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Abstract. A variety of advanced iterative techniques involving derivative evaluations have been explored
in literature to compute simple zeros. However, methodologies that achieve higher order accuracy without
relying on derivatives are scarce in the existing literature. Recognizing this gap, we develop a novel family
of three step Ostrwoski’s type derivative-free method. The order of convergence of the proposed family is
eight, according to the convergence analysis performed using computational algebra system CAS Maple-
18. Notably, this method demand only four function evaluations per iteration, thereby demonstrating
optimality as per to the Kung-Traub conjecture. To compare and examine the performance of the proposed
and already well-known iterative schemes, some real world problems are considered, such as parachute
problem, continuous stirred tank reactor (CSTR), van der waals equation, and probability of a shutout in a
racquetball. Additionally, we employ a dynamical tool, i.e., stereographic projections, to investigate the
regions and stability of the proposed schemes. Both practical and theoretical analysis shows that newly
developed scheme is an alternate to the existing schemes in their respective domain.
2020 Mathematics Subject Classification: 65H04, 65H05, 65D05, 49M15.
Key words and phrases: nonlinear equations; simple roots; Ostrowski method; derivative-free methods;
order of convergence; Stereographic.

1. Introduction

Solving nonlinear equations is a significant challenge across various scientific and technological
domains [5,20,22]. Exact solutions for these equations are often hard to find, so we turn to iterative
schemes to find close approximations. In the realm of research, numerous iterative techniques have
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been devised to approximate roots of nonlinear equations of the form:

G(t) = 0. (1)

Therefore, in order to achieve the convergence and enhance the efficiency index of their proposed
new or modified schemes, researchers have focused on solving these nonlinear equations employing
modern, diverse strategies or modifying existing ones. A lot of research effort has been focused on
improving the speed of the convergence of existing algorithms to the desired solutions. Among the early
numerical methods proposed and studied in the literature are Newton method, Secant method, and
their modifications which are very attractive because of their quick convergence. The most well-known
method is unquestionably Newton’s method with quadratic convergence [28].

tk+1 = tk −
G(tk)

G′(tk)
, k = 0, 1, 2, · · · ,

where tk is the current approximation and G′(tk) represents the derivative of the function at tk. Here,
t0 serves as the initial guess for the root α. A root α is deemed simple if G(α) = 0 but G′(α) 6= 0.
It requires two evaluations per iteration, namely G and G′, to achieve second order of convergence.
However, there are some challenges associated with applying Newton’s method. One major difficulty
is the need to compute the first-order derivative at each step. In many practical situations, calculating
these derivatives is either costly or very time-consuming. To address this issue, Traub–Steffensen
method (see [28], which is expressed as:

tk+1 = tk −
G(tk)

G[tk, wk]
, (2)

where wk = tk+βG(tk), β 6= 0 is any real constant andG[tk, wk] =
G(wk)−G(tk)

wk−tk is the first order divided
difference, is a noticeable improvement ofNewton’smethod, because itmaintains quadratic convergence
without using any derivative. For β = 1, this method reduces to the well-known Steffensen’s method
[26].

Indeed, many researchers have presented fourth-order methods for solving nonlinear equations,
see [6,14, 19, 24, 29]. Similarly, optimal higher order convergence has been introduced by many authors
also, for instance [1, 2, 7, 30].

Derivative-free methods have gained a great deal of attention in past years. These methods are
useful when the derivative of function F is difficult to evaluate, expensive to compute, or does not
exist. Some researchers have proposed derivative free techniques for simple roots of the nonlinear
equations [4, 8, 9, 16, 31]. Our prime motive is to develop an efficient and optimal three-step derivative-
free eighth-order convergent method for solving nonlinear equations by using newtonian interpolation
[21].

Over time, various adaptations of numerical techniques have emerged, contributing to the develop-
ment of innovative variety in the literature. Building upon previous findings, particularly inspired by
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the works mentioned above, our interest was sparked in developing a derivative-free Ostrowski-type
iterative scheme with optimal eighth-order convergence. The eighth-order method (AMK − 1) intro-
duced in this paper is derivative-free and requires only four evaluations of the function per iteration.
We have achieved the optimal order of convergence, supporting the Kung-Traub conjecture. Traub [27]
stated that multipoint iteration methods, with ℘ evaluations of the function, could achieve optimal
convergence order 2℘−1.

We chose wide variety of real-life applications to examine precision and reliability of the suggested
method.e-g Parachute problem [15,17, 18], continuous stirred tank reactor [3], van der waals equation,
Probability of a Shutout in Racquetball [13]. Numerical experiments show that ourmethod outperforms
the existing ones of the same class. As a consequence, we have found that the new eighth order
derivative-free method is consistent and well constructed, and its dynamical study extends significantly
into theoretical aspects.

