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Abstract. This paper focuses on the bifurcation behavior of physiological control system by the
nonstandard finite difference method. By using the Hopf bifurcation theory of discrete system,
we prove that a series of Hopf bifurcations appear at the positive equilibrium point with the
increase of time delay. At the same time, the existence of local Hopf bifurcations is investigated.
Moreover, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions
are verified. Finally, some numerical examples are given to illustrate the theoretical results.
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1. Introduction

In recent years, a great deal of work has been done to the dynamic behavior of delay
differential equations (DDEs). Some properties have received widespread attention, such as
stability, oscillations and periodicity [1–4]. Since the bifurcation problems in the mathematical
models of ecology, biology, neural networks and the spread of some infectious diseases in
human beings reflect many realistic dynamic phenomena, so the bifurcation theory of DDEs
is becoming more and more popular to the research of qualitative theory of differential
equations [5–8].
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Considering the need of scientific computation and real-time simulation, more and more
scholars pay attention to the behaviors of discrete system corresponding to the original dif-
ferential equations. As to the numerical bifurcations of DDEs, some authors applied many
classical numerical methods e.g. Runge-Kutta methods, the trapezoidal formula and linear
multi-step methods to simulate the Hopf bifurcations [9–12]. For more information on this
aspect, the interested readers can refer to the literatures [13–15].

In this paper, we consider a physiological control systemwhich is described by the following
nonlinear DDE

(1) ṗ(t) = γ − βvmp(t)p
n(t− τ)

θn + pn(t− τ)
, t ≥ 0,

where p(t) stands for carbon dioxide concentration in arterial, γ is the carbon dioxide produc-
tion rate, β is a positive constant, vm is the maximum flow of carbon dioxide, τ is the time
delay between oxidation in the blood of the lungs to chemical reactions in the brainstem, θ and
n are positive parameters obtained by observing different experimenters. This model was first
proposed by Mackey and Glass [16], and its solution is similar to the pulmonary ventilation
envelope of pathological respiration, which is called Cheyne Stokes Breathing (CSB). CSB is
characterized by periodic increasing or decreasing pattern of respiration and alternation of
central apnea with cycle length larger than 40 seconds (the most common is 45-60 seconds).

Some scholars have focused on many qualitative properties of (1) such as oscillation, global
attractivity, stability and chaos (see [16–19]). Actually, from the viewpoint of control, the
discretization form is the most appropriate and realistic to represent the dynamic carbon
dioxide concentration in the artery. The reason is that the examination of patients, cardiopul-
monary exercise test and the dosage of drugs used in treatment are prescribed as a discrete
process. Ding and Su [20] studied the dynamics of solutions of (1) by the midpoint formula.
As is known to all, one dynamic consistent numerical method can reproduce the dynamic
behavior of differential equations accurately [21]. Specifically, a discrete-time model is said
to be dynamically consistent with its continuous counterpart if it demonstrates the similar
dynamical behavior, such as boundedness, persistence, stability, chaos and bifurcation [22].
Although the midpoint formula could preserve the local stability and the Hopf bifurcation of
some DDEs for any step size, it is implicit method whose computation is a bit large. Thus,
different from [20], in this paper, we use another effective and potential method: nonstandard
finite difference method (NSFDM).
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Nowadays, theNSFDMhave received considerable attention due to the improvement in their
efficient computation and potential advantages, such as preserving some essential properties
of ordinary and partial differential equations [23]. The basic rules of the NSFDM have been
introduced by Mickens [24–27] to solve linear and nonlinear differential equations. This
technique is universally known to maintain positivity, boundedness, fixed points and stability
of nonlinear systems [28,29]. It is also showed that the NSFDM has better convergence than
Euler method and Runge-Kutta methods [24,28].
The main work of this article is propose a NSFDM to discretize (1) and analyze the corre-

sponding difference scheme by using the Hopf bifurcation theory of discrete system. We show
that the NSFDM can preserve the dynamic properties include the existence and direction of
the Hopf bifurcations, the local stability of equilibrium point and the stability of the bifurcating
periodic solutions.

