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Abstract. In this paper, the polar moments of inertia for the trajectories of the points have been
obtained during the one parameter planar homothetic motions in the generalized complex plane
Cp. Then, Holditch-type theorem that express the relationship among the polar moments of
inertia of points has been given for homothetic motion in Cp. Moreover, the some geometric
interpretations of the polar moment of inertia in physics have been expressed. So, this study is
thought to be an interdisciplinary study that establishes a link between geometry and physics.
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1. Introduction

Mechanics is a sub-branch of physics that studies the motion of objects. Kinematics is
also a branch of mechanics that examines the motion of objects in space time (regardless of
the factors that cause it). In other words, kinematics is a field of science in which motion is
studied mathematically. If the position of an object changes over time, it is said the object is
moving. Objects can move in many different ways. In order to understand complex motion
models, the location of the motion, i.e. being in one dimension (linear), two dimensions
(planar) and high dimension (in space), and what motion or motions the object makes
(translation, rotation, vibration, etc.) are important. It is one of the aims of kinematics to
describe the motion of an object and to be able to predict the change of this motion over time.
In this case, some concepts (such as position vector, path, velocity, acceleration) should be
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defined in order to understand the motion of an object. After defining these concepts, the
area or the moment of inertia of the trajectory drawn by any point along the motion can
be obtained. The moment of inertia is one of the quantities calculated depending on the
geometry of the sections. Consider an axis perpendicular to the plane of an area drawn by
any point. The moment of inertia of this area with respect to this perpendicular axis is called
the polar moment of inertia of that area.

Holditch gave a theorem in a study as follows; "Once the end points of a fixed-length line
segment in the plane are entangled along an oval, a point detected on the line segment also
usually draws a closed curve that does not need to be convex. The surface area of the "Holditch
Ring" between this oval and the curve depends only on the distance of the selected point
from the end points of the line segment and is independent of its curves and motion." [15].
Then, Steiner calculated the area of the trajectory under the closed one-parameter planar
motions [22]. This classical Holditch Theorem and Steiner area formula were later generalized
by many scientists [1, 5, 20, 21, 29]. Based on the Holditch’s theorem, which expresses the
relationship among the areas of the trajectories drawn by the points on the plane given
by Holditch, the theorem that tell the relationship among the polar moments of inertia of
the trajectories drawn by these points has been named asHolditch-type theorem [7,9,24,27,28].

The equations of motion are given by transformations that maintain distance. Homothetic
motions, on the other hand, are given by transformations that preserve the angles while
changing the distances at the same rate. Therefore, motions are a special case of homothetic
motions. Based on this situation, thestudies given for one-parameter planar motions
given in many studies have been expanded for homothetic motions. These studies are as
follows; [2, 13, 16–18, 23, 26, 28]. Generally, moment of inertia is the resistance per unit surface
area resists rotation. In other words, it is the reaction of the surface to the force trying to
change its shape. The sum of the moments of inertia defined in the plane with respect to the
two axes is also called the polar moment of inertia. Müller calculated the polar moment of
inertia of the closed trajectory under the closed planar motions [19]. Then, the polar moment
of inertia for homothetic motions was calculated [6,24]. Then, many studies have been done
by many scientists about polar moment of inertia and homothetic motions [27,28].



Asia Pac. J. Math. 2022 9:2 3 of 13

2. Preliminaries

The generalized complex number system is isomorphic to dual, ordinary, and double
complex numbers ( p + q2/4 is zero, negative, and positive, respectively) and is defined
as Z = x + iy where i2 = iq + p and x, y, p, q ∈ R [25]. In this paper, the one parameter
family Cp = {x+ iy : x, y ∈ R, i2 = p ∈ R} of this system has been studied. So, the addition,
subtraction and product on Cp can be defined