The paper is organized as follows. Section 2 deals with the development of the derivative-free
approximation technique and convergence analysis. Numerical illustrations of derivative-free methods
are given in Section 3. Section 4 is devoted to the stereographic projections. Finally, concluding remarks
are given in Section 5.

2. Construction of Suggested Higher Order Scheme

In this section, we develop our optimal eighth-order derivative-free scheme for solving nonlinear
equation (1). Sharma et al. [23] derived a three-point Ostrowski’s type iterative method and has a
convergence order eight which is expressed as:

yk = tk −
G(t

k
)

G′(tk)
,

sk = tk −
G(yk)−G(tk)

G′(tk)G(yk)−G[yk, tk]G(tk)
G(tk),

tk+1 = t℘ −
(G(sk)−G(yk))(G(yk)−G(tk))(G(tk)−G(sk))

p+ q + r
G(tk). (3)

Here,

p = G(sk)G(tk)(G(sk)−G(tk))G[yk, tk],

q = G(tk)G(yk)(G(tk)−G(yk))G[sk, tk],

r = G(yk)G(sk)(G(yk)−G(sk))G′(tk).

Our main goal is to develop a derivative-free eighth order iterative scheme. This modification offers the
advantage of reducing the computational cost associated with derivatives at each step of the method.
For developing a newly derivative-free scheme, we used interpolating polynomials of the 2nd and 3rd
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degree. Thus, the derivatives of the second and third steps of (3) are replaced by:

G′(tk) ≈ G[tk, wk] +G[tk, wk, yk](tk − wk),

G′(tk) ≈ G[tk, wk] +G[tk, wk, yk](tk − wk)

+G[tk, wk, yk, sk](tk − wk)(tk − yk). (4)

By employing the above approximation, we get the eighth-order derivative-free iterative scheme with
four function evaluations per iterative cycle and is given by:

yk = tk −
G(tk)

G[tk, wk]
, wk = tk + γG(tk)

3,

sk = tk −
G(yk)−G(tk)

(G[tk, wk] +G[tk, wk, yk](tk − wk))G(yk)−G[yk, tk]G(tk)
G(tk),

tk+1 = tk −
(G(sk)−G(yk))(G(yk)−G(tk))(G(tk)−G(sk))

p+ q + r
G(tk), (5)

where

p = G(sk)G(tk)(G(sk)−G(tk))G[yk, tk],

q = G(tk)G(yk)(G(tk)−G(yk))G[sk, tk],

r = G(yk)G(sk)(G(yk)−G(sk))(G[tk, wk] +G[tk, wk, yk](tk − wk)

+G[tk, wk, yk, sk](tk − wk)(tk − yk)).

The method (5) is our new derivative-free method, denoted by AMK-1. The following theorem
demonstrates the eighth-order of convergence of the developed scheme (5).

Theorem 1 Suppose $ be a root of a real-valued differentiable function G : I ⊆ C −→ C within
an open interval I , where $ is a simple root in I and k0 is an initial approximation close to $ for
guaranteed convergence, In this scenario, the scheme defined in (3) demonstrates the convergence
order eight, and it possesses by the following error equation:

ek+1 = C2
2 (−C3C4 − 5C3

2C3 + 3C2C
2
3 + C4C

2
2 + 2C5

2 )e
8
k +O(e9k).

Here, t = $ with Ck = G(℘)($)
℘! , C1 = 1, and k = 1, 2, 3, · · · .

Proof. Assume that ek represent the error of the ktG step, defined as:

ek = tk −$. (6)

Expanding the function G(tk) about $ using Taylor series and considering G($) = 0,we obtain:

G(tk) = C1ek + C2
2ek + C3

3ek + C4
4ek + C5

5ek + C6
6ek + C7

7ek + C8
8ek + · · · . (7)

Additionally, we introduced a new variable wk which combines t℘ and G(t℘) as follows:

wk = tk + γG(tk)
3 = $ + ek + γe3k + 3γC2e

4
k + 3γ(C2

2 + C3)e
5
k + · · · . (8)
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After expanding G(wk) about $ we get:

G(wk) = e
k
+ C2e

2
k
+ (γ + C3)e

3
k
+ (5γC2 + C4)e

4
k
+ · · · . (9)

Thus, using (7)-(9) to calculate the tk and wk. Subsequently, we employed the divided difference (4)
instead of derivative in the first step of iterative scheme (5), to develop a derivative-free approach.

