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Abstract. The present paper designs a discontinuous finite volume method for the numerical
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1. Introduction

The obstacle problem describes the membrane deformation phenomenon that is an impor-
tant example of a variational inequality of the first kind. The theory of variational inequalities
has been made applications in diverse fields such as mechanics, physics, and operations re-
search (cf. [27]). Due to the variational property, finite element (FE) method is a natural way
to approximate the obstacle problem. In the last four decades, there has been made impressive
progress in this field. More precisely, see [7, 10, 14, 22, 23, 40, 45, 56] for the conforming FE
methods, and the nonconforming FE methods can be found in [11,39,46]. Recently, discon-
tinuous Galerkin (DG) [1] methods have also been developed to solve the obstacle problem
(cf. [2, 19, 24, 41, 42, 53]).

Finite volume (FV) method is an efficient discrete scheme for solving partial differential
equations (PDEs). By integrating the PDEs on a control volume, the FV method satisfies
some conservation property such as mass, momentum, or energy. Thus, FV method become
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a popular approach in computational fluid mechanics. For more details of FV methods, we
refer to the monographs [21,32], the papers [4,5,8,13,15–17,20,25,26,36,37,48–50,54,55] and
references therein. Discontinuous finite volume (DFV) methods were originally introduced by
Ye [51] for solving the second order elliptic equations, therein a priori error estimate in a mesh-
dependent norm was derived. Inheriting attractive features of both DG and FV methods, such
methods can easily handle complicate geometries and inhomogeneous boundary conditions,
and they satisfy some conservative properties. Another interesting feature of DFV methods is
their localizability of discontinuous elements and the corresponding dual partitions, this make
them suitable for parallel computing. In addition, compared to the classical conforming and
nonconforming FV methods, DFV methods have small support in the control volume of the
dual mesh. For these reasons, DFV methods have further been investigated to solve various
PDEs, such as second order elliptic equations [3, 12, 28, 35], Stokes equations [9, 18, 30, 44, 52],
Darcy-Stokes problems [34,43], Biot equations [29], phase field model [33], optimal control
problems [31,38] and so on.

In contrast to huge literature on FE methods for variational inequalities, the work on FV
methods is considerably less developed. More recently, a conforming FV method is designed
to solve two kinds of variational inequalities including the obstacle and simplified frictional
problems [58]. Later, this method is extend to the Signorini problem and a super-close
interpolation estimate was obtained (see [57]). The objective of this work is to apply the
discontinuous finite volume (DFV) method to solve the obstacle problem and give an optimal
error estimate in the energy norm. It is worth mentioning that we shall address two difficulties,
one arises from the inherent nonlinearity of variational inequality, and the other comes from
the complexity of bilinear form of DFV methods.

The rest of the paper is organized as follows. In Section 2, we introduce the model problem
and state the corresponding DFV numerical scheme. Next, in Section 3 we give an optimal
a priori error analysis in the mesh-dependent norm. Finally, some conclusions are made in
Section 4.

2. The DFV method for the obstacle problem

2.1. Obstacle problem. We begin by introducing some notation. ForO ∈ R2, letHk(O), k ≥ 0

be the usual Sobolev space with the norm ‖ · ‖k,O and the seminorm | · |k,O. When O = Ω, we
omit the index Ω. For k = 0, H0(O) is reduced to the Lebesgue space L2(O).
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Let Ω ⊂ R2 be a bounded convex polygonal domain with Lipschitz boundary Γ. For
f ∈ L2(Ω), we consider the elliptic obstacle problem: Find u ∈ K such that

(1)
∫

Ω

∇u · ∇(v − u)dx ≥
∫

Ω

f(v − u)dx ∀v ∈ K,

with
K = {v ∈ H1

g (Ω) : v ≥ ψ a.e. in Ω}.

Here H1
g (Ω) = {v ∈ H1(Ω) : v = g on Γ}, with g being the restriction of an H2(Ω) function to

Γ. ψ ∈ H2(Ω) is referred to the obstacle function that satisfies ψ ≤ g on Γ.

