ESTIMATE OF SECOND HANKEL DETERMINANT FOR A SUBCLASS OF ANALYTIC FUNCTIONS WITH RESPECT TO SYMMETRIC POINTS

GAGANDEEP SINGH1 and GURCHARANJIT SINGH2

1Department of Mathematics, M. S. K. Girls College, Bharowal(Tarn-Taran), Punjab(India)
2Department of Mathematics, Guru Nanak Dev University College, Chungh(Tarn-Taran), Punjab(India)

*Corresponding author

ABSTRACT. In the present investigation an upper bound of second Hankel determinant $|a_2a_4 - a_3^2|$ for the functions belonging to the class $M_s(\alpha; A, B)$ is studied. The results due to various authors follow as special cases.

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, Subordination, Schwarz function, Second Hankel determinant.

1. Introduction

By A, we denote the class of functions of the form

\begin{equation}
 f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\end{equation}

analytic in the unit disc $E = \{z : |z| < 1\}$.

Let U is the class of bounded analytic functions $w(z)$ in the unit disc E and of the form

\[w(z) = \sum_{n=1}^{\infty} d_n z^n, \quad z \in E, \]

which satisfy the conditions $w(0) = 0$, $|w(z)| < 1$.

Let $f(z)$ and $F(z)$ be two analytic functions in the unit disc E, then $f(z)$ is said to be subordinate to $F(z)$ if there exists a function $w(z) \in U$ such that $f(z) = F(w(z))$ and we write as $f(z) \prec F(z)$.
\(M_s(\alpha; A, B) \) represents the class of functions \(f(z) \) in \(A \) which satisfy the condition

\[
(1.2) \quad \frac{2zf'(z) + 2\alpha z^2 f''(z)}{(1 - \alpha)(f(z) - f(-z)) + \alpha(zf(z) - f(-z))} < \frac{1 + Az}{1 + Bz}, \quad -1 \leq B < A \leq 1, \ z \in E.
\]

The following observations are obvious:

(i) \(M_s(\alpha; 1, -1) \equiv M_s(\alpha) \), the class introduced by Selvaraj and Vasanthi [12].

(ii) \(M_s(0; 1, -1) \equiv S_s^* \), the class of starlike functions with respect to symmetric points introduced by Sakaguchi [11].

(iii) \(M_s(1; 1, -1) \equiv K_s \), the class of convex functions with respect to symmetric points introduced by Das and Singh [1].

(iv) \(M_s(0; A, B) \equiv S_s^*(A, B) \), the subclass of starlike functions with respect to symmetric points introduced and studied by Goel and Mehrok [2].

(v) \(M_s(1; A, B) \equiv K_s(A, B) \), the subclass of convex functions with respect to symmetric points.

In 1976, Noonan and Thomas [9] stated the \(q \)th Hankel determinant of \(f(z) \) for \(q \geq 1 \) and \(n \geq 1 \) as

\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \ldots & a_{n+q-1} \\
 a_{n+1} & \ldots & \ldots & \ldots \\
 \ldots & \ldots & \ldots & \ldots \\
 a_{n+q-1} & \ldots & \ldots & a_{n+2q-2}
\end{vmatrix}.
\]

For our discussion in this paper, we consider the Hankel determinant in the case of \(q = 2 \) and \(n = 2 \), known as second Hankel determinant \(H_2(2) \) and obtain an upper bound to the functional \(H_2(2) \) for \(f(z) \in M_s(\alpha; A, B) \).

Easily, one can observe that the Fekete-Szegö functional is \(H_2(1) \). Earlier Janteng et al. [3, 4, 5], Mehrok and Singh [8], Singh [13, 14] obtained sharp upper bounds of \(H_2(2) \) for different classes of analytic functions.

2. Main Results

Let \(P \) be the family of all functions \(p \) analytic in \(E \) for which \(Re(p(z)) > 0 \) and

\[
p(z) = 1 + p_1z + p_2z^2 + \ldots
\]
for $z \in E$.

Lemma 2.1. If $p \in P$, then $|p_k| \leq 2(k = 1, 2, 3, \ldots)$.

This result is due to Pommerenke [10].

Lemma 2.2. If $p \in P$, then

$$2p_2 = p_1^2 + (4 - p_1^2)x,$$

$$4p_3 = p_1^3 + 2p_1(4 - p_1^2)x - p_1(4 - p_1^2)x^2 + 2(4 - p_1^2)(1 - |x|^2)z,$$

for some x and z satisfying $|x| \leq 1, |z| \leq 1$ and $p_1 \in [0, 2]$.

