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1. Introduction

The class of limited completely continuous operators was introduced and studied by M.
Salimi and S. M. Moshtaghioun in [6] and several interesting characterizations were given in
[ [7], [3]]. Also, the duality property for this class of operators is studied in [4].
Recall from [6] that an operator T from a Banach space X into another Banach space Y is said
to be Limited completely continuous (abb. lcc) if it carries limited subsets of X to relatively
compact subsets of Y . Note that every weakly compact operator is lcc (see Corollary 2.5 [6]),
however the converse is not true in general. Indeed, the identity operator of the Banach lattice
c0 is lcc but it is not weakly compact.
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In this paper, we will focus to give characterizations of Banach lattices under which the
converse of the previous fact stays true.

2. preliminaries

To state our results, we need to fix some notations and recall some definitions.

• A subset A of a Banach space X is called limited (resp., Dunford-Pettis (abb. DP)) if
every weak* null (resp., weak null) sequence (fn) inX ′ converges uniformly onA, that
is, supx∈A |fn(x)| −→ 0. We note that every relatively compact subset of X is limited
and clearly every limited set is DP, but the converse of these assertions, in general, are
false.
• A Banach space X is said to have the Gelfand-Phillips property (abb. GP) if every
limited subset of X is relatively compact.
• A subset A of the topological dual X ′ of a Banach space X is called L-limited if
every limited weakly null sequence (xn) of X converges uniformly in A, that is,
supf∈A |f(xn)| −→ 0. Note that every relatively weakly compact subset of a dual
Banach space X ′ is L-limited, but the converse is not true in general. In fact, the unit
ballB`1 of the Banach space `1 is an L-limited set but it is not relatively weakly compact.
• Recall from [7] that a Banach space X is said to have the L-limited property if every
L-limited set in X ′ is relatively weakly compact.
• A Banach space X has the Dunford-Pettis∗ property (abb. DP∗) if every relatively
weakly compact subset ofX is limited, equivalently fn(xn) −→ 0 for every weakly null
sequence (xn) of X and every weak∗ null sequence (fn) of X ′.
• Anormbounded subsetA of a Banach latticeE is called L-weakly compact if ‖yn‖ −→ 0

for every disjoint sequence (yn) contained in Sol(A) [ [5], Definition 3.6.1]. Every L-
weakly compact set is relatively weakly compact, but the converse does not holds in
general.
• We recall also from [5] that an operator T from a Banach lattice E into a Banach
space X is called M-weakly compact if for each disjoint sequence (xn) of BE , we have
‖T (xn)‖ −→ 0.

We denote by BX the closed unit ball of X . The positive cone of E will be denoted by E+. A
Banach lattice is a Banach space (E, ‖.‖) such that E is a vector lattice and its norm satisfies
the following property: for each x, y ∈ E such that |x| ≤ |y|, we have ‖x‖ ≤ ‖y‖. A Banach
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lattice E is order continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, (xα)
converges to 0 for the norm ‖ · ‖where the notation xα ↓ 0means that (xα) is decreasing, its
infimum exists and inf(xα) = 0. Also, the solid hull of a setA is the smallest solid set including
A and is exactly the set Sol(A) := {x ∈ E : ∃y ∈ Awith |x| ≤ |y|}.

We will use the term operator T : E −→ F between two Banach lattices to mean a bounded
linear mapping. It is positive if T (x) ≥ 0 in F whenever x ≥ 0 in E. The operator T is
regular if T = T1 − T2, where T1 and T2 are positive operators from E to F . Note that each
positive linear mapping on a Banach lattice is continuous. If an operator T : E −→ F between
two Banach lattices is positive, then its adjoint T ′ : F ′ −→ E ′ is likewise positive, where
T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′ and for each x ∈ E. For terminologies
concerning Banach lattice theory and positive operators we refer the reader to the book of
Aliprantis-Burkinshaw [1].