The rest of this work is summarized as follows. In Section 2, the stability of the positive
equilibrium and the existence of the local Hopf bifurcation at the equilibrium point are studied.
In Section 3, the direction and stability of bifurcating periodic solutions are discussed. In
Section 4, some numerical examples are carried out to support the theoretical result. Finally,
Section 5 is devoted to concluding remarks.

2. Stability of the positive equilibrium and local Hopf bifurcations

In this section, we mainly discuss the stability of the equilibrium and the existence of local
Hopf bifurcation by considering time delay as bifurcation parameter of the discrete system.

We first make the change of variable p(t) = θx(t), then (1) can be rewritten as

(2) ẋ(t) = a− bx(t)xn(t− τ)

1 + xn(t− τ)
,

where a = γ/θ, b = βvm. Further, let u(t) = x(τt), so (2) can be reformulated as

(3) u̇(t) = aτ − bτ u(t)un(t− 1)

1 + un(t− 1)
,

then the positive equilibrium point u∗ of (3) satisfies

(4) aτ − bτ un+1
∗

1 + un∗
= 0.

For the function f(x) = bxn+1 − axn − a, we notice that

(5) f ′(x) = (n+ 1)bxn − anxn−1

 < 0, 0 < x < an
b(n+1)

,

> 0, x > an
b(n+1)
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and f(0) = −a < 0, so we know that the positive equilibrium point u∗ is unique. Meanwhile,
(4) implies that

(6) u∗ >
a

b
.

Let h = 1/m (m ∈ Z+) be the step size, we use the NSFDM to discrete (3). In NSFDM, the
first-order derivative is approximated by (uk+1 − uk)/φ(h), where φ(h) is called denominator
function, which is the continuous function of h and satisfies the condition φ(h) = h+O (h2),
0 < φ(h) < 1, when h → 0. In this paper, we select the denominator function φ(h) =

(1− e−bhτ )/(bτ), then the numerical discrete system for (3) is as follows

(7) uk+1 = uk +

(
1− e−bτh

)
a

b
−
(
1− e−bτh

)
uku

n
k−m

1 + unk−m
.

Obviously, (7) and (3) share the same positive equilibrium point u∗. In order to transform
the equilibrium point u∗ of (7) into the origin, set yk = uk − u∗, then (7) changes into

(8)
yk+1 =

(
1− (yk−m+u∗)n(1−e−bhτ)

1+(yk−m+u∗)n

)
yk −

(yk−m+u∗)n(1−e−bhτ)
1+(yk−m+u∗)n

u∗

+
(1−e−bhτ)a

b
.

By introducing a new variable Yk = (yk, yk−1, · · · , yk−m)T , (8) is equivalently rewritten as

(9) Yk+1 = Q(Yk, τ),

where Q = (Q0, Q1, · · · , Qm)T and

(10) Qi =


(

1− (yk−m+u∗)n(1−e−bhτ)
1+(yk−m+u∗)n

)
yk −

(yk−m+u∗)n(1−e−bhτ)
1+(yk−m+u∗)n

u∗ +
(1−e−bhτ)a

b
, i = 0,

yk−i+1, 1 ≤ i ≤ m.

The linearization form of (9) at origin is

(11) Yk+1 = DYk,

where

(12) D =



dm 0 · · · 0 0 d0

1 0 · · · 0 0 0

0 1 · · · 0 0 0
... ... . . . ... ... ...
0 0 · · · 1 0 0

0 0 · · · 0 1 0


,
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and

dm = 1− a(1− e−bhτ )
bu∗

, d0 = −an(bu∗ − a)(1− e−bhτ )
b2u2
∗

.

The characteristic equation of the matrix D is

(13) λm+1 −
(

1− a(1− e−bhτ )
bu∗

)
λm +

an(bu∗ − a)(1− e−bhτ )
b2u2
∗

= 0.

It is known that the equilibrium point is asymptotically stable if and only if all the character-
istic roots of the linearization at the equilibrium point stay in the unit circle. The following
results are useful to prove the existence of the local Hopf bifurcation at the equilibrium point.

Lemma 1. All the roots of (13) have modulus less than one for sufficiently small τ > 0.