This result was proved by Libera and Zlotkiewicz [6, 7]

Theorem 2.1. If $f \in M_s(\alpha; A, B)$, then

(2.2) \[|a_2a_4 - a_3^2| \leq \frac{(A - B)^2}{4(1 + 2\alpha)^2}. \]

Proof. As $f \in M_s(\alpha; A, B)$, so there exists a Schwarz function $w(z) \in U$ such that

(2.3) \[\frac{2zf'(z) + 2\alpha z^2f''(z)}{(1 - \alpha)(f(z) - f(-z)) + \alpha z(f(z) - f(-z))'} = \phi(w(z)) \]

where

(2.4) \[\phi(z) = \frac{1 + Az}{1 + Bz} = 1 + (A - B)z - B(A - B)z^2 + B^2(A - B)z^3 + \ldots = 1 + B_1z + B_2z^2 + B_3z^3 + \ldots \]

Define the function $p_1(z)$ by

(2.5) \[p_1(z) = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1z + c_2z^2 + c_3z^3 + \ldots \]

Since $w(z)$ is a Schwarz function, we see that $Re(p_1(z)) > 0$ and $p_1(0) = 1$. Define the function $h(z)$ by

(2.6) \[h(z) = \frac{2zf'(z) + 2\alpha z^2f''(z)}{(1 - \alpha)(f(z) - f(-z)) + \alpha z(f(z) - f(-z))'} = 1 + b_1z + b_2z^2 + b_3z^3 + \ldots \]
In view of the equations (2.3), (2.5) and (2.6), we have

\[h(z) = \phi \left(\frac{p_1(z) - 1}{p_1(z) + 1} \right) = \phi \left(\frac{c_1 z + c_2 z^2 + c_3 z^3 + \ldots}{2 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots} \right) = \phi \left(\frac{1}{2} c_1 z + \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} \right) z^2 + \frac{1}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) z^3 \ldots \right) = 1 + \frac{B_1 c_1}{2} z + \left[\frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4} \right] z^2 + \left[\frac{B_1}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) + \frac{B_2 c_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_3 c_1^3}{8} \right] z^3 + \ldots \]

Thus

(2.7)

\[b_1 = \frac{B_1 c_1}{2} ; b_2 = \frac{B_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_2 c_1^2}{4} ; b_3 = \frac{B_1}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) + \frac{B_2 c_1}{2} \left(c_2 - \frac{c_1^2}{2} \right) + \frac{B_3 c_1^3}{8} . \]

Using (2.4) and (2.6) in (2.7), we obtain

(2.8)

\[a_2 = \frac{(A - B) c_1}{4(1 + \alpha)} , \]

(2.9)

\[a_3 = \frac{(A - B)}{8(1 + 2 \alpha)} [2c_2 - (B + 1)c_1^2] \]

and

(2.10)

\[a_4 = \frac{(A - B)}{64(1 + 3 \alpha)} [8c_3 + 2(A - 5B - 4)c_1 c_2 + (B + 1)(3B - A + 2)c_1^3] . \]

Using (2.8), (2.9) and (2.10), it yields

(2.11)

\[a_2 a_4 - a_3^2 = \frac{(A - B)^2}{C(\alpha)} [2Lc_1(4c_3) + Mc_1^2(2c_2) - Nc_1^4 - 4R(4c_2^2)] \]

where \(C(\alpha) = 256(1 + 3 \alpha)(1 + \alpha)(1 + 2 \alpha)^2 \),
\(L = (1 + 2 \alpha)^2 \),
\(M = (1 + 2 \alpha)^2 A + [8(1 + 3 \alpha)(1 + \alpha) - 5(1 + 2 \alpha)^2]B + [8(1 + 3 \alpha)(1 + \alpha) - 4(1 + 2 \alpha)^2] \),
\(N = (B + 1)(1 + 2 \alpha)^2 A + [4(1 + 3 \alpha)(1 + \alpha) - 3(1 + 2 \alpha)^2]B + [4(1 + 3 \alpha)(1 + \alpha) - 2(1 + 2 \alpha)^2] \)

and
\(R = (1 + 3 \alpha)(1 + \alpha) \).
Using Lemma 2.1 and Lemma 2.2 in (2.11), we obtain

\[|a_2a_4 - a_3^2| = \frac{(A - B)^2}{C(\alpha)} \left| -[(1 + 2\alpha)^2AB + [4(1 + \alpha)(1 + 3\alpha) - 3(1 + 2\alpha)^2]B^2]c_1^4 \\
+[(1 + 2\alpha)^2A + [8(1 + \alpha)(1 + 3\alpha) - 5(1 + 2\alpha)^2]B]c_1^2(4 - c_1^2)x \\
-2[8(1 + \alpha)(1 + 3\alpha) - 2(1 + \alpha)(1 + 3\alpha) - (1 + 2\alpha)^2]c_1^2(4 - c_1^2)x^2 \\
+4(1 + \alpha)(1 + 3\alpha)c_1(4 - c_1^2)(1 - |x|^2)z \right| \]