3. Main result

Proposition 3.1. LetX be a Banach space, for a norm bounded subsetA ofX ′ the following statements

are equivalent:

(1) A is L-limited.

(2) For each sequence (fn) of A, we have fn(xn) −→ 0 for every sequence (xn) of X which is

weakly null and limited.

Proof. (1)⇒ (2) Let (fn) be a sequence of A and let (xn) be a limited weakly null sequence of
X . Since A is a limited set of X ′, then supf∈A |f(xn)| −→ 0, and by the inequality |fn(xn)| ≤
supf∈A |f(xn)| the proof is done.
(2) ⇒ (1) Assume by way of contradiction that A is not an L-limited set of X . Then, there
exists a limited weakly null sequence (xn) ofX such that supf∈A |f(xn)| > ε for some ε > 0 and
for all n ∈ N. Hence, for every n ∈ N there exists some fn in A such that |fn(xn)| ≥ ε, which is
impossible. Therefore, A is an L-limited set of X ′. �

As an immediate consequence, we obtain the following characterization of L-limited sets.

Corollary 3.2. Let X be a Banach space, for a norm bounded sequence (fn) of X ′ the following

statements are equivalent:

(1) The subset {fn;n ∈ N} is an L-limited set.

(2) fn(xn) −→ 0 for every limited weakly null sequence (xn) of X .
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Now, we are in position to give our first major result.

Theorem 3.3. For a Banach lattice E with the DP∗ property, the following statements are equivalent:

(1) Each lcc operator from E into an arbitrary Banach space X is weakly compact.

(2) E ′ is order continuous.
(3) Each L-limited set in E ′ is L-weakly compact.

(4) E has the L-limited property.

Proof. (1) ⇒ (2) Let T be an operator from E to the Banach lattice `1. Since `1 has the GP-
property, then it follows fromTheorem 2.2 [6] that T is an lcc operator, and so by our hypothesis
T is weakly compact. By part (2) of Theorem 5.29 [1] the Banach latticeE ′ is order continuous.
(2)⇒ (3) Let A be an L-limited subset of E ′; for each x ∈ E we consider

ρA(x) = sup{|f |(|x|) : f ∈ E ′} = sup{f(y) : f ∈ E ′; |y| ≤ |x|}.

Since A is norm bounded then ρA(x) ∈ R, and it is clear that ρA is a semi-norm of the Banach
lattice E. On the other hand, let xn be a disjoint sequence of BE and let ε > 0, then for all
n we can choose some fn ∈ A and |yn| ≤ |xn| with ρA(xn) < ε + fn(yn). Since E ′ is order
continuous and (yn) is a norm bounded disjoint sequence ( because |yn| ≤ |xn| and (xn) is a
disjoint sequence of E), it follows from Theorem 2.4.14 [5] and the DP∗ property of E that the
sequence (xn) is limited and weakly convergent to 0. Moreover, since A is an L-limited subset
of E ′, then fn(yn) −→ 0, and hence lim sup ρA(xn) < ε for each ε > 0. So, lim ρA(xn) −→ 0, and
it follows from Proposition 3.6.3 [5] that A is L-weakly compact.
(3)⇒ (4) Follows from Proposition 3.6.5 [5].
(4)⇒ (1) Let T : E −→ X be a lcc operator, then it is clear that T ′(BX′) is an L-limited subset
of E. So, by our hypothesis T ′(BX′) is relatively weakly compact, and hence T ′ is weakly
compact. Finally, from the Gantmacher theorem we conclude that T is weakly compact. �

In the following theorem, we characterize Banach lattices under which each lcc operator is
M-weakly compact.

Theorem 3.4. Let E and F be two Banach lattices such that E has the DP∗ property. Then, the

following assertions are equivalent:

(1) Each lcc operator T : E −→ F is M-weakly compact.

(2) One of the following statements is holds:

(a) E ′ is order continuous;
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(b) F = {0}.