Proof: When τ = 0, (13) reduces to λm+1 − λm = 0, which has a single root λ = 1 and
m-fold root zero. When τ 6= 0 and τ is sufficiently small, we consider the root λ(τ) of (13)
such that λ(0) = 1. Since the function λ = λ(τ) is continuous and differentiable about τ , so
differentiating both sides of (13) with respect to τ , we get

(14) dλ

dτ
= − ahe−bhτ (λmbu∗ + bnu∗ − an)

λm−1u∗ (λbu∗(m+ 1) + am(1− e−bhτ )− bmu∗)

and

(15) dλ̄

dτ
= − ahe−bhτ (λ̄mbu∗ + bnu∗ − an)

λ̄m−1u∗
(
λ̄bu∗(m+ 1) + am(1− e−bhτ )− bmu∗

) ,
combining with (6) we have

(16) d|λ|2

dτ
|τ=0,λ=1 =

(
λ
dλ̄

dτ
+ λ̄

dλ

dτ

)
|τ=0,λ=1 = −2ah(bu∗ + bu∗n− an)

u2
∗b

< 0.

As a consequence, λ can not cross λ = 1 with increasing of τ . That is, all roots of (13) lie in the
unit circle for sufficiently small τ > 0. The proof is complete.

As is known to all, a Hopf bifurcation occurs when a complex conjugate pair of eigenvalues
of D cross the unit circle as τ varies. To find the bifurcation points, we need to calculate the
eigenvalues on the unit circle. So we have the following result.

Lemma 2. If the condition

(17) an > b(n− 1)u∗

holds, then the characteristic equation (13) has no root with modulus one for any τ > 0.
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Proof: Suppose that the root on the unit circle is eiω, ω ∈ (−π, π]. Since (13) is a real
polynomial equation, we only need to find ω ∈ (0, π] for eiω. Inserting eiω into (13) and
separating the real part and imaginary part we get

(18)

 cosω + an(bu∗−a)(1−e−bhτ )
b2u2∗

cosmω = 1− a(1−e−bhτ)
bu∗

,

sinω − an(bu∗−a)(1−e−bhτ )
b2u2∗

sinmω = 0.

Since τ is real and ±1 are not the roots of (13), from (18) we deduce that

(19) cosω = 1 +
a2(1− e−bhτ )2(bu∗n+ bu∗ − an)(an+ bu∗ − bu∗n)

2b3u3
∗ (bu∗ − a(1− e−bhτ ))

,

together with (6) and (17), leads to cosω > 1, which is a contradiction. The proof is finished.
We further know that if (17) holds true, then there exists a τ such that the characteristic

equation (13) has a root eiω(ω ∈ (0, π]). From (18), we have

(20) an(bu∗ − a)(1− e−bhτ )
b2u2
∗

=
sinω

sinmω
,

then by (6) we know that the left side of (20) is positive. So there exists a real sequence of ωk
which belongs to the interval (2kπ/m, (2k + 1)π/m), k = 0, 1, · · · , [(m− 1)/2], where [·] stands
for the greatest integer function. Clearly, there exists a sequence of τk satisfying (18) if ω = ωk.

Let

(21) an < b(n− 1)u∗,

then the following lemma is naturally given.

Lemma 3. Under the condition (21), let λk(τ) = rk(τ)eiωk(τ) be a root of characteristic equation (13)

near τ = τk satisfying rk(τk) = 1 and ωk(τk) = ωk, then

(22) dr2
k(τ)

dτ
|τ=τk,ω=ωk > 0.

Proof: From (13) we get

(23) λm =
an(bu∗ − a)(1− e−bhτ )

b2u2
∗

(
λ−

(
1− a(1−e−bhτ )

bu∗

)) .
Also in view of (14) we have

(24)
λ̄dλ
dτ

= − λ̄ahe−bhτ (λmbu∗+bnu∗−an)

λm−1u∗(λbu∗(m+1)+am(1−e−bhτ )−bmu∗)

= − ahe−bhτ (λmbu∗+bnu∗−an)

λmu∗(λbu∗(m+1)+am(1−e−bhτ )−bmu∗)
.
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Hence, from (6), (21), (23) and (24) we obtain

(25)

dr2k(τ)

dτ
|τ=τk,ω=ωk =

(
λdλ̄
dτ

+ λ̄dλ
dτ

)
|τ=τk,ω=ωk = 2Re

(
λ̄dλ
dτ
|τ=τk,ω=ωk

)
= 2Re

(
u∗b2he−bhτ (λ−1)

(1−e−bhτ)(λbu∗(m+1)+am(1−e−bhτ)−bmu∗)

)
=

u∗b2he−bhτk (1−cosωk)(bu∗+2bmu∗−am(1−e−bhτk))
(1−e−bhτk)|bu∗(m+1)eiωk+am(1−e−bhτk)−bmu∗|2

> 0.