G[tk, wk] = (G(tk)−G(wk))/(tk − wk),= 1 + 2C2ek + 3C3e
2

k
+ · · · . (10)

Now, replacing equations (7) and (10) in the first step of three-step scheme (5), the following term is
obtained:

yk −$ = C2e
2
k + (2C3 − 2C2

2 )e
3
k + (3C4 − 7C2C3 + 4C3

2 + γC2)e
4
k + · · · . (11)

By expanding Taylor series, we find G(yk) about $,which can be expressed as:

G(yk) = C2e
2
k
+ (−2C2

2 + 2C3)e
3
k
+ (−7C3C2 + 5C3

2 + 3C4 + γC2)e
4
k
+ · · · . (12)

Also, by utilizing equations. (7), (11) and (12) we get the divided difference of G[t℘, y℘], as follows:

G[tk, yk] = 1 + C2ek + (C2
2 + C3)e

2
k + (−2C3

2 + C4 + 3C3C2)e
3
k + · · · , (13)

Combining equations. (7)-(12), we get G′(tk)which is the derivative approximation of the second step
iterative method (3), as shown below:

G′(tk) = G[tk, wk] +G[tk, wk, yk](tk − wk),= 1 + 2C2ek + 3C3e
2
k + 4C4e

3
k
+ · · · . (14)

So, convergence order four is obtained by using equations (7) and (11)-(14) in second step of iterative
method (5).

s℘ −$ = (C3
2 − C2

3C2)e
4
k
+ (−2C2

3 − 2C4C2 + 8C3C
2
2 − 4C4

2 )e
5
k
+ · · · . (15)

Expanding G(sk) about $ yields:

G(sk) = C2(C
2
2 − C3)e

4
k
+ (−4C4

2 − 2C2
3 − 2C4C2 + 8C3C

2
2 )e

5
k
+ · · · . (16)

Utilizing equations. (7), (15) and (16), we calculated the divided difference of tk and sk given as:

G[tk, sk] = 1 + C2ek + C3e
2
k
+ C4e

3
k
+ (C5 + C4

2 − C3C
2
2 )e

4
k
+ · · · .

By using equations (7)- (16), we get the Newton’s interpolation for the derivative-free third step
iterative scheme (5), as shown below:

G′(tk) = G[tk, wk
] +G[tk, wk, yk](tk − wk

) +G[tk, wk
, yk, sk](tk − wk

)(tk − yk),

= 1 + 2C2ek + · · · . (17)
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Through equations (7), (11) and (13)-(17), we obtain the values of p, q and r for substitution in the
third step iterative scheme (5).

p = G(sk)F (tk)(G(sk)−G(tk))G[yk , tk] = −C2(C
2
2 − C3)e

6
k
++ · · · ,

q = G(tk)F (yk)(G(tk)−G(yk))G[sk, tk] = C2e
4
k
+ 2C3e

5
k
+ · · · ,

r = G(yk)F (sk)(G(yk)−G(sk))G[tk, wk
] +G[tk, wk, yk](tk − wk

) (18)

+G[tk, wk
, yk, sk](tk − wk

)(tk − yk))

= C3
2 (C

2
2 − C3)e

8
k + · · · .

By substituting equation (18), into the third step of iterative scheme (5), we achieve eighth-order
convergence given as:

ek+1 = C2
2 (−C3C4 − 5C3

2C3 + 3C2C
2
3 + C4C

2
2 + 2C5

2 )e
8
k +O(e9k). (19)

�

3. Remark

Let us remark that, the above expression of equation (19) assures two things about scheme. Firstly,
(AMK-1) (5) has convergence order eight and secondly it is optimal by the conjecture of Kung-Traub,
as it requires four evaluations of function.

4. Computational Results

Here, we assess the efficiency of our developed scheme in comparison to already known eighth-
order derivative-free schemes. To achieve this goal, we apply our schemes on different nonlinear test
functions. Furthermore, we examine a selection of some real-world applications. The computational
order of convergence (COC) is expressed as:

COC =
log(t

k
− t

k−1
)/(t

k−1
− t

k−2
)

log(t
k−1
− t

k−2
)/(t

k−2
− tk−3)

.

We use a computer programming system i.e., Maple 18 for numerical computation. To check the
accuracy, we calculate the absolute error between tk+1 and tk for three consecutive iterations, each with
3000 digits of mantissa. Our aim is to examine the efficiency and effectiveness of newly developed
scheme with the already known derivative-free schemes. The following three step eighth order existing
schemes are chosen for comparison.
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Modified King’s methodMK8a by Obadah et al. [25]:

yk = tk −
G(tk)

G[tk, wk]
, wk = tk +G(tk),

z
k

= y
k
− G(y

k
)

G(tk)

G(tk) + βG(y
k
)

G(tk) + (β − 2)G(y
k
)
,

t
k+1 = tk −

G(tk)(m1 +m2 +m3)

m1G[wk, tk] +m2G[yk, tk] +m3G[zk, tk]
,

m1 = G(yk)G(zk)(zk − yk), (20)

m2 = G(wk)G(zk)(wk − zk),

m3 = G(wk)G(yk)(yk − wk).