Proof. (1) ⇒ (2) Assume that the assertion (2) is false which means that E is not order
continuous and F 6= {0}. By evoking Theorem 2.4.14 [5] and Proposition 2.3.11 [5] it follows
that E contains a closed sublattice isomorphic to `1, and hence there exists a projection
P : E −→ `1. On the other hand, since F 6= {0} there exists a non-null element y ∈ F . Now,
we consider the operator S : `1 −→ F defined by:

S((λn)) =

(
+∞∑
n=1

λn

)
y for each (λn) ∈ `1.

It is clear that S is well defined. Also S is lcc (because `1 has the GP-property), hence the
operator T = S ◦ P : E −→ `1 −→ F is lcc but it is not M-weakly compact. Indeed, if we
design by (en) the canonical basis of `1 ⊂ E, the sequence (en) is disjoint and bounded in E,
moreover we have T (en) = y for each n ≥ 1; therefore the sequence (T (en)) is not converging
to zero, and hence the operator T is not M-weakly compact.
(2; a) ⇒ (1) Let T : E −→ F be an lcc−operator and let (xn) be a norm bounded disjoint
sequence of E. Since E ′ is order continuous and E has DP∗ property, it follows from Corollary
2.9 [2] that (xn) is limited and weakly null in E. As T is lcc, we have ‖T (xn)‖ −→ 0, and hence
the operator T is M-weakly compact.
(2; b)⇒ (1) In this case we have T = 0, and hence the operator T is M-weakly compact. �

As a consequence of the above theorem, we have the following characterization.

Corollary 3.5. Let E be a Banach lattice with the DP∗ property and F be a non trivial Banach lattice,

then the following assertions are equivalent:

(1) Each lcc operator T : E −→ F is M-weakly compact.

(2) E ′ is order continuous.

The following result present our second major result.

Theorem 3.6. Let E and F be two Banach lattices such that E has the DP∗ property, then the following

assertions are equivalent:

(1) Each lcc operator T : E −→ F is weakly compact.

(2) One of the following statements is holds:

(a) E ′ is order continuous;
(b) F is reflexive.
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Proof. (1)⇒ (2)Assume thatE ′ is not order continuous, by Theorem 2.4.14 [5] and Proposition
2.3.11 [5] it follows that E contains a closed sublattice isomorphic to `1, and hence there exists
a projection P : E −→ `1. To finish the proof, we have to show that F is reflexive. By the
Eberlein-Smulian’s Theorem, it suffices to show that every sequence (xn) in the closed unit
ball of F had a subsequence which converges weakly to an element of F .
We consider the operator S : `1 −→ F defined by

S((λi)) =
+∞∑
i=1

λixi for each (λi) ∈ `1,

the composed operator T = S ◦ P : E −→ `1 −→ F is lcc, and hence by our hypothesis T is
weakly compact. If we note by (en) the sequence with all term zero and the n’th equals 1, then
the sequence (xn) = T (en) has a subsequence which converges weakly in F . This ends the
proof.
(2; a) ⇒ (1) Let T : E −→ F be an lcc operator. Since E ′ is order continuous and E has the
GP-property, it follows from the Theorem 3.4 that T is M-weakly compact, and so T is weakly
compact.
(2; b)⇒ (1) In this case, each operator from E into F is weakly compact. �

As a consequence of the above theorem, we have the following characterization.

Corollary 3.7. Let E be a Banach lattice such that E has the DP∗ property and let F be a non reflexive

Banach lattice; then the following assertions are equivalent:

(1) Each lcc operator T : E −→ F is weakly compact.

(2) E ′ is order continuous.

An other consequence is given by:

Corollary 3.8. Let T be an operator from a Banach lattice E into a Banach lattice F such that E has

the DP∗ property and E ′ is order continuous; then the following assertion are equivalent:

(1) T is lcc.

(2) T is M-weakly compact.

(3) T is weakly compact.

Proof. (1)⇒ (2) Follows from the Theorem 3.4.
(2)⇒ (3) Obvious.
(3)⇒ (1) Follows from Corollary 2.5 [6]. �
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