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Abstract. It is known that the idealization RnM of a reduced ring R over a flat R-module M
is a McCoy ring if and only if R is a McCoy ring [20, Proposition 3.5]. The main purpose of this
paper is to extend Lucas’s result to the countably McCoyness of the idealization. Effectively, we
drop the reduceness hypotheses and prove that, given an arbitrary commutative ring R and
any submodule M of a flat R-module F , RnM is a countably McCoy-ring if and only if R is a
countably McCoy-ring.
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1. Introduction

Throughout this paper, all rings are supposed to be commutative with unit element and
all R-modules are unital. Let R be a commutative ring andM an R-module. We denote by
ZR(M) = {r ∈ R : rm = 0 for some nonzero element m ∈ M} the set of zero divisors of
R on M and by Z(R) := ZR(R) the set of zero divisors of the ring R. In [4], the notions of
A-module and SA-module are extensively studied. In fact, an R-moduleM satisfies Property
A, orM is an A-module over R (or A-module if no confusion is likely), if for every finitely
generated ideal I of R with I ⊆ ZR(M), there exists a nonzero m ∈ M with Im = 0, or
equivalently, annM(I) 6= 0. M is said to satisfy strong Property A, or is an SA-module over
R (or an SA-module if no confusion is likely), if for any r1, · · · , rn ∈ ZR(M), there exists a
nonzero m ∈ M such that r1m = · · · = rnm = 0. The ring R is said to satisfy Property A,
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or an A-ring, (respectively, SA-ring) if R is an A-module (resp., an SA-module). One may
easily check thatM is an SA-module if and only ifM is an A-module and ZR(M) is an ideal
of R. It is worthwhile reminding the reader that the Property A for commutative rings was
introduced by Quentel in [25] who called it Property C and Huckaba used the term Property
A in [17, 18]. In [12], Faith called rings satisfying Property AMcCoy rings. The Property
A for modules was introduced by Darani [10] who called such modules F-McCoy modules
(for Faith McCoy terminology). He also introduced the strong Property A under the name
super coprimal and called a module M coprimal if ZR(M) is an ideal. In [21], the strong
Property A for commutative rings was independently introduced by Mahdou and Hassani
and further studied by Dobbs and Shapiro in [11]. Note that a finitely generated module over
a Noetherian ring is an A-module (for example, see [19, Theorem 82]) and thus a Noetherian
ring is an A-ring. Also, it is well knwon that a zero-dimensional ring R is an A-ring as well as
any ring R whose total quotient ring Q(R) is zero-dimensional. In fact, it is easy to see that
R is an A-ring if and only if so is Q(R) [9, Corollary 2.6]. Any polynomial ring R[X] is an
A-ring [17] as well as any reduced ring with a finite number of minimal prime ideals [17].
For recent achievements related to the Property A and SA, we refer the reader to [2–5, 16, 20]
and for details on the idealization we refer to [6].
In [4], Anderson and Chun considered rings and modules which satisfy the A-property

or SA-property. They proved that any module over a zero-dimensional commutative ring
is an A-module as well as any Noetherian or Artinian module is an A-module. Moreover,
given an additive submonoid Γ of R, a Γ-graded ring R and a Γ-graded R-moduleM , they
proved that if R has a homogeneous element x ∈ ZR(M) of nonzero degree, then M is an
A-module. In particular, ifM is an R-module, thenM [X] is an A-module as an R[X]-module.
Also, Anderson and Chun gave plenty of examples among which figure many pathological
examples for modules satisfying the A-property. For instance, they exhibited an example of
two A-modules A1 and A2 such that A1 ⊕A2 is not an A-module as well as an example of two
R-modules A1 and A2 which are not A-modules while A1 ⊕ A2 is an A-module. This ensures
that the A-property is not preserved by submodules, homomorphic images, direct sums or
direct summands. Furthermore, Anderson and Chun were interested in the A-property of
the idealization RnM of a ring R over an R-moduleM . They seeked in [4] necessary and
sufficient conditions for the idealization RnM to be an A-ring (resp., an SA-ring) in terms
of module-theoretic properties of R andM . In this context, they proved that if R is an integral
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domain, then RnM is an A-ring (resp., SA-ring) if and only ifM is an A-module (resp., an
SA-module).