Derivative for 2nd and 3rd step of (20) is approximated as follows:

G′ (tk) = G[tk, wk
],

G′ (tk) = G[tk, wk
] + 2 (w

k
− tk)G[tk, wk

, y
k
]−G[y

k
, w

k
] +G[tk, yk ],

G[tk, yk ] =
G(tk)−G(yk)

tk − yk
, G[w

k
, tk, yk ] =

G[w
k
, tk]−G[tk, yk ]
w

k
− y

k

.

Modified King’s methodMK8b by Obadah et al. [25]:

y
k

= tk −
G(tk)

G[tk, wk
]
, w

k
= tk +G(tk),

zk = yk −
G(yk)

G(tk)

G(tk) + βG(yk)

F (tk) + (β − 2)G(yk)
, (21)

tk+1 = z℘ −
G(zk)

C2 − C1C4
,

where,

c1 = G(zk),

c2 = G[yk, zk]− C3(yk − zk) + C4G(yk),

c3 = G[yk, zk, wk] + c4G[yk, wk],

c4 =
G[yk, zk, tk]−G[yk, zk, wk]

G[yk, wk]−G[yk, tk]
.

Derivative approximation for 2nd and 3rd step of (21) is made as:

G′ (tk) = f [tk, wk],

G′ (tk) = G[tk, wk
] + 2 (w

k
− tk)G[tk, wk

, y
k
] (22)

−G[y
k
, w

k
] +G[tk, yk ],

G[tk, yk ] =
G(tk)−G(yk)

tk − yk
, G[w

k
, tk, yk ] =

G[w
k
, tk]−G[tk, yk ]
w

k
− y

k

.
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Derivative-free scheme of zafar et al. [12](MFN):

G
′
(tk) ≈ G[tk, zk ], zk = tk + γG(tk)

m,m ≥ q, γ ∈ R− {0}, (23)

y
k

= tk −
G(tk)

G[z
k
, tk]

, z
k
= tk +G(tk)

3, k  0,

w
k

= y
k
+ g3G(tk)

2,

tk+1 = yk + b3G(tk)
2 − d3G(tk)3,

where,

g3 =
1

[G(y
k
)−G(tk)]G[yk , tk]

− 1

[G(y
k
)−G(tk)]G[zk , tk]

,

b3 =
1

[G(y
k
)−G(tk)][G(yk)−G(wk

)]G[y
k
, tk]

− 1

[G(w
k
)−G(tk)][G(yk)−G(wk

)]G[w
k
, tk]

− 1

[G(w
k
)−G(tk)][G(yk)−G(wk

)]G[z
k
, tk]

− 1

[G(y
k
)−G(tk)][G(yk)−G(wk

)]G[z
k
, tk]

,

d3 =
1

[G(y
k
)−G(tk)]G[yk, tk]

− 1

G[z
k
, tk][G(yk)−G(tk)]

− g3[G(yk)−G(tk)].

Three-step eighth order derivative-free scheme SJ8 proposed by Jamali et al. [11], which is given
below:

y
k

= tk −
G(tk)

G[z
k
, tk]

, z
k
= tk +G(tk)

3, k  0,

wk = yk −
G(yk)

G[z
k
, tk]
× G(tk)

2

G(tk)2 − 2 ∗G(tk)G(yk) +G(yk)2
,

tk+1 = zk − (A(t1) +B(t2) + C(t3))×
G(wk)

G[y
k
, zk]

,

A(t1) = 1 + t21, B(t2) = −1, C(t3) = 1 + 2t3,

t1 =
G(yk)

G(tk)
, t2 =

G(wk)

G(yk)
, t1 =

G(wk)

G(tk)
.

4.1. Some RealWorld Applications. Problem 1 Continuous Stirred Tank Reactor (CSTR) (see [10]):
Industries frequently utilize continuous stirred-tank reactors (CSTRs). These reactors are integral to

engineering problems involving feedback control systems and are often utilized to model chemical
processes. They serve as a tool for understanding principles of chemical reactor modeling.