This completes the proof.
Therefore we have the following result.

Lemma 4. (i) If (17) holds, then for any τ > 0, all roots of the characteristic equation (13) are in the

unit circle.

(ii) If (21) holds, then the characteristic equation (13) has a pair of simple roots e±iωk on the unit

circle when τ = τk (k = 0, 1, 2, · · · , [(m − 1)/2]). If τ ∈ [0, τ0), then the modulus of roots of the

characteristic equation (13) are all less than one. If τ = τ0, then all roots of (13) have modulus less

than one except e±iωk . If τ ∈ (τk, τk+1], then (13) has 2(k + 1) roots which with modulus more than

one.

Proof: According to Lemmas 2, 3 and Corollary 2.4 in [30] we can get the proof of (i).
If (21) holds, then there is a sequence of τk (k = 0, 1, 2, · · · , [(m− 1)/2]), such that (13) has

roots e±iωk when τ = τk and ω = ωk, where τk and ωk are given in (22). If τ ∈ [0, τ0), then
by Lemmas 2, 3, the modulus of the roots of (13) are less than one. If τ = τ0, then all the
roots of (13) have modulus less than one except e±iωk . Moreover, by Rouche theorem [31], the
statement on the number of eigenvalues with modulus more than one can be got directly for
τ ∈ [τk, τk+1). The proof is finished.

By virtue of Lemma 4 we have the next theorem for the stability of the zero solution of (7).

Theorem 1. (i) If (17) holds, then u = u∗ is asymptotically stable for any τ ≥ 0.

(ii) If (21) holds, then u = u∗ is asymptotically stable for τ ∈ [0, τ0), and unstable for τ > τ0.

(iii) Under the same condition of (ii), (7) undergoes a Hopf bifurcation at u∗ when τ = τk, for k = 0, 1,

2, · · · , [(m− 1)/2].

3. Direction and stability of the Hopf bifurcation in discrete system

In this section, by using the similar technique as the centre manifold theorem and normal
form theory in [32], we consider the direction of the local Hopf bifurcation and the stability of
the bifurcating periodic solution of system (8) when τ = τ0.
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Let τ = τ0 + µ, µ ∈ R, then µ = 0 is a Hopf bifurcation value of (8). Expand (8) at origin
gives

(26)

yk+1 =

(
1− (yk−m+u∗)n(1−e−bhτ)

1+(yk−m+u∗)n

)
yk + an(a−bu∗)(1−e−bhτ )

b2u2∗
yk−m

+
an(1−e−bhτ )(bun+1

∗ (n−1)(a−u∗b)+2na2)
2b3un+4

∗
y2
k−m

+an(1−e−bhτ )

6b4u2n+6
∗

[b2u2n+2
∗ (n− 1)(n− 2)(a− bu∗)

+3a2n((n− 1)bun+1
∗ − a(un∗ (n+ 1)− n+ 1))] y3

k−m +O(|yk−m|4).

Thus, we can describe (11) as follows

(27) Yk+1 = DYk +
1

2
B(Yk, Yk) +

1

6
C(Yk, Yk, Yk) +O(‖Yk‖4),

where

B(Yk, Yk) = (b0(Yk, Yk), 0, · · · , 0)T , C(Yk, Yk, Yk) = (c0(Yk, Yk, Yk), 0, · · · , 0)T ,

in which

(28)

 b0(φ, ψ) = b̃φmψm,

c0(φ, ψ, η) = c̃φmψmηm,

here

(29) b̃ =
an(1− e−bhτ ) (bun+1

∗ (n− 1)(a− u∗b) + 2na2)

b3un+4
∗

,

(30) c̃ = an(1−e−bhτ )

b4u2n+6
∗

[b2u2n+2
∗ (n− 1)(n− 2)(a− bu∗)

+3a2n((n− 1)bun+1
∗ − a(un∗ (n+ 1)− n+ 1))] .