In [20], Lucas proves that the idealization RnM of a reduced ring R over a flat R-module
M is a McCoy ring if and only if R is a McCoy ring [20, Proposition 3.5]. The main purpose
of this paper is to extend Lucas’s result to the countably McCoyness of the idealization. In
effect, we drop the reduceness hypotheses and prove that, given an arbitrary commutative
ring R and any submodule M of a flat R-module F , R n M is a countably A-ring (resp.,
countably SA-ring) if and only if R is a countably A-ring (resp., countably SA-ring). To
this goal, we introduce in Section 2 a new property that we term the countable annihilator
vanishing property, countable AV-property for short. A moduleM over a ring R is said to
be a countable AV-module over a module N if, given a nonzero countably generated ideal
I of R, annM(I) = 0 implies that annN(I) = 0. M is said to be a countable AV-module, ifM
is a countable AV-module over any R-module N and R is said to be a countable AV-ring if
R is a countable AV-module. We prove that any semi-regular ring R is a countable AV-ring
(see Corollary 3.6). Also, a pair (M,N) is said to be a countable AV-pair of R-modules ifM
and N are countable AV-module over each other. For instance, the pair (R,L) is a countable
AV-pair for any free R-module L. It turns out that the countable AV-module notion enjoys
nice properties. The countable AV-modules are stable under direct sums and direct products.
Concerning direct systems of modules, we introduce the new notion of direct systems (Ai)i

over a countably directed set ∆. We prove that, given a direct system (Ai)i over a directed set
Λ, if ∆ denotes the set of all countable subsets α of Λ and if Bα :=

⊕
i∈α

Ai for each α ∈ ∆, then
∆ is a countable directed set, Bα is a direct system over ∆ and

lim−→
i∈Λ

Ai = lim−→
α∈∆

Bα.

In this context, one of our main theorems proves that, given a moduleM and a direct system
(Ni)i∈∆ of modules over a countably directed set ∆, ifM is a countable AV-module over each
Ni, thenM is a countable AV-module over lim−→

i∈∆

Ni. Furthermore, one of the key results allowing
to generalize Lucas’s proposition is our finding that R is a countable AV-module over any
submodule of a flat R-moduleM . In section 3, we examine the impact of the countable AV-
property on studying the CA-property. In fact, given a countable AV-pair (M,N), we prove
thatM is a CA-module (resp., SCA-module) if and only if so is N . As a consequence of this,
we show that if M is a countable AV-module over N , then M ⊕ N is a CA-module (resp.,
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SCA-module) if and only if so is M . These results allow us to give the following general
analog of Lucas’s proposition for countably McCoy rings: given a ring R and a submoduleM
of a flat module, then the following assertions are equivalent:

1) RnM is a CA-ring (resp., SCA-ring);
2) R⊕M is a CA-module (resp., SCA-module);
3) R is a CA-ring (resp., SCA-module).

2. The countable annihilator vanishing property for rings and modules

This section introduces and studies the countable annihilator vanishing property. In
particular, we examine the stability of this property under direct sums and direct products.

We begin by recalling the definitions of the countably McCoy rings introduced by Lucas.

Definition 2.1. Let R be a ring andM an R-module.
(1) R is said to be a countably McCoy ring or a countably A-ring ( CA-ring for short), if

for any ideal J ⊆ Z(R) such that J is countably generated, annR(J) 6= 0.
(2) M is said to be a countably McCoy module or a countably A-module ( CA-module for

short), if for any ideal I ⊆ ZR(M) such that I is countably generated, annM(I) 6= 0.
(3) R is said to be a strongly countably McCoy ring or a strongly countably A-ring (
SCA-ring for short), if for any countably generated ideal J = (a1, a2, · · · , an, · · · ) such
that an ∈ Z(R) for each integer n ≥ 1, we have annR(J) 6= 0.

(4) M is said to be a strongly countably McCoy module or a strongly countablyA-module
( SCA-module for short), if for any countably generated ideal J = (a1, a2, · · · , an, · · · )

such that an ∈ ZR(M) for each integer n ≥ 1, we have annM(J) 6= 0.

Next, we introduce the annihilator vanishing property.

Definition 2.2. Let R be a ring.
(1) We say that an R-moduleM has the countable annihilator vanishing property over an R-

moduleN , or is a countable AV-module overN for short, if, given a nonzero countably
generated ideal I of R, annM(I) = 0 implies that annN(I) = 0.

(2) We say that an R-moduleM is a countable AV-module ifM is a countable AV-module
over any R-module N .

(3) R is said to be a countbale AV-ring, if R, as an R-module, is a countable AV-module.
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(4) We say that a pair (M,N) of R-modules is a countable AV-pair, ifM and N has the
countable AV-property over each other.

The following is a simple result characterizing the countable AV-modules.

Proposition 2.3. Let R be a commutative ring andM an R-module. Then the following assertions are

equivalent:

(1) M is a countable AV-module;

(2) annM(I) 6= (0) for any nonzero countably generated ideal I of R.