Consider a basic, irreversible fluid stage compound response in which chemical species M responds
with chemical species N . The reaction for an isothermal nonstop mixed tank reactor (CSTRs) issue can
be composed asM → N , which is the first order rate of reaction. Now, imagine we have two different
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substances, S1 and S2, being fed into two reactors, let’s call them B1 and B2. In these reactors, various
reactions occur. For instance:

S1 + S2 → B1,

B1 + S2 → C1,

Q1 + S2 → D1,

Q1 + S2 → E1.

A straightforward model for criticism control frameworks was planned while concentrating on the

Figure 1. Continuous Stirred Tank Reactor (CSTR)

above model. The accompanying numerical expression is the consequence of changing over the above
model:

RQ1 =
2.98(w + 2.25)

(w + 1.45)(w + 2.85)2(w + 4.35)
= −1.

Here, RQ1 represents something called the gain of a proportional controller. It helps us control the
system effectively. By setting RQ1 to zero, we get another equation in term of t:

G1(t) = t4 + 11.50t3 + 47.49t2 + 83.06325t+ 51.232668, (24)

This equation helps us to understand how the system behaves over time. G1 is a non-linear function
with four roots $ = 1.45, 2.85,−2.85,−4.35. Let’s consider ς0 = −1.451 as the initial approximation
and $ = −1.45 as the exact root for the non-linear polynomial G1(t). The results we computed are
given in Table II. We found that the developed scheme (AMK − 1)works better than other methods of
the existing domain when we look at the absolute difference between two iterations.
Problem 2 Van der Waals Equation (see [15]):

A key model in chemistry and engineering for figuring out a gas’s specific volume is the Van der
Waals equation. It explains the attraction interactions between gas molecules and the excluded volume
of gas particles, two significant characteristics of real gases. The equation can be expressed as:

(W +
iu2

G
)(G− ub) = uQS.
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incorporates constants i and u representing the strength of intermolecular attraction and the excluded
volume, respectively. Here, G stands for the gas’s volume in moles, S for temperature,W for measured
pressure, and Q for the real gas constant, which has a value of 0.08206L atm mol−1K−1. According
to the Van der Waals equation, each pressure value at a particular temperature corresponds to three
specific volume values, or a cubic equation with regard to specific volume G. Upon solving equation or
G, the volume of gases is obtained. The equation can be simplified to:

WG3 − (ubW + uQS)G2 + iu2G− iu2b = 0.

Through the particular value selection, the above equation can be further simplified into a form like:

G2(t) = t3 − 5.22t2 + 9.0825t− 5.2675, ς0 = 1.719991. (25)

$ = 1.7199 is the exact root of the function G2. Let us assume that ς0 = 1.72 is an initial guess. For the
sake of comparison, we conducted the analysis of numerical findings for the van der waals problem, as
shown in Table III.

Table III shows the results of our developed approach AMK − 1, and the existing iterative schemes
MK8b,MK8a,MFN, SJ8. The comparison of these schemes depicts that our newly developed scheme
performs better when compared to COC, and its consecutive iterations.

Example 3 Probability of a Shutout in a Racquetball (see [13]):
In a game of racquetball, the probability of achieving a shutout is determined by various factors.

Primarily, it hinges on the winning probability of each rally. Scoring a point necessitates successful
serving, and victory is attained upon reaching 21 points. At the game’s conclusion, if the loser has not
scored any points, they are considered shut out. Let’s consider player A, whose winning probability
for each rally is denoted as ur.We define the probability of player A shutting out player B, denoted
as Ur based on the number of points A wins while B has none. This relationship is mathematically
expressed as:

Ur(n) = Ur(n− 1)Ur(1). (26)

Further application of equation (26) leads to

Ur(n) = [Ur(1)]
n. (27)

Calculation of Ur(1) involves two scenarios: either A wins the first rally and gains a point, or A loses
the first rally but regains the serve after winning the second rally. This leads to the equation:

Ur(1) = ur + (1− ur)Ur(1). (28)
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On solving equation (27) the result will be as follows:

Ur(n) =
ur

1− (1− ur)ur
. (29)

From equations (27) and (28), we get:

Ur(n) = (
ur

1− ur + u2r
)n. (30)

The probability of A shuttin out B is represented by Ur(21).When A serves initially, Ur(n) is given by
(30).If a fair coin toss determines the initial serve, the probability that player A will serve first is 1/2. In
the scenario where player B serves initially, player A must win the serve and subsequently secure 21
points to achieve a shutout. Therefore, the probability of a shutout, denoted as Ur can be expressed as:

Ur =
1

2
Ur(21) +

1

2
urUr(21). (31)

Combining equations (30) and (31) we obtain the final result which is as follows:

Ur =
1 + ur

2
(

ur
1− ur + u2r

)21. (32)

The above equation (32) is nonlinear in u. and can be written in the following expression:

G3(t) =
1

2

(1 + t)t21

(1− t+ t2)21
. (33)

By using equation (32), we find the roots i.e. −1 and 0 (with multiplicity 20). We choose the desired
root is−1 with suitable initial guess is ς0 = −0.95.