Z1 ± Z2 = (x1 + iy1)± (x2 + iy2) = x1 ± x2 + i(y1 ± y2)

and

Mp(Z1, Z2) = (x1x2 + py1y2) + i(x1y2 + x2y1)

for two generalized complex numbers Z1 = (x1 + iy1), Z2 = (x2 + iy2) [14, 25]. Moreover, for
the p−magnitude of Z = x+ iy, the equation

(1) |Z|p =
√∣∣Mp(Z, Z̄)

∣∣ =
√
|x2 − py2|

is holdwhere ”−” is the complex conjugate. In addition that, the scalar product on generalized
complex plane Cp is given by

〈z1, z2〉p = Re (Mp (z1, z2)) = Re (Mp (z1, z2)) = x1y1 − px2y2

for two generalized complex vectors z1 = (x1 + iy1), z2 = (x2 + iy2) [14]. Moreover, the unit
circle in Cp is characterized by |Z|p = 1. So, it can be given Figure 1 for the unit circle in Cp for
the special cases of p. [14]. Considering the above-mentioned description of circle for cases

Figure 1. The Unit Circle in Cp

of p, the circle in Cp can be defined as follows.
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Definition 1. Consider the circle with the radius r and the centerM(a, b). Thus, this circle is written

by equation ∣∣(x− a)2 − p(y − b)2
∣∣ = r2

[14].

Let a number in Cp be Z = x+ iy which is symbolize −→OT and Figure 2 be as follows.

Figure 2. Elliptic, Parabolic and Hyperbolic Angles

So, consider σ ≡ y/x, the angle θp formed by inverse tangent functions can be defined as

θp =


1√
|p|

tan−1
(
σ
√
|p|
)
, p < 0

σ, p = 0

1√ptan−1
(
σ
√
p
)
, p > 0 (branch I, III)

Let the pointN be the intersection point of−→OT with unit circle inCp. Moreover, the orthogonal
projection on the OM of the point N is the point L and the line QM is also the tangent at the
pointM of the unit circle (see Figure 3). Thus, p−trigonometric functions can be obtained by

cos pθp =


cos
(
θp
√
|p|
)
, p < 0

1, p = 0 (branch I)

cosh
(
θp
√
p
)
, p > 0 (branch I)

sin pθp =


1√
|p|

sin
(
θp
√
|p|
)
, p < 0

θp, p = 0 (branch I)

1√p sinh
(
θp
√
p
)
, p > 0 (branch I)

and
tan pθp =

sinpθp
cospθp

.
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Figure 3. θp for the special cases of p

Thus, the Maclaurin expansions of the p-trigonometric function on the branch I is

cos pθp =
∞∑
n=0

pn
(2n)!

θ2np and sin pθp =
∞∑
n=0

pn
(2n+ 1)!

θ2n+1
p .

By the help of the Maclaurin series, the generalized Euler Formula in Cp is

(2) eiθp = cos pθp + i sin pθp

where i2 = p. On the other hand, the exponential forms of Z in Cp is

Z = rp(cospθp + i sin pθp) = rpe
iθp

where rp = |Z|p [14]. Moreover, the p−rotation matrix given by the equation (2) is

A(θp) =

 cos pθp p sin pθp

sin pθp cos pθp

 .
[14]. Moreover, the derivatives of cos p and sin p is obtained that

d

dα
(cos pα) = p sin pα,

d

dα
(sin pα) = cos pα,

[14].

Proposition 2. Consider two arbitrary generalized complex vectors a = (a1, a2) and b = (b1, b2) in

Cp. Thus, the following equation is satisfied

(3) 〈
aeiθp , beiθp

〉
p = 〈a, b〉 p

where h is homothetic scale.
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Considering this plane, many studies have been done in planar motions [3, 8–12]

The one parameter homothetic motions in the p-complex plane

Cj =
{
x+ Jy : x, y ∈ R, J2 = p, p ∈ {−1, 0, 1}

}
which is the subset of the generalized complex plane Cp was studied by Gürses et. al [4]. Simi-
lar to that study the one parameter homothetic motions inCp have been given as follows briefly.