Proof. 1) ⇒ 2) Assume that M is a countable AV-module. Let I be a nonzero countably
generated ideal ofR. Then annR

I
(I) 6= (0) as I1 = (0). Now, sinceM is a countable AV-module

over R
I
, we get annM(I) 6= (0), as desired.

2)⇒ 1) It follows easily from the definition. �

We present next a bunch of examples of countable AV-modules. We denote by Spec(R) the
set of prime ideals of R and by max(R) the set of maximal ideals of R.

Corollary 2.4. LetR be a commutative ring. Then theR-modules
⊕

m∈max(R)

R

m
,

⊕
p∈Spec(R)

R

p
,
⊕
Γ

R

Iγ
and

⊕
Λ

R

Iλ
are countable AV-modules, where Γ denotes the set of ideals of R and Λ its subset of countably

generated ideals.

Proof. It is easy to check that these modules satisfies (2) of Proposition 2.3.
�

Corollary 2.5. Let R be a commutative ring. Then any countable AV-module is a CA-module.

Proof. It is direct from Proposition 2.3. �

The next proposition presents characteristics of modules possessing the countable AV-
property.

Proposition 2.6. Let R be a commutative ring.

(1) If N ⊆M are R-modules, thenM is a countable AV-module over N .

(2) LetM be a faithful R-module. ThenM is a countable AV-module over R.

(3) LetM and N be R-modules. ThenM ⊕N is a countable AV-module overM and N .

Moreover, ifM is a countable AV-module over N , then (M,M ⊕N) is a countable AV-pair.
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Proof. 1) It is clear from the definition since, ifN ⊆M areR-modules, then annN(I) ⊆ annM(I)

for each ideal I of R.
2) Assume thatM is a faithfulR-module. Then annR(M) = (0). Let I be a countably generated
R-module such that annR(I) 6= (0). Then there exists a nonzero element r ∈ R such that
Ir = (0). As r 6= 0, r 6∈ annR(M) and thus there exists m ∈ M such that rm 6= 0. Now, it is
easy to verify that I(rm) = (0) and rm 6= 0. Therefore annM(I) 6= (0). HenceM is a countable
AV-module over R, as desired.
3) LetM and N be R-modules. Then, by (1),M ⊕N is a countable AV-module overM and N .
Assume thatM is a countable AV-module over N . Let I be a nonzero countably generated
ideal of R such that annM(I) = (0). Then, as M is a countable AV-module over N , we get
annN(I) = (0). Therefore annM⊕N(I) = annM(I) ⊕ annN(I) = (0). HenceM is a countable
AV-module overM ⊕N . It follows that (M,M ⊕N) is a countable AV-pair completing the
proof.

�

In the following result, we record the simple fact that the countable AV-property is transitive.

Proposition 2.7. Let R be a ring. Then

(1) Let M,N,K be R-modules. If M is a countable AV-module over N and N is a countable

AV-module over K, thenM is a countable AV-module over K.

(2) LetM ′ ⊆M and N be R-modules. IfM ′ is a countable AV-module over N , then so isM .

(3) LetM be an R-module and N ′ ⊆ N be R-modules. IfM is a countable AV-module over N ,

then so isM over N ′.

Proof. 1) Assume thatM is a countable AV-module over N and N is a countable AV-module
over K. Let I be a nonzero countably generated ideal of R such that annM(I) = (0). Then
annN(I) = (0) asM is a countable AV-module overN . Now, sinceN is a countable AV-module
over K, we obtain, annK(I) = (0). It follows that M is a countable AV-module over K, as
desired.
2) It follows from (1) and Proposition 2.6 (1).
3) Note that N is a countable AV-module over N ′, by Proposition 2.6. Using the transitivity of
the countable AV-property yields the desired result. �

The next proposition establishes the stability of the countable AV-property under direct
sums and direct products.
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Proposition 2.8. Let R be a ring. Then

1) Let (Mi)i and (Ni)i be families of R-modules. If, for each i,Mi is a countable AV-module over Ni,

then so is the direct sum
⊕
i

Mi over
⊕
i

Ni and the direct product
∏
i

Mi over
∏
i

Ni.

2) Let (Mi)i be a family of R-modules and N an R-module. If eachMi is a countable AV-module over

N , then so is their direct sum
⊕
i

Mi and their direct product
∏
i

Mi over N .

3) LetM be an R-module. Then (M,
⊕
i

M) and (M,
∏
i

M) are countable AV-pairs.

4) LetM be an R-modules and (Ni)i be a family of R-modules. IfM is a countable AV-module over

each Ni, thenM is a countable AV-module over
⊕

Ni and
∏

iNi.