Let q = q(τ0) ∈ Cm+1 be an eigenvector of D corresponding to eiω0 , then

Dq = eiω0q,Dq̄ = e−iω0 q̄.

Introducing an adjoint eigenvector q∗ = q∗(τ) ∈ Cm+1 with the properties

DT q∗ = e−iω0q∗, DT q̄∗ = eiω0 q̄∗

and satisfying 〈q∗, q〉 =
∑m

i=0 q̄
∗
i qi = 1.

Lemma 5. [33] Define a vector valued function q : C → Cm+1 by

p(ξ) = (ξm, ξm−1, · · · , 1)T ,

if ξ is an eigenvalue of D, then Dp(ξ) = ξp(ξ).
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By Lemma 5 we have

(31) q = p(eiω0) = (eimω0 , ei(m−1)ω0 , · · · , eiω0 , 1)T .

Lemma 6. Suppose q∗ = (q∗0, q
∗
1, · · · , q∗m)T is the eigenvector of DT corresponding to eigenvalue e−iω0

and 〈q∗, q〉 = 1, then

(32) q∗ = K̄(1, d0e
imω0 , d0e

i(m−1)ω0 , · · · , d0e
i2ω0 , d0e

iω0)T ,

and

(33) K = 1/(eimω0 +md0e
−iω0).

Proof: Assume q∗ satisfies DT q∗ = z̄q∗ with z̄ = e−iω0 , then the following identities hold

(34)


dmq

∗
0 + q∗1 = e−iω0q∗0,

q∗k = e−iω0q∗k−1, k = 2, 3, · · · ,m,

d0q
∗
0 = e−iω0q∗m.

Let q∗m = d0e
iω0K̄, then we obtain

q∗ = K̄(1, d0e
imω0 , d0e

i(m−1)ω0 , · · · , d0e
i2ω0 , d0e

iω0)T .
Further, form 〈q∗, q〉 = 1 and some computations, (33) is hold. So the proof is complete.

Suppose that a(λ) is the characteristic polynomial of the matrix D and λ0 = eiω0 . According
to the similar algorithms and computation process in [33], we obtain the expression for the
critical coefficient c1(τ0) as follows

(35) c1(τ0) =
g20g11(1− 2λ0)

2(λ2
0 − λ0)

+
|g11|2

1− λ̄0

+
|g02|2

2(λ2
0 − λ̄0)

+
g21

2
,

where
g20 = 〈q∗, B(q, q)〉 ,

g11 = 〈q∗, B(q, q̄)〉 ,

g02 = 〈q∗, B(q̄, q̄)〉 ,

g21 = 〈q∗, B (q̄, ω20)〉+ 2 〈q∗, B (q, ω11)〉+ 〈q∗, C(q, q, q̄)〉 ,

and
ω20 =

b0(q, q)

a(λ0)
p(λ2

0)− 〈q
∗, B(q, q)〉
λ2

0 − λ0

q − 〈q̄
∗, B(q, q)〉
λ2

0 − λ̄0

q̄,

ω11 =
b0(q, q̄)

a(1)
p(1)− 〈q

∗, B(q, q̄)〉
1− λ0

q − 〈q̄
∗, B(q, q̄)〉
1− λ̄0

q̄.
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From (28), (31) and Lemma 6, direct calculation produces

(36)



b0(q̄, p(ei2ω0)) = b̃,

b0(q, q) = b̃,

b0(q, q̄) = b̃,

c0(q, q, q̄) = c̃,

a(ei2ω0) = ei2(m+1)ω0 − dmei2mω0 − d0,

a(1) = 1− dm − d0,

b0(q, p(1)) = b̃.

By substituting (36) into (35) we deduce that

(37)
c1(τ0) = K

2

(
b̃2

a(ei2ω0 )
+ 2b̃2

a(1)
+ c̃
)

= 1
2(eimω0+md0e−iω0 )

(
b̃2

ei2(m+1)ω0−dmei2mω0−d0
+ 2b̃2

1−dm−d0 + c̃
)
,

where b̃, c̃ and K are defined in (29), (30) and (33), respectively.
From [34] we have the following lemma.

