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Abstract. We extend the parametric operator for trapezoidal fuzzy sets to three dimensions. We define
and calculate parametric operators between 3D trapezoidal fuzzy sets and present the results in a graph.
Since the graph is defined in 3D space and drawn in 4D, it cannot be represented in 3D. The presented
graph is drawn in three dimensions using a special definition of a fuzzy number in which the membership
function’s value ranges from 0 to 1. The membership function’s value at each point is expressed as the
color intensity at that point. If you cut the graph into a plane passing through the longest axis, you can
observe that different function values on the plane are represented by colors of varying intensities. As it is
a trapezoidal fuzzy set, a certain portion of the center shares the same color. By presenting this graph, the
results will be cited and applied in various areas, similar to the one-dimensional and two-dimensional
results.
2020 Mathematics Subject Classification. 47S40; 03E72.
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1. Introduction

In fuzzy theory, research on various types of fuzzy numbers is important. Although there has
been a lot of research on triangular fuzzy numbers, there is not much research on trapezoidal fuzzy
sets or pentagonal fuzzy numbers. We have studied research on extension operators for generalized
trapezoidal fuzzy sets [1]. The research has been cited in control tools [2], applications to circuit
analysis [3], fuzzy logic [4], decision-making technique [5], type-2 trapezoidal fuzzy number [6],
decomposition theorem [7], and fuzzy numbers [8]. Research on pentagonal fuzzy numbers [9]
has also been cited in forecasting and decision-making [10], optimization [11], order quantity model
[12], pentagonal fuzzy numbers [13]. heptagonal fuzzy numbers [14], algorithms [15, 16], and fuzzy
mathematical model [17].
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The results obtained in one dimension were extended to two dimensions. The study involved the
calculation of one-dimensional expansion operators for fuzzy numbers using an alpha cut. For the
one-dimensional case, we computed the boundary of the alpha cut and derived the alpha cut of the
fuzzy number through algebraic operations. Subsequently, the fuzzy number was determined through
the inversion of the obtained alpha cut. However, in the case of 2D, the alpha cut manifests as a convex
set of planes, making it impractical to perform algebraic computations on the boundary. Consequently,
we introduced a new operation called the parameter operator. In the one-dimensional scenario, it was
demonstrated that the results obtained by defining parameter operators were in line with the outcomes
achieved through the utilization of existing algebraic operators. Research on parametric operators
between 2D trapezoidal fuzzy sets have also been published [18] and are widely cited and applied.

The 2D triangular fuzzy number can be represented as a cone-shaped graph in 3D space. When a ver-
tical plane passes through the vertex and cuts the cone, the section on the plane forms a one-dimensional
triangular fuzzy number. Similarly, two-dimensional trapezoidal fuzzy sets can be illustrated as trun-
cated cone-shaped graphs in three-dimensional space. By cutting it with a plane perpendicular to the
upper plane, a one-dimensional trapezoidal fuzzy set can be derived from the intersecting surface. It
can be observed that if the results of calculating the parametric operator on a 2-dimensional truncated
cone are constrained to 1 dimension, they are consistent with the 1-dimensional results. Various
findings were obtained for the 3-dimensional triangular fuzzy number [19, 20], and akin to the one
and two-dimensional findings, these will be referenced and utilized across various fields.

In this paper, we present parametric operators for trapezoidal fuzzy sets extended to three dimensions.
This enables operations between fuzzy sets in three-dimensional space. We visualize the results of
these operations through graphs, using a specific definition of fuzzy numbers to clearly represent
them in three-dimensional space. These findings can be utilized in the realms of fuzzy set theory and
applications, and the visualization of fuzzy set characteristics in three-dimensional graphs can aid in
understanding.

2. The generalized trapezoidal fuzzy sets on R

We define α-cut and α-set of the fuzzy set Awith the membership function µA(x).

Definition 2.1. [21] An α-cut of the fuzzy number A is defined by Aα = {x ∈ R | µA(x) ≥ α} if
α ∈ (0, 1] and Aα = cl{x ∈ R | µA(x) > α} if α = 0. For α ∈ (0, 1), the set Aα = {x ∈ X | µA(x) = α}

is said to be the α-set of the fuzzy set A, A0 is the boundary of {x ∈ R | µA(x) > α} and A1 = A1.