Proof. 1) First, observe that

ann⊕iMi
(I) =

⊕
i

annMi
(I) and ann∏

iMi
(I) =

∏
i

annMi
(I)

for any ideal I of R. Similar equalities hold for the Ni. Then the result easily follows.
2) Applying (1),⊕

i

Mi is a countable AV-module over⊕
i

N . Also, note that, as N ⊆⊕
i

N ,⊕
i

N is a countable AV-module over N . Then, by transitivity of the countable AV-property, we
get⊕

i

Mi is a countable AV-module overN . A similar argument applies for the direct product.
3) It follows from the above two equalities of ann⊕iMi

(I) and ann∏
iMi

(I) for any ideal I of R.
4) Assume thatM is a countable AV-module over each Ni. Then, using (1) we get⊕

i

M is
a countable AV-module over⊕

i

Ni and
∏
i

M is a countable AV-module over ∏
i

Ni. As, by
(3),M is a countable AV-module over⊕

i

M and∏
i

M , we get by transitivity of the countable
AV-property, thatM is a countable AV-module over⊕

i

Ni and over∏
i

Ni completing the proof.
�

Corollary 2.9. Let R be a commutative ring. Then

1) For any free R-module L, (R,L) is a countable AV-pair.

2) R is a countable AV-module over any submodule of a free R-module. In particular, R is a countable

AV-module over any projective R-module.

3) (R,R[X]) and (R,R[[X]]) are countable AV-pairs.

Proof. 1) Apply Proposition 2.8 (3), as L ∼= ⊕
J

R for some set J .
2) Use (1), Proposition 2.6(1) and Proposition 2.7 (1).
3) Note that R[X] ∼=

⊕
R and R[[X]] ∼=

∏
R as R-modules. Proposition 2.8 (3) completes the

proof. �
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Corollary 2.10. Any commutative semisimple ring R is a countable AV-ring. In particular, any field

k is a countable AV-ring.

Proof. Let R be a semisimple ring. Then any module M is projective over R and thus, by
Corollary 2.9, R is a countable AV-module overM . Hence R is a countable AV-ring.

�

3. The countable AV-property and direct limits

This section examines the behavior of the countable annihilator vanishing property under
the inverse limits and direct limits. This stands as starting block in order to give the promised
analog of Lucas result for the countable McCoyness.

Our first result discusses the stability of the countable AV-property under inverse limits.

Proposition 3.1. Let R be a ring. Let (Ni)i be an inverse system of modules andM be an R-module.

IfM is a countable AV-module over each Ni, thenM is a countable AV-module over the inverse limit

lim
←−

Ni of the Ni.

Proof. Assume that each M is a countable AV-module over each Ni. Then, by Proposition
2.8,M is a countable AV-module over∏

i

Ni. Now, the inverse limit of the Ni is isomorphic
to a submodule of the direct product∏

i

Ni. Hence, by Proposition 2.7 (1),M is a countable
AV-module over lim

←−
Ni, as desired. �

The next theorem proves the stability of the countable AV-property under direct limits over
countably directed sets. This permits us to generalize Lucas proposition [20, Proposition 3.5].
First, we set the following definition.

Definition 3.2. A directed set Λ is said to be countably directed, or a countably directed set,
if for any countable subset {i1, · · · , in, · · · } of Λ, there exists j ∈ Λ such that ik ≤ j for each
integer k ≥ 1.

Theorem 3.3. Let R be a ring. Let (Ni, ϕ
i
j)i∈Λ be a direct system of R-modules over a countably

directed set Λ andM an R-module. Assume thatM is a countable AV-module over each Ni. ThenM

is a countable AV-module over lim
−→

Ni.
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Proof. Put N := lim
−→

Ni and λi : Ni −→
⊕
i

Ni be the natural injection. Recall thatM =

⊕
i

Mi

S
,

where S is the submodule of⊕
i

Ni generated by all elements λjϕij(ai)−λi(ai) with ai ∈ Ni and
i ≤ j. Let I = (a1, a2, · · · , an, · · · ) be a countably generated ideal of R such that annM(I) = (0).
Let m ∈ annN(I). Then Im = 0. By [26, Theorem 2.17(i)], there exists an index i and
xi ∈ Ni such that m = λi(xi). Hence λ(akxi) = 0 for each k ∈ N∗. Then, by [26, Theorem
2.17(ii)], for each k ∈ N∗, there exists jk ≥ i such that ϕijk(akxi) = 0. Note that, as Λ is
a countably directed set, there exists j ∈ Λ such that j ≥ jk for each k ∈ N∗. Therefore
ϕij(akxi) = akϕ

i
j(xi) = 0 for each k ∈ N∗. It follows that Iϕij(xi) = 0, that is, ϕij(xi) ∈ annNj(I).