Lemma 7. Given the map (9) and assume

(i) λ(τ) = r(τ)eiω(τ), where r (τ ∗) = 1, r′ (τ ∗) 6= 0 and ω (τ ∗) = ω∗;

(ii) eikω∗ 6= 1 for k = 1, 2, 3, 4;

(iii)
Re[e−iω

∗
c1(τ ∗)]

= 1
2

(
Wb̃2 + cos(m+1)ω∗+md0

1+2md0 cos(m+1)ω∗+m2d20

(
2b̃2

1−dm−d0 + c̃
))
6= 0,

where

W =
A1 − A2 − A3

A4A5

,

and
A1 = cos(3m+ 3)ω∗,

A2 = dm (cos(3m+ 1)ω∗ +md0 cos 2mω∗) ,

A3 = d0 (cos(m+ 1)ω∗ −m cos 2(m+ 1)ω∗ +md0) ,

A4 = 1 + 2md0 cos(m+ 1)ω∗ +m2d2
0,

A5 = 1 + d2
m + d2

0 − 2dm cos 2ω∗ − 2d0 cos 2(m+ 1)ω∗ + 2d0dm cos 2mω∗,

b̃ and c̃ are defined in (29) and (30), respectively. Then an invariant closed curve, topologically

equivalent to a circle, for the map (9) exists for τ in a one side neighborhood of τ ∗. The radius of the

invariant curve grows like O
(√
|τ − τ ∗|

)
. One of the four cases holds:

(i) r′ (τ ∗) > 0, Re
[
e−iω

∗
c1 (τ ∗)

]
< 0. The origin is asymptotically stable for τ < τ ∗ and unstable for
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τ > τ ∗. An attracting invariant closed curve exists for τ > τ ∗;

(ii) r′ (τ ∗) > 0, Re
[
e−iω

∗
c1 (τ ∗)

]
> 0. The origin is asymptotically stable for τ < τ ∗ and unstable for

τ > τ ∗. A repelling invariant closed curve exists for τ < τ ∗;

(iii) r′ (τ ∗) < 0, Re
[
e−iω

∗
c1 (τ ∗)

]
< 0. The origin is asymptotically stable for τ > τ ∗ and unstable for

τ < τ ∗. An attracting invariant closed curve exists for τ < τ ∗;

(iv) r′ (τ ∗) < 0, Re
[
e−iω

∗
c1 (τ ∗)

]
> 0. The origin is asymptotically stable for τ > τ ∗ and unstable for

τ < τ ∗. A repelling invariant closed curve exists for τ > τ ∗.

Recall the discussion in Section 2 we know that r′ (τ ∗) > 0. Thus, we have the following
result from Lemma 7.

Theorem 2. If (21) holds, then u = u∗ is asymptotically stable for τ ∈ [0, τ0), and unstable for τ > τ0.

An attracting (repelling) invariant closed curve exists for τ > τ0 if Re[e−iω0c1(τ0)] < 0 (> 0).

4. Numerical experiments

In this section, the theoretical results in the previous sections are verified by some numerical
examples. Let a = 0.5, b = 1, n = 4 in (3) and the initial condition u(t) = 1.1 for −τ ≤ t ≤ 0,
then we compute that the equilibrium point is u∗ = 1 and Inequality (21) holds.

Firstly, in Table 1, we calculate the absolute error (AE) and relative error (RE) of (3) at t = 3

by explicit Euler method, implicit Euler method and NSFDM with τ = 0.1 and different h,
respectively. It is easy to see from this table that the NSFDM is superior to the explicit Euler
method and the implicit Euler method. In Fig. 1, we plot the graphs of the analytic solutions
and numerical solutions of (3) by the NSFDM, respectively. From this figure we can see that
the analytic solutions and numerical solutions show the same stability and oscillation for
every case. Thus, the NSFDM behaves a good preservation manner in stability and oscillation.
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Table 1. The errors of three kinds of numerical methods