Definition 2.2. [21] The extended addition A(+)B, extended subtraction A(−)B, extended multiplica-
tion A(·)B, and extended division A(/)B are fuzzy sets with membership functions as follows: For all
x ∈ A and y ∈ B,
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µA(∗)B(z) = sup
z=x∗y

min{µA(x), µB(y)}, ∗ = +,−, ·, /

Wegeneralized the results of four operations for two generalized trapezoidal fuzzy sets. We employed
four operations: addition A(+)B, subtraction A(−)B, multiplication A(·)B, and division A(/)B for
generalized trapezoidal fuzzy sets A and B. These operations for two fuzzy numbers (A,µA) and(
B,µB

) are defined in Definition 2.2 and are based on the Zadeh’s extension principle [22-24]. Addition
A(+)B and subtraction A(−)B result generalized trapezoidal fuzzy sets. However, multiplication
A(·)B and division A(/)B are not necessarily generalized trapezoidal fuzzy sets.

Definition 2.3. [1] A fuzzy set A having membership function

µA(x) =



0, x < a1, a4 ≤ x
m(x−a1)
a2−a1 , a1 ≤ x < a2

m, a2 ≤ x < a3

m(a4−x)
a4−a3 , a3 ≤ x < a4

where ai ∈ R, i = 1, 2, 3, 4 and 0 < m < 1, is called a generalized trapezoidal fuzzy set and will be denoted
by A = (a1, a2,m, a3, a4).

Theorem 2.4. [1] Let A = (a1, a2, m1, a3, a4) and B = (b1, b2, m2, b3, b4) be two generalized trapezoidal

fuzzy sets. Then we have the followings.

(1) The membership function µA(+)B(z) is

0, z < a1 + b1, a4 + b4 ≤ z
m1m2(z−a1−b1)

m2(a2−a1)+m1(b2−b1) , a1 + b1 ≤ z < a2 + b1 + (b2 − b1) · m1
m2

m1, a2 + b1 + (b2 − b1) · m1
m2
≤ z

< a3 + b4 − (b4 − b3) · m1
m2

m1m2(a4+b4−z)
m2(a4−a3)+m1(b4−b3) , a3 + b4 − (b4 − b3) · m1

m2
≤ z < a4 + b4

i.e. A(+)B is a generalized trapezoidal fuzzy set.

(2) The membership function µA(−)B(z) is

0, z < a1 − b4, a4 − b1 ≤ z
m1m2(z+b4−a1)

m2(a2−a1)+m1(b4−b3) , a1 − b4 ≤ z < a2 −
(
b4 − (b4 − b3) · m1

m2

)
m1, a2 −

(
b4 − (b4 − b3) · m1

m2

)
≤ z

< a3 −
(
b1 + (b2 − b1) · m1

m2

)
m1m2(a4−b1−z)

m2(a4−a3)+m1(b2−b1) , a3 −
(
b1 + (b2 − b1) · m1

m2

)
≤ z < a4 − b1
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i.e. A(−)B is a generalized trapezoidal fuzzy set.

(3) The membership function µA(·)B(z) is

0, z < a1b1, a4b4 ≤ z
−D1+

√
D2+4m1m2(b2−b1)(a2−a1)z
2(b2−b1)(a2−a1) , a1b1 ≤ z < a2

(
b1 + (b2 − b1) · m1

m2

)
m1, a2

(
b1 + (b2 − b1) · m1

m2

)
≤ z

< a3
(
b4 − (b4 − b3) · m1

m2

)
D̃1−
√
D̃2+4m1m2(b4−b3)(a4−a3)z

2m1(b4−b3) , a3
(
b4 − (b4 − b3) · m1

m2

)
≤ z < a4b4

where

D = b1m2(a2 − a1)− a1m1(b2 − b1)

D1 = b1m2(a2 − a1) + a1m1(b2 − b1)

D̃ = a4m1(b4 − b3)− b4m2(a4 − a3)

D̃1 = a4m1(b4 − b3) + b4m2(a4 − a3)

i.e. A(·)B is a fuzzy set on
(
a1b1, a4b4

)
, but need not to be a generalized trapezoidal fuzzy set.

