

Then xβ = xβ − zβ has an exponent at most n and y−xβ ∈ Hβ(M
′). But {xβ : β < α} is a chain

inM with elements uniformly bounded in exponent and, therefore, converges to some x ∈M .
Hence y − x ∈ ⋂

β<α

Hβ(M
′) = Hα(M

′). We conclude thatM ′ =M ⊕Hα(M
′).

Now letM ′ be an arbitrary α-module and let B be an α-basic submodule ofM ′. We then
have the exact sequence

Hα(Ext(M
′/B,M)) −→ Hα(Ext(M

′,M)) −→ Hα(Ext(B,M)).
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The left-hand term of the above sequence vanishes since M ′/B is isomorphic to a direct
sum of copies of T and the right-hand term vanishes since B is an α-projective. Thus,
Hα(Ext(M

′,M)) = 0 and we conclude thatM is an α-injective. �

We can now show that there are enough α-injective modules and that an α-injective module
is the sum of an α-closed module and an h-divisible module.

Theorem 2.3. LetM be an α-module. ThenM is an α-pure submodule of an α-injective module and

M is an α-injective module if and only ifM is the direct sum of an h-divisible module and an α-closed

α-module.

Proof. It is evident from Proposition 2.4 that the direct sum of an h-divisible module and an
α-closed α-module is necessarily an α-injective. Next, we need the observation that every
α-moduleM of length at most α can be imbedded as an α-pure submodule of an α-closed
module TM(α) such that TM(α)/M is h-divisible. Indeed, TM(α) may be taken as the maximal
closed submodule of the closure ofM in the α-topology. It follows, by the same reasoning as
in the proof of Theorem 2.1, that TM(α)/Hβ(TM(α)) ∼= M/Hβ(M) for all β < α, and therefore
that TM(α) is an α-module.
Now letM be an arbitrary α-module. Let D be a minimal h-divisible module containing

Hα(M). Take P to be the amalgamated sum of M and D over Hα(M). Then P = M ′ ⊕ D

whereM ′ ∼= M/Hα(M) andM ′ ∩M is an α-high submodule ofM . Also, P/M is h-divisible
and Soc(P ) ⊆ Soc(M) +Hβ(P ) for all β < α. It follows thatM is an α-pure submodule of P .
By the transitivity of α-purity,M is an α-pure in the α-injective TM ′(α)⊕D.

Finally, assume thatM is itself an α-injective and that we have it imbedded, as above, as an
α-pure submodule of P = TM ′(α)⊕D. SinceM is an α-injective, P =M ⊕QwhereQ ∼= P/M

is obviously h-divisible, since both P/M and P/P are h-divisible. But then Q ⊆ D, and since
Soc(D) ⊆ Hα(M), we conclude that Q = 0 andM = TM ′(α)⊕D. �

Now we are in a position to prove the following result.

Theorem 2.4. IfM andM ′ are α-closed α-modules with the same Ulm invariants, thenM ∼= M ′.

Proof. Take B and B′ to be α-basic submodules ofM andM ′, respectively. It is easily seen that
B and B′ have the same Ulm invariants asM andM ′. Therefore, there is an isomorphism f of
B onto B′. Since B is an α-pure submodule ofM , we have the exact sequence

Hom(M,M ′) −→ Hom(B,M ′) −→ Hα(Ext(M/B,M ′)) = 0
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Thus, there is a homomorphism f ′ :M −→M ′ that extends f . Let x ∈ Kerf ′ and assume that
x 6= 0. Then x has some height β < α andwe canwrite x = y+zwhere y ∈ B and z ∈ Hβ+1(M).
But then x has height β and f(y) = f ′(y) = −f ′(z) has height at least β + 1. This, however, is
a contradiction, since f is an isomorphism of B onto B′ and B′ is an isotype submodule of
M ′. We conclude that Kerf ′ = 0. Then f ′(M)/B′ = f ′(M)/f ′(B) ∼= M/B is h-divisible. Hence
f ′(M)/B′ is a direct summand ofM ′/B′, and sinceB′ is an α-pure submodule ofM ′, it follows
that f ′(M) is an α-pure submodule ofM ′. Since f ′(M) ∼= M is an α-injective, we have a direct
decompositionM ′ = f ′(M))⊕Lwhere L ∼= M ′/f ′(M) is h-divisible. ButM ′ is h-reduced and
therefore L = 0 and f ′(M) =M ′, that is, f ′ is an isomorphism ofM ontoM ′. �
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