AsM is a countable AV-module over Nj , we get annNj(I) = 0 and thus ϕij(xi) = 0. A second
application of [26, Theorem 2.17(ii)] yields λi(xi) = 0 (as j ≥ i), so that, m = 0. Therefore
annN(I) = (0). Consequently,M is a countable AV-module over N , as desired. �

We proved via Corollary 2.9 that, given a ring R, R is a countable AV-module over any
projective R-module. The following theorem extends this result to flat R-modules and allows
to give an analog of Lucas’s result for the countable McCoy property.

Theorem 3.4. Let R be a ring. Then R is a countable AV-module over any submodule of a flat

R-module.

We need the following lemma. First, let us adopt the following notation. Let (Ai, fij)i,j∈Λ be
a direct system over a directed set Λ. Let ∆ denote the set of all countable subsets of Λ. For
each α ∈ ∆, put Bα =

⊕
i∈α

Ai. Given α, β ∈ ∆, we say that α ≤ β, if for each i ∈ α, there exists
j ∈ β such that i ≤ j. Let α ≤ β with α = {i1, · · · , in, · · · } and β = {j1, · · · , jn, · · · } and ik ≤ jk

for integer k ≥ 1. We put gαβ = (fikjk)k≥1 : Bα −→ Bβ such that, if t = (ai1 , ai2 , · · · , ain) ∈ Bα,
gαβ(t) = (fi1j1(ai1), fi2j2(ai2), · · · , finjn(ain)).

Lemma 3.5. Let (Ai, fij)i,j∈Λ be a direct system over a directed set Λ and let ∆ be the set of all countable

subsets of Λ. For each α ∈ ∆, put Bα =
⊕
i∈α

Ai. Then ∆ is a countable directed set, (Bα, gαβ)α,β∈∆ is a

direct system over ∆ and

lim−→
i∈Λ

Ai = lim−→
α∈∆

Bα.
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Proof. Let α, β, γ ∈ ∆ such that α ≤ β ≤ γ. Consider the following diagram

Bα
gαγ−→ Bγ

gαβ ↘ ↗ gβγ

Bβ

It is easy to check that this diagram is commutative. Then (Bα, gαβ)α,β∈∆ is a direct system
over ∆. Moreover, since with Ai = B{i}, Aj = B{j} and g{i}{j} = fij , it is easy to see that if i ≤ j,
then the diagram

Ai
fij−→ Aj

gi ↘ ↙ gj

lim−→
α∈∆

Bα

commutes with gβ : Bβ −→ lim−→
α∈∆

Bα is the canonical homomorphism for each β ∈ ∆. Hence,
by the universal mapping property for direct limits, there exists a unique homomorphism
ϕ : lim−→

i∈Λ

Ai −→ lim−→
α∈∆

Bα. Moreover, consider the following commutative diagram

βα
ψαi−→ Ai

gαβ ↓ ↓ fij

Bβ

ψβj−→ Aj

where:
-) α = {ik}k≥1, β = {jk}k≥1 such that ik ≤ jk for each k and thus α ≤ β.
-) i ∈ α, j ∈ β such that i ≤ j and gαβ = (fikjk)k with fij = fikjk for some integer k ≥ 1.
-) ψαi, ψβj are the canonical surjections.

Therefore, by the universel mapping property for direct limits, there exists a unique homo-
morphism ψ : lim−→

α∈∆

Bα −→ lim−→
i∈Λ

Ai. It follows that ϕ ◦ ψ = id lim−→
α∈∆

Bα and ψ ◦ ϕ = idlim−→
i∈Λ

Ai and thus
lim−→
i∈Λ

Ai = lim−→
α∈∆

Bα completing the proof. �

Proof of Theorem 3.4. LetM be a flat module. It is known that there exists a directed set Λ such
thatM = lim−→

i∈Λ

Li with the Li are finitely generated free R-modules. Then, by Lemma 3.5, there
exists a countable directed set ∆ such thatM = lim−→

α∈∆

Bα with the Bα are countably generated
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free R-modules. By Corollary 2.9(1), R is a countable AV-module over each Bα. Hence, by
Theorem 3.3,R is a countable AV-module overM . Now, by Proposition 2.7(3),R is a countable
AV-module over any submodule ofM , as desired.