(4) The membership function µA(/)B(z) is

µA(/)B(z) =



0, z < a1
b4
, a4b1 ≤ z

m1m2(b4z−a1)
m1(b4−b3)z+m2(a2−a1) ,

a1
b4
≤ z < a2

b4−(b4−b3)·m1
m2

m1,
a2

b4−(b4−b3)·m1
m2

≤ z < a3
b1+(b2−b1)·m1

m2

m1m2(a4−b1z)
m1(b2−b1)z+m2(a4−a3) ,

a3
b1+(b2−b1)·m1

m2

≤ z < a4
b1

i.e. A(/)B is a fuzzy set on
(
a1
b4
, a4b1

)
, but need not to be a generalized trapezoidal fuzzy set.

We provided graphs and examples of the results in [1].

3. Parametric operations for two 2-dimensional trapezoidal fuzzy sets

In this section, we generalize the trapezoidal fuzzy sets on R to R2. We calculate the parametric
operations for two 2-dimensional trapezoidal fuzzy sets and provide an example, illustrating the results
of the example.

Definition 3.1. [19] A fuzzy set Awith a membership function

µA(x, y) =


h−

√
(x−x1)2

a2
+ (y−y1)2

b2
, h− 1 ≤

√
(x−x1)2

a2
+ (y−y1)2

b2
≤ h,

1, 0 ≤
√

(x−x1)2
a2

+ (y−y1)2
b2

≤ h− 1,

0, otherwise,
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where a, b > 0 and 1 < h is called the 2-dimensional trapezoidal fuzzy set and denoted by
A = ((a, x1, h, b, y1))

2.

µA(x, y) forms a truncated cone. The intersections of µA(x, y)with the horizontal planes z = α (0 <

α < 1) result in ellipses. The intersections of µA(x, y)with the vertical planes y−y1 = k(x−x1) (k ∈ R)

are symmetric trapezoidal fuzzy sets in those planes. If a = b, the ellipses become circles. The α-cut
Aα of a 2-dimensional trapezoidal fuzzy number A = ((a, x1, h, b, y1))

2 is the interior of an ellipse in
the xy-plane including its boundary

Aα =
{
(x, y) ∈ R2

∣∣∣ b2(x− x1)2 + a2(y − y1)2 ≤ a2b2(h− α)2
}

=
{
(x, y) ∈ R2

∣∣∣( x− x1
a(h− α)

)2
+
( y − y1
b(h− α)

)2
≤ 1
}
.

Theorem 3.2. [18] Let A = ((a1, x1, h1, b1, y1))
2 and B = ((a2, x2, h2, b2, y2))

2 be two 2-dimensional

trapezoidal fuzzy sets. Then we have the followings.

(1) For 0 < α < 1, the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− x1 − x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 − y2
b1(h1 − α) + b2(h2 − α)

)2
= 1
}
.

(2) For 0 < α < 1, the α-set of A(−)pB is

(A(−)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− x1 + x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 + y2
b1(h1 − α) + b2(h2 − α)

)2
= 1
}
.

(3) (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) = x1x2 + (x1a2(h2 − α) + x2a1(h1 − α)) cos t+ a1a2(h1 − α)(h2 − α) cos2 t, 0 < α < 1,

yα(t) = y1y2 + (y1b2(h2 − α) + y2b1(h1 − α)) sin t+ b1b2(h1 − α)(h2 − α) sin2 t, 0 < α < 1.

(4) (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π}, where

xα(t) =
x1 + a1(h1 − α) cos t
x2 − a2(h2 − α) cos t

, yα(t) =
y1 + b1(h1 − α) sin t
y2 − b2(h2 − α) sin t

, 0 < α < 1.

Example 3.3. [18] For two 2-dimensional trapezoidal fuzzy sets A = ((2, 13, 3, 3, 11))2 and B =

((4, 9, 4, 3, 8))2, we have the followings.

(1) For 0 < α < 1, the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− 22

22− 6α

)2
+
( y − 19

21− 6α

)2
= 1
}
.

(2) For 0 < α < 1, the α-set of A(−)pB is

(A(−)pB)α =
{
(x, y) ∈ R2

∣∣∣( x− 4

22− 6α

)2
+
( y − 3

21− 6α

)2
= 1
}
.
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(3) (A(·)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π},where

xα(t) = 117 + (262− 70α) cos t+ 8(3− α)(4− α) cos2 t, 0 < α < 1,

yα(t) = 88 + (204− 57α) sin t+ 9(3− α)(4− α) sin2 t, 0 < α < 1.