2.2. DFV method. Let Th ba a shape-regular mesh which decomposes Ω into triangular
elements {T}. Denote by hT = diam(T ) and let h = max

T∈Th
hT . EIh stands for the set of interior

edges of elements in Th, and E∂h is the set of edges on the boundary Γ. Thus, the set of all edges
Eh = EIh ∪ E∂h . We assign each edge e ∈ Eh an unit normal n, such that on e ∈ E∂h , n refers to
the outward unit normal. In addition, we divide each element T by connecting its vertices
and barycenter to obtain a dual mesh T ∗h , see Fig.1. In what follows, we shall use C, with or
without subscripts to denote generic constants independent of h, but depend on the minimum
angle of T .

For a discontinuous function v, on each interior edge e ∈ EIh shared by two elements T+ and
T−, let v± = v|e∩∂T± , we define the average and jump by

{v} =
1

2
(v+ + v−) and JvK = v+ − v−.

On a boundary edge e ∈ E∂h , we define

{v} = v and JvK = v.

Figure 1. A triangular partition and its dual volume for DFV method.
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We consider the discontinuous P1 finite dimensional space for trial functions associated
with Th:

Vh =
{
v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th

}
.

where Pk(T ) is the space of polynomials of total degree at most k on T . Then, an approximation
of the set K is defined by

Kh =
{
vh ∈ Vh : vh|T (p) ≥ ψ(p) ∀p ∈ VT ∀T ∈ Th

}
,

with VT being the set of three vertices of T .
On the other hand, for test functions associated with dual mesh T ∗h , we use the finite

dimensional space:

V ∗h =
{
v ∈ L2(Ω) : v|T ∗ ∈ P0(T ∗) ∀T ∗ ∈ T ∗h

}
.

Let V (h) = Vh + [H1
g (Ω) ∩ H2(Ω)], in order to connect V (h) to V ∗h , we define the mapping

γh : V (h)→ V ∗h by
γhv
∣∣
T ∗ =

1

he

∫
e

v|T ∗ds ∀T ∗ ∈ T ∗h ,

where he is the length of the edge e.
Following [51], we define the bilinear form with regard to the DFV method:

ah(w, v) =A(w, v)−
∑
e∈Eh

∫
e

{∇w · n}JγhvKds−
∑
e∈Eh

∫
e

{∇v · n}JγhwKds

+
∑
e∈Eh

ρeh
−1
e

∫
e

JγhwKJγhvKds,(2)

with A(w, v) = −
∑

T ∗∈T ∗
h

∫
∂T ∗(∇w · n)γhvds+

∑
T∈Th

∫
∂T

(∇w · n)γhvds.
The DFVM for solving the obstacle problem (1) is to find uh ∈ Kh such that

ah(uh, vh − uh) ≥
∫

Ω

f(γhvh − γhuh)dx−
∑
e∈E∂h

∫
e

γhg(∇(vh − uh) · n)ds

+
∑
e∈E∂h

ρeh
−1
e

∫
e

γhg(γhvh − γhuh)ds ∀vh ∈ Kh.(3)

3. A priori error estimates

This subsection is devoted to a priori error estimate of the numerical scheme (3). To proceed,
we first define the mesh-dependent norm ‖ · ‖h on V (h) (cf. [51]):

(4) ‖v‖h =

( ∑
T∈Th

‖∇v‖2
0,T +

∑
e∈Eh

JγhvK2 +
∑
T∈Th

h2
T |v|22,T

)1/2

.
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It can be proved that ah(·, ·) satisfies the following properties (see Lemmas 2.2 and 2.3 in [51]
for more details).

Lemma 3.1. There holds

(5) |ah(w, v)| ≤ Cα‖w‖h‖v‖h ∀w, v ∈ V (h).

Furthermore, we can choose large enough ρe to satisfy

(6) ah(v, v) ≥ Cβ‖v‖2
h ∀v ∈ Vh.

We also need some useful results with respect to the mapping γh (cf. [17]).

Lemma 3.2.

if JvK = 0, then JγhvK = 0,(7)

‖v − γhv‖0,T ≤ChT‖∇v‖0,T ∀v ∈ V (h),(8)

Let uI be the the continuous linear interpolation of u, it satisfies [6, 47]:

(9) ‖u− uI‖m,T ≤ Ch2−m|u|2,T m = 0, 1, 2.