�

Recall that, in 1982, Matlis proved that a ring R is coherent if and only if HomR(M,N) is
flat for any injective R-modules M and N [24]. Also, in 1985, he introduced the notion of
semi-coherent commutative ring. In effect, he defined a ring R to be semi-coherent if it is
commutative and HomR(M,N) is a submodule of a flat R-module for any injective R-modules
M and N . Then, inspired by this definition and by von Neumann regularity, he defined a ring
to be semi-regular if it is commutative and if any module can be embedded in a flat module.
He then provided a connection between this notion and coherence; namely, a commutative
ring R is semi-regular if and only if R is coherent and RM is semi-regular for every maximal
idealM ofR. He also proved that a ringR is a Prüfer domain if and only if R

I
is a semi-regular

ring for each nonzero finitely generated ideal I of R. A semi-regular ring is also termed an
IF-ring (a ring in which any injective module is flat). The class of semi-regular rings then
includes von Neumann regular rings, Quasi-Frobenius rings and quotients of Prüfer domains
by nonzero finitely generated ideals.
Our next result records that semi-regular rings are countable AV-rings. This generalizes

Corollary 2.10 as any semisimple ring is semi-regular.

Corollary 3.6. Any semi-regular ring R is a countable AV-ring.

Proof. Assume that R is semi-regular. Then any moduleM is a submodule of a flat module F .
Now, Theorem 3.4 completes the proof.

�

4. CA-property and the countable AV-property

In [20], Lucas proved that if R is a reduced ring and M is a flat R-module, then R nM

is an A-ring if and only if R is an A-ring [20, Proposition 3.5]. The aim of this section is to
give the analog of Lucas’s result for the countable McCoy property. Also, we give a version
of Lucas result for the strongly countable McCoy property. First, we examine the impact
of the countable AV-property on studying the CA-property and SCA-property of the di-
rect sum of twomodules over a ringR as well as of the idealizationRnM ofR on amoduleM .
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We begin by studying the transfer of the CA-property and SCA-property between two
modules possessing the countable AV-property.

Theorem 4.1. Let R be a ring. LetM and N be R-modules.

1) IfM is a countable AV-module over N , then ZR(N) ⊆ ZR(M).

2) IfM is a CA-module, then the following assertions are equivalent:

a)M is a countable AV-module over N ;

b) (M,M ⊕N) is a countable AV-pair;

c) ZR(N) ⊆ ZR(M);

d) ZR(M ⊕N) = ZR(M).

3) Assume thatM is a countable AV-module over N and that ZR(M) ⊆ ZR(N). If N is a CA-module

(resp., an SCA-module), then so isM .

4) Assume that (M,N) is a countable AV-pair. Then the following assertions are equivalent:

i)M is a CA-module (resp., an SCA-module);

ii) N is a CA-module (resp., an SCA-module).

Proof. 1) Assume thatM is a countable AV-module over N . Let x ∈ ZR(N) and take I = Rx.
Then annN(I) 6= (0), so that by applying the countable AV-property of M over N , we get
annM(I) 6= (0). Thus annM(x) 6= (0) which means that x ∈ ZR(M), as desired.
2) Assume thatM is a CA-module.
a)⇔ b) It holds by Proposition 2.6(3).
a)⇒ c) Use (1).
c)⇔ d) It is direct.
c)⇒ a) Assume that ZR(N) ⊆ ZR(M). Let I be a countably generated ideal of R such that
annN(I) 6= (0). Then I ⊆ ZR(N) and thus I ⊆ ZR(M). Therefore, asM is a CA-module, we
get annM(I) 6= (0). It follows thatM is a countable AV-module over N , as desired.
3) Assume thatM is a countable AV-module over N and that ZR(M) ⊆ ZR(N). Then, by (1),
ZR(M) = ZR(N). Suppose thatN is a CA-module and let I be a countably generated ideal ofR
such that I ⊆ ZR(M). Then I ⊆ ZR(N). Therefore, asN is a CA-module, we get annN(I) 6= (0).
Now, since M is a countable AV-module over N , we obtain annM(I) 6= (0). Hence M is a
CA-module, as desired. The proof is similar for the SCA-property.
4) It follows from the combination of (1) and (3) completing the proof. �

Corollary 4.2. Let R be a commutative ring and L a free R-module. Then R is a CA-ring (resp.,

SCA-ring) if and only if L is a CA-module (resp., SCA-module).
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Proof. It is direct from Theorem 4.1 since (R,L) is a countable AV-pair, by Corollary 2.9.
�

In the next corollaries, we discuss the CA-property and SCA-property of the direct sum
and idealization of modules sharing the countable AV-property. Lucas’s proposition turns out
to be a particular case of this result.

Corollary 4.3. LetR be a ring. LetM andN beR-modules. Assume thatM is a countable AV-module

over N . Then the following assertions are equivalent:

1)M ⊕N is a CA-module (resp, an SCA-module);

2)M is a CA-module (resp., an SCA-module).