(4) (A(/)pB)α = {(xα(t), yα(t)) | 0 ≤ t ≤ 2π},where

xα(t) =
13 + 2(3− α) cos t
9− 4(4− α) cos t

, yα(t) =
11 + 3(3− α) sin t
8− 3(4− α) sin t

, 0 < α < 1.

Since we cannot find the concrete forms of membership functions of µA(+)B(x), µA(−)B(x), µA(·)B(x),
and µA(/)B(x), we are unable to draw the graphs of their membership functions. However, we have
proven that the functions fi and gi(i = +,−, ·, /) are one to one correspondence. Thus we ascertain the
unique existence of membership functions. The Mathematica commands to obtain the graphs below
are as follows.

A1 := Plot3D[1, {x, 5, 25}, {y, 0, 20}, RegionFunction→ Function[{x, y, z}, 0 ≤ Sqrt[((x - 13)2)/4 + ((y -
11)2)/9] ≤ 2]]

A2 := Plot3D[3 - Sqrt[((x - 13)2)/4 + ((y - 11)2)/9], {x, 5, 25}, {y, 0, 20}, RegionFunction→ Function[{x,
y, z}, 2 ≤ Sqrt[((x - 13)2)/4 + ((y - 11)2)/9] ≤ 3]]

Show[A1, A2]

B1 := Plot3D[1, {x, -10, 25}, {y, -5, 20}, RegionFunction→ Function[{x, y, z}, 0 ≤ Sqrt[((x - 9)2)/16 +
((y - 8)2)/9] ≤ 3]]

B2 := Plot3D[4 - Sqrt[((x - 9)2)/16 + ((y - 8)2)/9], {x, -10, 25}, {y, -5, 20}, RegionFunction→ Function[{x,
y, z}, 3 ≤ Sqrt[((x - 9)2)/16 + ((y - 8)2)/9] ≤ 4]]

Show[B1, B2]

Figure 1. µA(x) Figure 2. µB(x)

ContourPlot3D[((x - 22)/(22 - 6 a))2 + ((y - 19)/(21 - 6 a))2 == 1, {x, 0, 50}, {y, -5, 50}, {a, 0, 1}]
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ContourPlot3D[((x - 4)/(22 - 6 a))2 + ((y - 3)/(21 - 6 a))2 == 1, {x, -30, 30}, {y, -30, 30}, {a, 0, 1}]

Figure 3. µA(+)B(x) Figure 4. µA(−)B(x)

ParametricPlot3D[{117 + (262 - 70 u) Cos[t] + 8 (3 - u) (4 - u) Cos[t]2, 88 + (204 - 57 u) Sin[t] + 9 (3 -
u) (4 - u) Sin[t]2, u}, {t, 0, 2 Pi}, {u, 0, 1}, BoxRatios→ {1, 1, 1}]
ParametricPlot3D[{(13 + (6 - 2 u) Cos[t])/(9 - (16 - 4 u) Cos[ t]), (11 + (9 - 3 u) Sin[t])/(8 - (12 - 3 u)
Sin[t]), u}, {t, 0, 2 Pi}, {u, 0, 1}, BoxRatios→ {1, 1, 1}]

Figure 5. µA(·)B(x) Figure 6. µA(/)B(x)

4. Parametric operations for two 3-dimensional trapezoidal fuzzy sets

In this section, we define 3-dimensional triangular fuzzy numbers on R3 as a generalization of
triangular fuzzy numbers on R2. We then define parametric operations between two 3-dimensional
fuzzy numbers. To achieve this, we have to calculate operations between α-cuts in R3. While the
α-cuts are regions in R2, in R3, they are subsets of R3, rendering the existing method of calculations
between α-cuts inapplicable. We reinterpret the existing method from a different perspective and apply
it to the subset valued α-cuts on R3. Additionally, we define 3-dimensional trapezoidal fuzzy sets
on R3 as a generalization of trapezoidal fuzzy sets on R2 and calculate parametric operations for two
3-dimensional trapezoidal fuzzy sets on R3, providing an example.
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Definition 4.1. [19] A fuzzy set Awith a membership function

µA(x, y, z) =


1−

√
(x−x1)2

a2
+ (y−y1)2

b2
+ (z−z1)2

c2
, if b2c2(x− x1)2 + c2a2(y − y1)2

+a2b2(z − z1)2 ≤ a2b2c2,

0, otherwise,

where a, b, c > 0 is called the 3-dimensional triangular fuzzy number and denoted by (a, x1, b, y1, c, z1)
3.