In addition, we recall the following trace inequality (see e.g. [1]):

(10) ‖w‖2
0,e ≤ C

(
h−1
e ‖w‖2

0,T + he‖∇w‖2
0,T

)
∀w ∈ H1(T ),

with e any edge of the element T .
Observing that JuK = 0 and JuIK = 0 on any e ∈ EIh , from (7) we see that JγhuK = 0 and

JγhuIK = 0 on any e ∈ EIh . Therefore,

(11) ‖u− uI‖h =

( ∑
T∈Th

(‖∇(u− uI)‖2
0,T + h2

T |u− uI |22,T ) +
∑
e∈E∂h

Jγh(u− uI)K2

)1/2

.
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In view of the definition of γh, Cauchy-Schwarz inequality and trace inequality (10), we
deduce that ∑

e∈E∂h

Jγh(u− uI)K2 =
∑
e∈E∂h

h−2
e

(∫
e

(u− uI)ds
)2

≤
∑
e∈E∂h

h−2
e

∫
e

12ds

∫
e

(u− uI)2ds

=
∑
e∈E∂h

h−1
e ‖u− uI‖2

0,e

≤C
∑
T∈Th

(
h−2
e ‖u− uI‖2

0,T + ‖∇(u− uI)‖2
0,T

)
.(12)

Inserting (12) into (11), and using (9) and the shape-regularity of the mesh, we infer that

(13) ‖u− uI‖h ≤ Ch|u|2.

We are now in a position to state our main result. Applying some techniques developed
in [7, 53], we prove that the DFV method has an optimal convergence rate in the mesh-
dependent norm.

Theorem 3.3. Let u and uh be the solutions of (1) and (3), respectively. Assume that u ∈ H2(Ω), it

holds that

(14) ‖u− uh‖h ≤ Ch
(
|u|2 + |ψ|2 + ‖∆u+ f‖0

)
.

Proof. The triangle inequality yields

(15) ‖u− uh‖h ≤ ‖u− uI‖h + ‖uI − uh‖h.

The bound of ‖u− uI‖h have been obtained in (13), we only need to estimate ‖uI − uh‖h. It
follows from (6) that

(16) Cβ‖uI − uh‖2
h ≤ ah(uI − uh, uI − uh) ≡ B1 + B2,

where

B1 = ah(uI − u, uI − uh),

B2 = ah(u− uh, uI − uh).

For the first term B1, application of (5) and Young’s inequality to find that

(17) B1 ≤ Cα‖uI − u‖h‖uI − uh‖h ≤
Cα
4ε1
‖uI − u‖2

h + Cαε1‖uI − uh‖2
h.
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It remains to estimate the second term B2. Noting that JuK = 0 (∀e ∈ EIh), this together
with (7) gives JγhuK = 0 (∀e ∈ EIh). In addition, since V ∗h is piecewise constant space and
J∇u · nK = 0 (∀e ∈ EIh), we use integration by parts to obtain

ah(u, uI − uh)

=−
∑
T ∗∈T ∗

h

∫
∂T ∗

(∇u · n)γh(uI − uh)ds+
∑
T∈Th

∫
∂T

(∇u · n)γh(uI − uh)ds

−
∑
e∈Eh

∫
e

{∇u · n}Jγh(uI − uh)Kds−
∑
e∈E∂h

∫
e

γhg∇(uI − uh)ds

+
∑
e∈E∂h

ρeh
−1
e

∫
e

γhgγh(uI − uh)ds

=
∑
T ∗∈T ∗

h

∫
T ∗
−∆uγh(uI − uh)dx+

∑
e∈Eh

∫
e

{∇u · n}Jγh(uI − uh)Kds

+
∑
e∈EIh

∫
e

J∇u · nK{γh(uI − uh)}ds−
∑
e∈Eh

∫
e

{∇u · n}Jγh(uI − uh)Kds

−
∑
e∈E∂h

∫
e

γhg∇(uI − uh)ds+
∑
e∈E∂h

ρeh
−1
e

∫
e

γhgγh(uI − uh)ds

=
∑
T∈Th

∫
T

−∆uγh(uI − uh)dx−
∑
e∈E∂h

∫
e

γhg∇(uI − uh)ds

+
∑
e∈E∂h

ρeh
−1
e

∫
e

γhgγh(uI − uh)ds.(18)