Proof. AsM is a countable AV-module over N , then, by Proposition 2.6, the pair (M,M ⊕N)

is a countable AV-pair. Hence Theorem 4.1 completes the proof. �

We state next one of themain theorems of this section. It is a further step towards establishing
the analog of Lucas’s proposition for the CA-property.

Theorem 4.4. Let R be a ring andM an R-module. Then the following assertions are equivalent:

1) RnM is a CA-ring (resp., SCA-ring);

2) R⊕M is a CA-module (resp., SCA-module).

Proof. I) SCA-property.

1)⇒ 2) Suppose that T := RnM is an SCA-ring. Let I = (a1, a2, · · · , an, · · · ) be a countably
generated ideal of R such that an ∈ ZR(R⊕M) = Z(R) ∪ ZR(M) for each integer n ≥ 1. Then
(an, 0) ∈ Z(T ) for each integer n ≥ 1. Consider the ideal J := ((a1, 0), (a2, 0), · · · , (an, 0), · · · )T

with (an, 0) ∈ Z(T ) for each integer n ≥ 1. As T is an SCA-ring, there exists (a,m) ∈ T with
(a,m) 6= (0, 0) such that J(a,m) = (0, 0). Then ana = 0 and anm = 0 for each integer n ≥ 1.
Hence an(a,m) = 0 for each integer n ≥ 1. It follows that I(a,m) = (0, 0) and (a,m) 6= (0, 0),
that is, annR⊕M(I) 6= (0, 0). Therefore R⊕M is an SCA-module over R proving (2).
2)⇒ 1) Assume R⊕M is an SCA-module over R.
Let J = ((a1,m1), (a2,m2), · · · , (an,mn), · · · )T be a countably generated ideal of T such that
(an,mn) ∈ Z(T ) for each integer n ≥ 1. Then an ∈ Z(R)∪ZR(M) = ZR(R⊕M) for each integer
n ≥ 1. Let I = (a1, a2, · · · , an, · · · ) be the countably generated ideal of R generated by the an.
As R ⊕M is an SCA-module over R, there exists (a,m) ∈ R ⊕M with (a,m) 6= (0, 0) and
I(a,m) = (0, 0). Then ana = 0 and anm = 0 for each integer n ≥ 1. Two cases arise.
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Case 1: m 6= 0. Then (an,mn)(0,m) = (0, 0) for each integer n ≥ 1 and thus J(0,m) = (0, 0).
Case 2: m = 0. Then a 6= 0 and ana = 0 for each integer n ≥ 1. Thus (an,mn)(a, 0) =

(ana, ami) = (0, amn) for each integer n ≥ 1. If amn = 0 for each integer n ≥ 1, then
(an,mn)(a, 0) = (0, 0) for each integer n ≥ 1, so that J(a, 0) = (0, 0) and (a, 0) 6= (0, 0). Now,
suppose that there exists j ∈ N \ {1} such that amj 6= 0. Then it is easy to verify that
(an,mn)(0, amj) = (0, 0) for each integer n ≥ 1 as aan = 0 for each integer n ≥ 1. Therefore
J(0, amj) = (0, 0) and (0, amj) 6= (0, 0). It follows that T is an SCA-ring, as desired.
II) CA-property.

1) ⇒ 2) Put T := R n M and assume that T is a CA-ring. Let I = (a1, a2, · · · , an, · · · ) be
a countably generated ideal of R such that I ⊆ ZR(R ⊕ M) = Z(R) ∪ ZR(M). Consider
the ideal J := ((a1, 0), (a2, 0), · · · , (an, 0), · · · )T . Let us prove that J ⊆ Z(T ). In fact, let
t = (a1, 0)(r1,m1)+(a2, 0)(r2,m2)+ · · ·+(an, 0)(rn,mn) ∈ J . Then t = (a1r1 + · · ·+anrn, a1m1 +

· · · + anmn) =: (a′,m′). Note that a1r1 + · · · + anrn ∈ I ⊆ Z(R) ∪ ZR(M). Then t ∈ Z(T ). It
follows that J ⊆ Z(T ), as contended. As T is a CA-ring, there exists (a,m) ∈ T such that
(a,m) 6= (0, 0) and J(a,m) = (0, 0). Let x = a1r1 + · · ·+ anrn ∈ I . Then

x(a,m) = (xa, xm)

= (
n∑
i=1

airia,
n∑
i=1

airim)

=
n∑
i=1

(airi, 0)(a,m)

=
( n∑
i=1

(ai, 0)(ri, 0)
)

(a,m)

= (0, 0) as
n∑
i=1

(ai, 0)(ri, 0) ∈ J.