The results are displayed in Table IV, highlighting the superior performance of method AMK − 1 in
terms of accuracy and COC. It converges faster compared to schemesMK8b,MK8a,SJ8,MFN .

Example 4 The Parachute Problem [Ethan Retherford] A parachutist exits an aircraft from a par-
ticular height and descends due to the force of gravity. To model the motion of the parachutist, we
must consider the forces acting on the body. The net force on the parachutist is described by Newton’s
second law of motion:

F = ma.

Where F is the net force, m is the mass of the parachutist, a is the acceleration.
The net force is the sum of two opposing forces: the downward gravitational force FD, and the

upward air resistance force FU . The gravitational force is given by:

FD = mg,

where g is the acceleration due to gravity. The air resistance force can be modeled as a function of the
velocity v of the parachutist. For simplicity, assume the air resistance is proportional to the velocity:

FU = cv,
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Figure 2. Parachute Problem

where, c is a positive constant related to the drag coefficient. The equation of motion for the parachutist
can be written as:

m
ds

dt
= mg − cv.

Tofind the velocity s(t) as a function of time t, we need to solve the following first-order linear differential
equation:

ds

dt
+

c

m
v = g. (34)

The relationship above models the acceleration of a falling object considering the forces acting on it.
It is expressed as a differential equation because it involves the rate of change of the velocity (dvdt ). This
equation cannot be solved for the parachutist’s velocity using simple algebraic methods. Solving the
final equation (34) with the initial condition (s = 0 at t = 0)we arrive at the final result given by 35:

s(t) =
gm

c
(1− e−(

c
m
)t), (35)

A parachutist weighing 68.1 kg leaps from a stationary hot air balloon. The drag coefficient is 12.5 kg/s,
so v(t) will be in the form of equation (36):

s(t) = 53.44(1− e−(0.18355)t). (36)

The Eq. 36 is the nonlinear. Using the proposed scheme, we obtain the numerical outcome to the

Figure 3. Speed time graph

above problem to determine the roots.

G4(t) = 53.44− 53.44e−0.18355t, $ = −0.209899. (37)

The parachutes problem showcases the effectiveness and efficiency of the newly developed iterative
methods via numerical comparison. The results displayed in Table V confirm the exceptional perfor-
mance of our proposed method within the manuscript. For the function G5, the root is $ = −.209899

with the initial point ς0 = 0.
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Example 5 To determine the performance of the iterative scheme, we examine a specific 3rd degree
nonlinear polynomial:

G5(t) = t3 − 1.

This example ensures the consistency and stability of the results. The exact root of the nonlinear
function G5(t) is $ = 1,and we start with an initial guess of ς0 = 1.01.

The results presented in Table VI demonstrate that the newly proposed derivative-free method,
AMK − 1, outperforms the other methods, indicating the superior efficiency of AMK − 1 compared
to existing techniques..

Example 6 Our developed scheme surpasses other existing methods for the test function

G6(t) = e−t − 1 +
1

5
t.

The approximate roots are 4.96 and 0.
We have choosen $ = 0 as root and set initial point to ς0 = 0.05.The results, presented in Table

VII, demonstrate that our scheme AMK-1 outperforms the others in terms of consecutive iterations
difference.

The data consistently showed that AMK − 1 not only converges faster but also maintains greater
accuracy and stability. These advantagesmake ourmethod a robust choice for solving similar equations.

Problem 7 We chose a non-linear test function:

G7(t) = et
2−3t sin(t) + ln(t2 + 1), (38)

that contains the transcendental function. The approximate root for (38) is $ = 0. Let’s consider
ς0 = 0.5 as an initial root to get the numerical results, as presented in Table VIII.

The findings showcased in Table VIII highlight the superior performance of the newly proposed
methods AMK − 1 over previously established methods likeMK8b,MK8a,SJ8, andMFN in both
computational efficiency and accuracy when applied to the function G7 (t).
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TABLE I
TEST FUNCTIONS WITH THE ROOTS

Test Function Exact root
G1(t) = t4 + 11.50t3 + 47.49t2 + 83.06325t+ 51.232668 $ = −1.45