LetK′p,Kp be the fixed andmoving planes inCp, respectively and x = x1+ix2 and x′ = x′1+ix
′
2

be the position vectors of a point X , and −−→OO′ = u. So, the equation of the one-parameter
planar homothetic motion in Cp is written by

(4) x′ = (hx− u) eiθp

where θp is the p−rotation angle of the motion Kp/K′p, u′ = −ueiθp and h is the homothetic
scale in Cp. So, the relative and absolute velocity vectors of X in Kp ⊂ Cp are

(5) Vr
′ = Vre

iθp = hẋeiθp

and

(6) Va
′ = Vae

iθp =
(
ḣ+ iθ̇ph

)
xeiθp −

(
u̇ + iθ̇pu

)
eiθp + hẋeiθp ,

respectively. Using the equations (5) and (6) the guide velocity vector is

Vf
′ = Vfe

iθp =
(
ḣ+ iθ̇ph

)
xeiθp + u̇′.

Theorem 3. Let Kp/K′p be the one-parameter planar homothetic motion in Cp. So, the relationship

among velocity vectors is given by

Va = Vf + Vr.

There are some points that remain fixed in both the fixed plane K′p and the moving plane
Kp in Cp. These points are called pole points. Thus, let the pole points of homothetic motions
Kp/K′p be Q = (q1, q2) ∈ Cp. So, the components of pole points Q = (q1, q2) are

(7)
q1 =

dh(du1+pu2dθp)−ph(du2+u1dθp)dθp
dh2−ph2dθp2 ,

q2 =
dh(du2+u1dθp)−h(du1+pu2dθp)dθp

dh2−ph2dθp2 .

where Vf = 0.



Asia Pac. J. Math. 2022 9:2 7 of 13

In this paper, the open motions restricted to time interval [t1, t2] on the branch I of Cp are
considered.

3. Main Theorems and Proofs

In this section, the polar moments of inertia of the trajectories drawn by points taken during
the homothetic motions in Cp have been calculated. In addition, by using the relationship
among the points taken, some theorems and conclusions about the polar moments of inertia
of these points and geometric interpretations have been given. As a result, the Holditch type
theorem has been expressed for the moments that give the basic relationship among the polar
moments of inertia of the points. For this, the motion mentioned here is restricted to the time
interval I = [t1, t2]. Then, any fixed point X in Kp is considered. So, the following theorem
can be given for the polar moment of inertia of this point for homothetic motions in Cp. (It
should be noted that; since the expression polar moment of inertia is used a lot in this study,
abbreviation PMI will be used for this expression from now on.)

Theorem 4. Consider that Kp/K′p is the homothetic motion in Cp and X = (x1, x2) is any fixed point

in Kp. So, the PMI of the trajectory drawn by X = (x1, x2) is given by

(8) TX = TO + h2 (t0) δp (xx̄− xs̄− x̄s) + µ1x1 + µ2x2

where µ1 = −2
t2∫
t1

hq2dh, µ2 = 2
t2∫
t1

hq1dh, T0 is the PMI of the trajectory drawn by the origin O and h

is the homothetic scale.

Proof. The point X = (x1, x2) is considered any fixed point in Kp ⊂ Cp. So, for the homothetic
motions the PMI of the trajectory drawn by this point is calculated

(9) TX =

t2∫
t1

|x′|2p dθp

where −−→O′X = x′ and O′ is the origin of K′p, and dθp
dt

= θ̇p 6= 0 is a continuous function. So, if the
equations (1), (3), (4) and (9), the moment is obtained

TX = xx̄
t2∫
t1

h2dθp − 2

t2∫
t1

h (x1u1 − px2u2) dθp +

t2∫
t1

uudθp.
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Now, the point X ∈ Kp is chosen as X = 0. So, from the last equation the PMI of trajectory
drawn by this point is

(10) T0 =

t2∫
t1

uūdθp.