Explicit Euler method Implicit Euler method NSFDM
AE RE AE RE AE RE

h=1/2 1.16E-03 1.09E-03 1.07E-03 1.01E-03 2.80E-04 2.64E-04
h=1/4 5.67E-04 5.34E-04 5.47E-04 5.16E-04 1.39E-04 1.31E-04
h=1/8 2.80E-04 2.64E-04 2.76E-04 2.61E-04 6.88E-05 6.48E-05
h=1/16 1.39E-04 1.31E-04 1.39E-04 1.31E-04 3.40E-05 3.21E-05
h=1/32 6.91E-05 6.52E-05 7.00E-05 6.60E-05 1.67E-05 1.57E-05
h=1/64 3.42E-05 3.23E-05 3.54E-05 3.34E-05 8.03E-06 7.57E-06
h=1/128 1.68E-05 1.58E-05 1.80E-05 1.70E-05 3.70E-06 3.49E-06

Next, we illustrate the influence of step size and time delay on the bifurcation value, stability
and direction of the Hopf bifurcation by data and figures. In Tables 2 and 3, we compute the
bifurcation points, the critical coefficient and the direction of bifurcation at equilibrium point
of numerical solutions of (3) with the NSFDM for some different step sizes. Furthermore, the
figures of numerical solutions and the related phase diagrams are displayed in Figs. 2-9. From
Theorem 1 and Table 2, we conclude that all these numerical solutions should be asymptotically
stable for τ ∈ [0, τ0), unstable for τ > τ0. This is just what we can see from Figs. 2, 4, 6, 8.
Specifically, in Fig. 2, let h = 1/2, τ = 1.7, 2.1972 and 4.5, respectively. It is easy to observe
that the change of numerical solutions from stable to unstable is consistent with Theorem 1.
We can verify the other three figures in the similar way. Moreover, in view of Theorem 2 and
Table 3, we also obtain that the equilibrium point u∗ = 1 is asymptotically stable for τ ∈ [0, τ0),
and unstable for τ > τ0 and (7) undergoes a Hopf bifurcation at u∗ = 1. At the same time, an
attracting invariant closed curve exists for τ > τ0 and Re[e−iω0c1(τ0)] < 0. This is just what we
can see from Figs. 3, 5, 7, 9. More specifically, in the first row of Fig. 3, set h = 1/2, τ = 1.7

and 4.5, respectively. We can easily see that u∗ = 1 is asymptotically stable for τ = 1.7 and
an attracting invariant closed curve exists for τ = 4.5. That is, the bifurcation occurs when
τ > τ0 = 2.1972 and bifurcating periodic solutions from the equilibrium point are orbitally
asymptotically stable, which is consistent with Theorem 2. We can test the other three figures
in a similar fashion.
Finally, from Figs. 3, 5, 7, 9 we also know that the NSFDM preserves the local stability of

equilibrium point and the stability of the bifurcating periodic solutions of (3).
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In a word, we can see intuitively that all the numerical phenomena are consistent with the
theoretical results.

Table 2. The bifurcation points for different step sizes

τ0 τ1 τ2 τ3 τ4

h=1/2 2.1972
h=1/4 1.5288 2.4905
h=1/8 1.3468 2.4508 14.1605 14.3958
h=1/16 1.2736 2.4342 10.2685 11.1239 23.6683

Table 3. The critical coefficient and directions of bifurcation for different step sizes

c1(τ0) Re[e−iω0c1(τ0)]

h=1/2 -0.469580-1.138641i -1.105322
h=1/4 -0.340576-0.656694i -0.519993
h=1/8 -0.186749-0.353175i -0.232634
h=1/16 -0.108159-0.176739i -0.119847
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Fig. 1. Analytic solutions (the blue dotted line) and numerical solutions (the
red solid line) of (3) with h=1/16.
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Fig. 2. Numerical solutions of (3) with h=1/2.
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Fig. 3. Phase diagram of (7) with h=1/2 (upper) and phase diagram of (3) (lower).
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Fig. 4. Numerical solutions of (3) with h=1/4.
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Fig. 6. Numerical solutions of (3) with h=1/8.
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Fig. 8. Numerical solutions of (3) with h=1/16.
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