Note that µA(x, y) is a cone in R2, but it is not possible to determine the shape of µA(x, y, z) in R3.
The α-cut Aα of a 3-dimensional triangular fuzzy number A = (a, x1, b, y1, c, z1)

3 is the following set:

Aα =
{
(x, y, z) ∈ R3

∣∣∣(x− x1)2
a2

+
(y − y1)2

b2
+

(z − z1)2

c2
≤ (1− α)2

}
=
{
(x, y, z) ∈ R3

∣∣∣( x− x1
a(1− α)

)2
+
( y − y1
b(1− α)

)2
+
( z − z1
c(1− α)

)2
≤ 1
}
.

Definition 4.2. [19] A 3-dimensional fuzzy number A defined on R3 is called a convex fuzzy number if,
for all α ∈ (0, 1), the α-cuts

Aα = {(x, y, z) ∈ R3|µA(x, y, z) ≥ α}

are convex subsets in R3.

Theorem 4.3. [20] Let A be a continuous convex fuzzy number defined on R3 and let Aα = {(x, y, z) ∈

R3|µA(x, y, z) = α} be the α-set of A. Then, for all α ∈ (0, 1), there exist continuous functions fα1 (s), fα2 (s, t),

and fα3 (s, t)(0 ≤ s ≤ 2π,−π
2 ≤ t ≤

π
2 ), such that

Aα = {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
}.

Definition 4.4. [20] Let A and B be two continuous convex fuzzy numbers defined on R3, and

Aα = {(x, y, z) ∈ R3|µA(x, y, z) = α}

= {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
},

Bα = {(x, y, z) ∈ R3|µB(x, y, z) = α}

= {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
}

be the α-sets of A and B, respectively. For α ∈ (0, 1), we define the parametric addition, parametric
subtraction, parametric multiplication, and parametric division of two fuzzy numbers A and B as
fuzzy numbers with α-sets as follows:

(1) parametric addition A(+)pB:
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(A(+)pB)α = {(fα1 (s) + gα1 (s), f
α
2 (s, t) + gα2 (s, t), f

α
3 (s, t) + gα3 (s, t)) ∈ R3|

0 ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
}

(2) parametric subtraction A(−)pB:

(A(−)pB)α = {(fα1 (s)− gα1 (s+ π), fα2 (s, t)− gα2 (s+ π, t),

fα3 (s, t)− gα3 (s+ π, t)) ∈ R3|0 ≤ s ≤ π,−π
2
≤ t ≤ π

2
},

(A(−)pB)α = {(fα1 (s)− gα1 (s− π), fα2 (s, t)− gα2 (s− π, t),

fα3 (s, t)− gα3 (s− π, t)) ∈ R3|π ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
}

(3) parametric multiplication A(·)pB:

(A(·)pB)α = {(fα1 (s) · gα1 (s), fα2 (s, t) · gα2 (s, t), fα3 (s, t) · gα3 (s, t)) ∈ R3|

0 ≤ s ≤ 2π,−π
2
≤ t ≤ π

2
}

(4) parametric division A(/)pB:

(A(/)pB)α = {( fα1 (s)

gα1 (s+ π)
,

fα2 (s, t)

gα2 (s+ π, t)
,
fα3 (s, t)

gα3 (s+ π, t)
) ∈ R3|0 ≤ s ≤ π,−π

2
≤ t ≤ π

2
},

(A(/)pB)α = {( fα1 (s)

gα1 (s− π)
,

fα2 (s, t)

gα2 (s− π, t)
,
fα3 (s, t)

gα3 (s− π, t)
) ∈ R3|π ≤ s ≤ 2π,−π

2
≤ t ≤ π

2
}

For α = 0 and α = 1, (A(∗)pB)0 = limα→0+(A(∗)pB)α and (A(∗)pB)1 = limα→1−(A(∗)pB)α, where
∗ = +, −, ·, /.