Assume that \(c_1 = c \) and \(c \in [0, 2] \), using triangular inequality and \(|z| \leq 1\), we have

\[|a_2a_4 - a_3^2| \leq \frac{(A - B)^2}{C(\alpha)} \left[[2(4 - c^2)(8(1 + \alpha)(1 + 3\alpha) - (2(1 + \alpha)(1 + 3\alpha) - (1 + 2\alpha)^2)c^2) \\
-4(1 + \alpha)(1 + 3\alpha)c(4 - c^2)]\delta^2 \\
+[(1 + 2\alpha)^2A + [8(1 + \alpha)(1 + 3\alpha) - 5(1 + 2\alpha)^2]B](4 - c^2)c^2\delta \\
+[(1 + 2\alpha)^2AB + [4(1 + \alpha)(1 + 3\alpha) - 3(1 + 2\alpha)^2]B^2]c^4 \\
+4(1 + \alpha)(1 + 3\alpha)c(4 - c^2) \right] \]

Therefore

\[|a_2a_4 - a_3^2| \leq \frac{(A - B)^2}{C(\alpha)} F(\delta), \]

where \(\delta = |x| \leq 1 \) and

\[F(\delta) = [2(4 - c^2)(8(1 + \alpha)(1 + 3\alpha) - (2(1 + \alpha)(1 + 3\alpha) - (1 + 2\alpha)^2)c^2) \\
-4(1 + \alpha)(1 + 3\alpha)c(4 - c^2)]\delta^2 \\
+[(1 + 2\alpha)^2A + [8(1 + \alpha)(1 + 3\alpha) - 5(1 + 2\alpha)^2]B](4 - c^2)c^2\delta \\
+[(1 + 2\alpha)^2AB + [4(1 + \alpha)(1 + 3\alpha) - 3(1 + 2\alpha)^2]B^2]c^4 \\
+4(1 + \alpha)(1 + 3\alpha)c(4 - c^2) \]

is an increasing function.

Therefore \(\text{Max} F(\delta) = F(1) \).

Consequently

\[(2.12) \quad |a_2a_4 - a_3^2| \leq \frac{(A - B)^2}{C(\alpha)} G(c), \]

where \(G(c) = F(1) \).

So

\[G(c) = S(\alpha)c^4 + T(\alpha)c^2 + 64(1 + 3\alpha)(1 + \alpha) \]
where
\[S(\alpha) = \begin{bmatrix} (1 + 2\alpha)^2AB + [4(1 + \alpha)(1 + 3\alpha) - 3(1 + 2\alpha)^2]B^2 \end{bmatrix} \]
and
\[T(\alpha) = \begin{bmatrix} 4(1 + 2\alpha)^2A + [8(1 + \alpha)(1 + 3\alpha) - 5(1 + 2\alpha)^2]B \end{bmatrix} \]

Now
\[G'(c) = 4S(\alpha)c^3 + 2T(\alpha)c \]
and
\[G''(c) = 12S(\alpha)c^2 + 2T(\alpha). \]

\[G'(c) = 0 \implies c[2S(\alpha)c^2 + T(\alpha)] = 0. \]

\[G''(c) \text{ is negative at } c = 0. \]

So \(\text{Max}G(c) = G(1) \).

Hence from (2.12), we obtain (2.2).

The result is sharp for \(c_1 = 0, c_2 = 2 \) and \(c_3 = 0. \)

For \(A = 1, B = -1 \), Theorem 2.1 gives the following result due to Singh [13].

Corollary 2.1. If \(f(z) \in M_s(\alpha) \), then
\[|a_2a_4 - a_3^2| \leq \frac{1}{(1 + 2\alpha)^2}. \]

For \(\alpha = 0, A = 1, B = -1 \), Theorem 2.1 gives the following result due to Janteng et al. [5].

Corollary 2.2. If \(f(z) \in S^*_s \), then
\[|a_2a_4 - a_3^2| \leq 1. \]

For \(\alpha = 1, A = 1, B = -1 \), Theorem 2.1 gives the following result due to Janteng et al. [5].

Corollary 2.3. If \(f(z) \in K_s \), then
\[|a_2a_4 - a_3^2| \leq \frac{1}{9}. \]
For $\alpha = 0$, Theorem 2.1 gives the following result.

Corollary 2.4. If $f(z) \in S^*_s(A, B)$, then

$$\left|a_2a_4 - a_3^2\right| \leq \frac{(A - B)^2}{4}.$$

For $\alpha = 1$, Theorem 2.1 gives the following result.

Corollary 2.5. If $f(z) \in K_s(A, B)$, then

$$\left|a_2a_4 - a_3^2\right| \leq \frac{(A - B)^2}{36}.$$

References