Hence I(a,m) = (0, 0) and (a,m) 6= (0, 0). It follows that annR⊕M(I) 6= (0, 0). Hence R⊕M is
a CA-module over R.
2) ⇒ 1) Assume that R ⊕ M is a CA-module. Let J = ((a1,m1), · · · , (an,mn), · · · )T be a
countably generated ideal of T such that J ⊆ Z(T ). Let I := (a1, · · · , an, · · · )R. Next, we prove
that I ⊆ ZR(R⊕M). In fact, let x =

n∑
i=1

airi ∈ I . Then, as J is an ideal of T contained in Z(T ),

n∑
i=1

(ai,mi)(ri, 0) =
n∑
i=1

(airi,miri) = (x,
n∑
i=1

miri) ∈ Z(T ).

Hence x ∈ Z(R) ∪ ZR(M) = ZR(R ⊕ M). It follows that I ⊆ ZR(R ⊕ M). As R ⊕ M is a
CA-module over R, there exists (a,m) ∈ R⊕M such that (a,m) 6= (0, 0) and I(a,m) = (0, 0).
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Thus ana = 0 and anm = 0 for each integer n ≥ 1. Note that, for each integer n ≥ 1,

(an,mn)(a,m) = (ana, anm+ amn) = (0, amn).

If amn = 0 for each integer n ≥ 1, then (an,mn)(a,m) = (0, 0) for each integer n ≥ 1 and thus
J(a,m) = (0, 0) which means that annT (J) 6= (0, 0). Assume that there exists an integer j ≥ 1

such that amj 6= 0. Then

(an,mn)(0, amj) = (0, aanmj) = (0, 0)

for each integer n ≥ 1. It follows that annT (J) 6= (0, 0). Consequently, T is a CA-ring complet-
ing the proof.

�

As an immediate consequence, we deduce the following result on the CA-Property and SCA-
property of the idealization of a ring R on a moduleM such that R is a countable AV-module
overM .

Corollary 4.5. Let R be a ring andM an R-module. Assume that R is a countable AV-module over

M . Then the following assertions are equivalent:

1) RnM is a CA-ring (resp, an SCA-ring);

2) R⊕M is a CA-module (resp, an SCA-module);

3) R is a CA-ring (resp., an SCA-ring).

Proof. 1)⇔ 2) It holds by Theorem 4.4.
2)⇔ 3) It holds by Corollary 4.3. �

Here next we provide the promised analog version of Lucas proposition [20, Proposition
3.5] for the CA-property. Notice that we drop the reduceness hypotheses of R and we consider
only an R-moduleM that is a submodule of a flat R-module.

Corollary 4.6. Let R be a ring andM a submodule of a flat R-module. Then the following assertions

are equivalent:

1) RnM is a CA-ring (resp, an SCA-ring);

2) R⊕M is a CA-module (resp, an SCA-module);

3) R is a CA-ring (resp., an SCA-ring).

Proof. LetM be a submodule of a flat R-module F . Then, by Theorem 3.4, R is a countable
AV-module overM . Now, apply Corollary 4.5 to get the desired result. �
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Corollary 4.7. Let R be a countable AV-ring (in particular, a semi-regular ring) andM an R-module.

Then the following assertions are equivalent:

1) RnM is a CA-ring (resp, an SCA-ring);

2) R⊕M is a CA-module (resp, an SCA-module);

3) R is a CA-ring (resp., an SCA-ring).

The remaining results of this section deal with the case of an idealization RnM , whereM
is a faithful R-module.

Corollary 4.8. LetR be a ring andM a faithfulR-module. Then the following assertions are equivalent:

1) RnM is a CA-ring (resp., an SCA-ring);

2) R⊕M is a CA-module (resp., an SCA-module);

3)M is a CA-module (resp., an SCA-module).

Proof. It follows directly from Theorem 4.4 and Corollary 4.3 as, by Proposition 2.6,M is a
countable AV-module over R. �

Corollary 4.9. Let R be a ring andM an R-module. Then the following assertions are equivalent:

1) R

annR(M)
nM is a CA-ring (resp., an SCA-ring);

2) R

annR(M)
⊕M is a CA-module (resp., an SCA-module);

3)M is a CA-module (resp., an SCA-module).

Proof. First, note that, by [4, Theorem 2.1],M is a CA-module (resp., an SCA-module) over R
if and only it is so over R

annR(M)
. Also, note that annR

( R

annR(M)
⊕M

)
= annR(M) andM

is faithful over R

annR(M)
. Then the result easily follows from Corollary 4.8.

�
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