G2(t) = t3 − 5.22t2 + 9.0825t− 5.2675 $ = 1.7199

G3(t) =
1
2

(1+t)t21

(1−t+t2)21
$ = −1

G4(t) = 53.44− 53.44e−0.18355t $ = −0.209899

G5(t) = t3 − 1 $ = 1

G6(t) = e−t − 1 + 1
5 t $ = 0

G7(t) = et
2−3t sin(t) + ln(t2 + 1) $ = 0

TABLE II
COMPARISON TABLE FOR G1(t)

G1(t), $ = −1.45, ς0 = −1.451

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 4.08(−23) 3.09(−178) 3.41(−1419) 1.94(−1418) 8

MK8b 1.00(−3) 3.04(−17) 3.04(−17) 5.75(−990) 8

SJ8 5.96(−21) 8.90(−159) 2.20(−1261) 1.25(−1260) 8

MK8a 1.00(−3) 7.32(−19) 7.32(−19) 4.80(−1108) 8

MFN 1.00(−3) 6.14(−21) 1.16(−158) 1.07(−1259) 8

TABLE III
COMPARISON TABLE FOR G2(t)

G2 (t) , $ = 1.72, ς0 = 1.7120

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 5.36(−6) 3.74(−30) 2.08(−223) 1.87(−226) 7.99

MK8b 7.96(−3) 2.50(−5) 2.50(−5) 2.37(−171) 7.23

SJ8 1.73(−5) 1.71(−25) 1.48(−185) 1.33(−188) 7.99

MK8a 7.99(−3) 7.11(−6) 7.11(−6) 5.94(−215) 7.50

MFN 7.98(−3) 1.77(−5) 3.73(−25) 1.30(−185) 7.41
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TABLE IV
COMPARISON TABLE FOR G3(t)

G3 (t) , $ = −1, ς0 = −0.95

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 2.53(−9) 1.06(−82) 1.68(−816) 8.07(−827) 9.99

MK8b 4.99(−2) 1.79(−8) 1.79(−8) 1.23(−601) 9.04

SJ8 3.20(−9) 1.09(−81) 2.25(−806) 1.08(−816) 9.99

MK8a 5.00(−2) 2.63(−9) 2.63(−9) 2.54(−825) 10.06

MFN 5.00(−2) 4.64(−9) 4.51(−80) 1.58(−800) 10.09

TABLE V
COMPARISON TABLE FOR G4(t)

G4 (t) , $ = 0, ς0 = −0.209899

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 2.01(−7) 3.49(−62) 1.36(−500) 1.33(−499) 8

MK8b 2.09(−1) 7.35(−7) 7.35(−7) 1.39(−395) 7.93

SJ8 3.21(−1) 19.84 D D D

MK8a 2.09(−1) 2.27(−10) 2.27(−10) 1.97(−814) 8

MFN 3.12(−1) 1.03(−1) 8.73(−6) 2.54(−42) 8

D stands for Divergence.
TABLE VI

COMPARISON TABLE FOR G5(t)

G5 (t) , $ = 1, ς0 = 1.01

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 6.36(−17) 1.80(−130) 7.44(−1039) 2.23(−1038) 7.99

MK8b 9.99(−3) 2.23(−12) 2.23(−12) 9.17(−706) 7.98

SJ8 3.86(−15) 2.35(−114) 4.48(−908) 1.35(−907) 7.99

MK8a 9.99e− 3 7.74(−14) 7.74(−14) 9.84(−813) 7.99

MFN 9.99(−3) 4.03(−15) 3.53(−114) 3.66(−906) 7.99



Asia Pac. J. Math. 2024 11:103 16 of 21

TABLE VII
COMPARISON TABLE FOR G6(t)

G6 (t) , $ = 0, ς0 = 0.016

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 4.74(−17) 2.72(−133) 3.19(−1063) 2.55(−1063) 8

MK8b 1.6(−2) 2.52(−18) 2.52(−18) 6.06(−1157) 8

SJ8 6.23(−17) 2.87(−132) 5.78(−1055) 4.63(−1055) 8

MK8a 1.6(−2) 1.30(−19) 1.30(−19) 7.11(−1251) 8

MFN 1.6(−2) 3.1(−16) 5.81(−126) 7.01(−1004) 8

TABLE VIII
COMPARISON TABLE FOR G7(t)

G7 (t) , $ = 0, ς0 = 0.5

Schemes |t2 − t1| |t3 − t2| |t4 − t3| |G(tn)| COC
AMK − 1 3.54(−5) 1.12(−34) 1.09(−270) 1.09(−270) 8.00

MK8b 4.95(−1) 4.75(−3) 4.75(−3) 9.91(−107) 5.71

SJ8 7.22(−4) 7.25(−24) 7.46(−184) 7.46(−184) 7.99

MK8a 4.98(−1) 1.43(−3) 1.43(−3) 1.49(−147) 6.28

MFN 5.00(−1) 3.61(−4) 1.17(−26) 1.41(−206) 7.15

5. Stereographic Projection

Stereographic projection is a method for portraying the sphere into a flat surface. This technique
is used in various areas of mathematics. This is an excellent resource that is used for the polar areas
in conjunction with small-scale maps to determine the relationship between those frameworks and
crystal planes as well as to address orientation issues in structural geology. To do this, we often use a
special type of graph paper called a stereographic net, or Wulff net. Stereography helps us the three
dimensional images.