On the other hand, setting vh = uI in (3) shows that

ah(uh, uI − uh) ≥
∫

Ω

fγh(uI − uh)dx−
∑
e∈E∂h

∫
e

γhg∇(uI − uh)ds

+
∑
e∈E∂h

ρeh
−1
e

∫
e

γhgγh(uI − uh)ds.(19)

Then, we infer from (18) and (19) that

B2 =ah(u− uh, uI − uh)

≤
∑
T∈Th

∫
T

−(∆u+ f)γh(uI − uh)dx
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=

[ ∑
T∈Th

∫
T

−(∆u+ f)γh(uI − uh)dx−
∑
T∈Th

∫
T

−(∆u+ f)(uI − uh)dx
]

+
∑
T∈Th

∫
T

−(∆u+ f)(uI − uh)dx

≡B21 + B22.(20)

For simplicity, let ϑ = uI − uh, B21 can be rewritten as

B21 =
∑
T∈Th

∫
T

−(∆u+ f)(γhϑ− ϑ)ds.(21)

In term of (8), Cauchy-Schwarz inequality and Young’s inequality, we can estimate B21 by

B21 =
∑
T∈Th

∫
T

−(∆u+ f)(γhϑ− ϑ)ds

≤
( ∑
T∈Th

‖∆u+ f‖2
0,T

)1/2( ∑
T∈Th

‖γhϑ− ϑ‖2
0,T

)1/2

≤
( ∑
T∈Th

‖∆u+ f‖2
0,T

)1/2( ∑
T∈Th

C1h
2
T |ϑ|21,T

)1/2

≤C2h‖∆u+ f‖0‖uI − uh‖h

≤C2

4ε2
h2‖∆u+ f‖0 + C2ε2‖uI − uh‖2

h.(22)

Next, we shall give the bound for B22. First, we recall the following well-known result [7]

(23) −∆u ≥ f, u ≥ ψ, (−∆u− f)(u− ψ) = 0 a.e. in Ω.

By adding and subtracting some terms, we have

B22 =
∑
T∈Th

∫
T

−(∆u+ f)(uI − uh)dx

=
∑
T∈Th

∫
T

−(∆u+ f)(uI − u)dx+
∑
T∈Th

∫
T

−(∆u+ f)(u− ψ)dx

+
∑
T∈Th

∫
T

−(∆u+ f)(ψI − uh)dx+
∑
T∈Th

∫
T

−(∆u+ f)(ψ − ψI)dx.(24)

Due to (23), the second term in the right hand of (24) satisfies

(25)
∑
T∈Th

∫
T

−(∆u+ f)(u− ψ)dx = 0.
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On the other hand, by the definition of Kh, it holds that uh|T (p) ≥ ψ(p) = ψI(p), (∀p ∈

VT , ∀T ∈ Th). Since we use linear finite element, it follows that ψI − uh ≤ 0 on any T ∈ Th.
Consequently, we have

(26)
∑
T∈Th

∫
T

−(∆u+ f)(ψI − uh)dx ≤ 0.

Inserting (25) and (26) into (24) yields

(27) B22 ≤
∑
T∈Th

∫
T

−(∆u+ f)(uI − u)dx+
∑
T∈Th

∫
T

−(∆u+ f)(ψ − ψI)dx.

Utilizing the interpolation error estimates (9) and Cauchy-Schwarz inequality implies that

(28) B22 ≤ C3h
2‖∆u+ f‖0

(
|u|2 + |ψ|2

)
.

Combining (16), (17), (20), (22) and (28), we infer that(
Cβ − Cαε1 − C2ε2)‖uI − uh‖2

h

≤ Cα
4ε1
‖uI − u‖2

h +
C2

4ε2
h2‖∆u+ f‖0 + C3h

2‖∆u+ f‖0

(
|u|2 + |ψ|2

)
.(29)

Choosing appropriate parameters εi (i = 1, 2) such that Cβ − Cαε1 − C2ε2 > 0, and combining
(13), (15) and (29), we obtain the desired estimate (14). �

4. Conclusion

We introduced and analyzed a discontinuous finite volume method to solve the obstacle
problem. A detailed a priori error estimate in the energy norm was established. Nature
extension of this work includes a posteriori error estimate, and we shall also extend such
method to variational inequality of the second kind in the future work.
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