On the other hand, the mean value theorem for integrals states that there is at least one point
t0 in the interval I = [t1, t2] so that the following equation can be written

t2∫
t1

h2dθp =

t2∫
t1

h2(t)θ̇p(t)dt =h2 (t0) δp

where δp = θp(t2) − θp(t1) is the total rotation angle. Then, considering all these operations
and pole points in (7) for homothetic motions in Cp, the PMI is found as

TX = TO + xx̄h2 (t0) δp − 2x1

(
t2∫
t1

h2q1dθp −
t2∫
t1

hdu2

)
+ 2x2

(
p
t2∫
t1

h2q2dθp −
t2∫
t1

hdu1

)
− 2x1

t2∫
t1

hq2dh+ 2x2
t2∫
t1

hq1dh

.

Moreover, since the center of gravity of the pole curve is called Steiner point S = (s1, s2), this
point for the PMI during homothetic motions in Cp is given by

h2 (t0) δps1 =

t2∫
t1

h2q1dθp −
t2∫
t1

hdu2, ph2 (t0) δps2 = p

t2∫
t1

h2q2dθp −
t2∫
t1

hdu1.

So, the PMI of trajectory drawn by X is

TX = TO + h2 (t0) δp (xx̄− xs̄− x̄s) + µ1x1 + µ2x2

where µ1 = −2
t2∫
t1

hq2dh, µ2 = 2
t2∫
t1

hq1dh. �

Now, as a special selection, consider h = 1. So, the equation (8) is obtained as
TX = TO + δp (xx̄− xs̄− x̄s). This equation is the same as the moment given in [9]. Therefore,
this study is the generalized version of the study given in [9].

Let the PMI TX be considered as constant in the equation (8). In this case, as a result of the
Theorem 4, we can give the following corollary without proof.
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Corollary 1. Consider that all points X have the same PMI TX during homothetic motions in Cp. So,

the geometric location of these points X is a circle with center(
s1 −

µ1

2h2 (t0) δp
, s2 +

µ2

2ph2 (t0) δp

)
in the plane Cp.

It should be emphasized here; if h = 1, the center of the circle mentioned above becomes
the Steiner point S = (s1, s2) [9].

Until now, the PMI of trajectory drawn by a fixed point on the moving plane Kp has been
calculated. Now, the PMI calculation be expanded one more step by taking three linear points.
So, the following theorem can be given.

Theorem 5. Suppose that the points X , Y and Z are the linear points in the moving plane Kp during

homothetic motion in Cp. Let the point Z be on the line segment XY , and each of these points draw a

curve during the homothetic motion. In this case, if the PMIs of the trajectories drawn by the X , Y and

Z are TX , TY and TZ , respectively, then, there is the relationship

(11) TZ = αTX + βTY − αβh2(t0)δpd2

among these moments where α and β are barycentric coordinates (α+ β = 1), h is homothetic scale, δp
is rotation angle, and d is the distance of Z to X and Y in Cp.

Proof. Consider that X , Y and Z are the linear points and Z be on the line segment XY in
Kp during homothetic motion in Cp. Moreover, suppose that −−→OX ′ = x′,

−−→
OY ′ = y′,

−−→
OZ ′ = z′

are the position vectors of the points X , Y and Z with respect to the fixed plane K′p ⊂ Cp,
respectively. So, there is a relationship

(12) z′ = αx′ + βy′

where α, β ∈ R (α + β = 1) are barycentric coordinates. Now, the PMI TZ of the trajectory
drawn by Z is calculated. In this case, similar to the equation (9), the PMI TZ with the aid of
(12) can be written by

TZ =

t2∫
t1

|z′|2p dθp =

t2∫
t1

〈αx′ + βy′, αx′ + βy′〉pdθp,
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and if the equations TX =
t2∫
t1