If we envision connecting a point on the surface of the sphere, denoted as P, to the South Pole, S, then
drawing a line from S to P that intersects the equatorial plane at a point designated as p, p represents the
stereographic projection of P. The concept of stereographic projection was first introduced by the ancient

Figure 4. Stereographic Projection

Egyptian scientists Hipparchus and Ptolemy. Initially, it was known as the plano-sphere projection.
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Today, computer applications designed for stereographic projections are compatible with modern
computing systems. These projections have the capability to visualize any pole or orientation on any
projection with any layout. Additionally, they can create a spherical shell in the normal direction to the
plane.

We utilize a variety of non-linear complex functions to visualize the convergence regions of both the
developed scheme and existing schemes of the same domain through stereographic projections. The
functions are listed below:

v1 (γ) = γ3 − 1,

v2 (γ) = γ5 − 1,

v3 (γ) = γ6 − 1.

We used MATLAB R2014a on a computer program to create stereographic images, with a maximum of
60 iterations and a resolution of 200. The roots of each polynomial are colored differently. For example,
the stereographic image of v1 (γ) displays three colors representing its three different roots, with black
indicating divergence. Similarly, v2 (γ) exhibits five distinguishable colors, and v3 (γ) shows six root
colors in its stereographic images.

The intensity of the color indicates the convergence behavior of the iterative root-finding sequence.
Vibrant colors indicate convergence within a limited number of iterations, whereas black represents the
divergence. In the figures, we used a lower value of −2 and a higher value of 2with a 0.1 increment for
polynomials of degree 3rd, 5th, and 6th.

Figures 5− 7, provide visual representations of the dynamic behavior observed in the derivative-free
iterative scheme (AMK − 1) alongside the already existing eighth order schemes by Obadah et al. [25]
referred to as (MK8a) and (MK8b) and by zafar et al. [12] referred to as (MFN).

For the complex polynomial v1 (γ), our new scheme (AMK − 1) exhibits wider and smoother zones
in contrast to (MK8a), (MK8b) and (MFN) , as depicted in figures 5. This trend is consistent for v2 (γ),
where five roots are symbolized. It is clear that our scheme (AMK − 1) consistently shows larger
convergence regions in all colors, as shown in Figures 6. Similarly, for complex polynomial v3 (γ) with
six colors visible. Our scheme (AMK − 1) performs better than other schemes, as seen in figures 7.
Therefore, we conclude that our newly developed scheme (AMK − 1) exhibits greater efficiency, and
robustness than (MK8a), (MK8b) . and (MFN), significantly outperforming them in convergence.

Moreover, newly proposed scheme exhibits faster convergence and fewer divergences. This visu-
alization is evident in the polynomials v1 (γ) , v2 (γ), and v3 (γ) . Considering these observations, it
becomes apparent that the developed eighth-order iterative scheme is more consistent, as its dynamical
planes are characterized by fewer black regions than the other schemes (MK8a) , (MK8b) and (MFN).
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(a) AMK − 1 (b)MK8a

(c)MK8b (d)MFN

Figure 5. Stereographic projection on 3rd degree complex function v1(γ)

(a) AMK − 1 (b)MK8a

(c)MK8b (d)MFN

Figure 6. Stereographic projection on 3rd degree complex function v2(γ)
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(a) AMK − 1 (b)MK8a

(c)MK8b (d)MFN

Figure 7. Stereographic projection on 3rd degree complex function v3(γ)

6. Concluding Remarks

This manuscript introduces a new variant of Ostrowski’s method for finding the simple root of a
non-linear equation. The new method is an eighth-order, three-step, derivative-free iterative approach
designed to improve both accuracy and efficiency in solving non-linear equations. The convergence of
this method has been carefully analyzed, confirming its optimal performance. All computations were
carried out using Maple 18 and MATLAB 2014a, ensuring the reliability of the results. Comparisons
with other methods show that the proposed approach is faster and has better convergence properties.
The numerical results and visualizations confirm that this method is a strong alternative to existing
approaches. Additionally, its ability to handle complex functionswithminimal effortmakes it a valuable
tool for both theoretical and practical applications.
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