〈x′, x′〉pdθp, TY =
t2∫
t1

〈y′,y′〉pdθp, TXY =
t2∫
t1

〈x′,y′〉pdθp are considered,
the PMI is written by

(13) TZ = α2TX + 2αβTXY + β2TY

where TX and TY are the PMIs of the trajectories drawn by the X and Y , respectively. It is
unknown what the moment TXY is in equation (13) in here. In this case, this moment can be
calculated as follows. If the necessary arrangements in the equation TXY =

t2∫
t1

〈x′,y′〉pdθp are
made, the moment

(14) TXY = TO + h2 (t0) δp (x1y1 − px2y2 − (x1 + y1)s1 + p(x2 + y2)s2) + µ1x1 + µ2x2

is hold where TO is the PMI of trajectory drawn by the origin point on Kp and same formulae
in the equation (10), µ1 = −2

t2∫
t1

hq2dh, µ2 = 2
t2∫
t1

hq1dh, and the point S = (s1, s2) is Steiner
point for homothetic motions in Cp. There is another point that needs to be emphasized here.
If consider X = Y in the equation (14), then, the equation (8) is obtained. This means that;
the equation (14) is an extended version of the equation (8). Now, by using the equations (8)
and (14) the equation TX − 2TXY + TY is calculated. So, the equation

TX − 2TXY + TY = h2 (t0) δp (xx̄ + yȳ− xȳ− x̄y)

is hold where TXY = TY X . It is known very easily from here

xx̄ + yȳ− xȳ− x̄y = (x1 − y1)2 − p(x2 − y2)2 = d2

where the distance between X and Y for branch I of Cp is d. In this case, the PMI TXY can be
written by the PMIs TX and TY

(15) TXY =
1

2

(
TX + TY − h2(t0)δpd2

)
.

Finally, from the equations (13) and (15), it is obtained

TZ = αTX + βTY − αβh2(t0)δpd2

where α + β = 1. �

Now, consider that a special case of the expression given in Theorem 5. This means that the
points X and Y mentioned in Theorem 5 move on the same trajectory. In this case, the PMIs
of the trajectories drawn by X and Y are same (TX = TY ). So, the equation (11) is obtained
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by TX − TZ = αβh2(t0)δpd
2 where α + β = 1. In addition, if the distances are considered

|Y Z| = λd and |XZ| = µd, then the relationship among PMIs TX (or TY ) and TZ is obtained

TX − TZ = h2(t0)δp |XZ| |Y Z| .

So, the main theorem (generalization of Holditch-type theorem) during homothetic motions
in Cp can be given as follows.

Theorem 6. (Main Theorem): Consider that X , Y and Z are the linear and fixed points on the

moving plane Kp ⊂ Cp and X and Y draw the same trajectory at the time interval [t1, t2]. Moreover,

Z on XY with constant length draws a different trajectory at the same interval. So, the difference

between the PMIs of these two trajectories is independent of the curves drawn by these trajectories. This

difference of moments depends only on the distance of the Z from X and Y , the rotation angle and the

homothetic scale in the generalized complex plane Cp.

4. Conclusion

This study has been done about PMIs for homothetic planar motions in the generalized
complex plane Cp. The generalized complex plane; it is the most general case of complex
(p = −1), dual (p = 0) and hyperbolic (p = +1) planes, as well as planes given for other special
situations of p. A lot of study has been done for one-parameter plane motions in this plane.
The motion are given by transformations that maintain distance. The homothetic motions are
given by transformations that preserve the angles while changing the distances at the same
rate. Therefore, motions are a special case (homothetic scale=1) of homothetic motions. Thus,
this study is the most generalized form of PMI studies done so far, both because it is in the
generalized complex plane and because it is made for homothetic movements. In addition, the
fact that this study has been studied about moment in plane geometry has created a bridge
between physics and geometry sciences.
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[16] N. Kuruoǧlu, A. Tutar and M. Düldül, On the 1-parameter homothetic motions on the complex plane, Int. J.

Appl. Math. 6(4) (2001), 439-447.
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