Definition 4.5. A fuzzy set Awith a membership function

µA(x, y, z) =



h−
√

(x−x1)2
a21

+ (y−y1)2
b21

+ (z−z1)2
c21

,

if h− 1 ≤
√

(x−x1)2
a21

+ (y−y1)2
b21

+ (z−z1)2
c21

≤ h,

1, if 0 ≤
√

(x−x1)2
a21

+ (y−y1)2
b21

+ (z−z1)2
c21

≤ h− 1,

0, otherwise,
where a1, b1, c1 > 0 and 1 < h is called the 3-dimensional trapezoidal fuzzy set and denoted by A =

((h, a1, x1, b1, y1, c1, z1))
3.

The α-cut Aα of a 3-dimensional trapezoidal fuzzy set A = ((h, a1, x1, b1, y1, c1, z1))
3 is the

following set:

Aα =
{
(x, y, z) ∈ R3

∣∣∣(x− x1)2
a21

+
(y − y1)2

b21
+

(z − z1)2

c21
≤ (h− α)2

}
=
{
(x, y, z) ∈ R3

∣∣∣( x− x1
a1(h− α)

)2
+
( y − y1
b1(h− α)

)2
+
( z − z1
c1(h− α)

)2
≤ 1
}
.
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Theorem 4.6. Let A = ((h1, a1, x1, b1, y1, c1, z1))
3 and B = ((h2, a2, x2, b2, y2, c2, z2))

3 be two

3-dimensional trapezoidal fuzzy sets. Then we have the followings.

(1) For 0 < α < 1, the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− x1 − x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 − y2
b1(h1 − α) + b2(h2 − α)

)2
+
( z − z1 − z2
c1(h1 − α) + c2(h2 − α)

)2
= 1
}
.

(2) For 0 < α < 1, the α-set of A(−)pB is

(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− x1 + x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 + y2
b1(h1 − α) + b2(h2 − α)

)2
+
( z − z1 + z2
c1(h1 − α) + c2(h2 − α)

)2
= 1
}
.

(3) For 0 < α < 1, (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, where

xα(s) = x1x2 + (x1a2(h2 − α) + x2a1(h1 − α)) cos s+ a1a2(h2 − α)(h1 − α) cos2 s,

yα(s, t) = y1y2 + (y1b2(h2 − α) + y2b1(h1 − α)) sin s cos t+ b1b2(h2 − α)(h1 − α) sin2 s cos2 t,

zα(s, t) = z1z2 + (z1c2(h2 − α) + z2c1(h1 − α)) sin s sin t+ c1c2(h2 − α)(h1 − α) sin2 s sin2 t.

(4) For 0 < α < 1, (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, where

xα(s) =
x1 + a1(h1 − α) cos s
x2 − a2(h2 − α) cos s

, yα(s, t) =
y1 + b1(h1 − α) sin s cos t
y2 − b2(h2 − α) sin s cos t

,

zα(s, t) =
z1 + c1(h1 − α) sin s sin t
z2 − c2(h2 − α) sin s sin t

.

Proof. Since A and B are continuous convex fuzzy numbers defined on R3, by Theorem 4.3, there exists
fα1 (s), g

α
1 (s), f

α
i (s, t), g

α
i (s, t) (i = 2, 3) such that

Aα = {(fα1 (s), fα2 (s, t), fα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
},

and
Bα = {(gα1 (s), gα2 (s, t), gα3 (s, t)) ∈ R3|0 ≤ s ≤ 2π, 0 ≤ t ≤ π

2
}.

Since A = ((h1, a1, x1, b1, y1, c1, z1))
3, B = ((h2, a2, x2, b2, y2, c2, z2))

3, we have

fα1 (s) = x1 + a1(h1 − α) cos s, fα2 (s, t) = y1 + b1(h1 − α) sin s cos t,

fα3 (s, t) = z1 + c1(h1 − α) sin s sin t,

and
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gα1 (s) = x2 + a2(h2 − α) cos s, gα2 (s, t) = y2 + b2(h2 − α) sin s cos t,

gα3 (s, t) = z2 + c2(h2 − α) sin s sin t.

(1) Since
fα1 (s) + gα1 (s) = x1 + x2 + (a1(h1 − α) + a2(h2 − α)) cos s,

fα2 (s, t) + gα2 (s, t) = y1 + y2 + (b1(h1 − α) + b2(h2 − α)) sin s cos t,

and
fα3 (s, t) + gα3 (s, t) = z1 + z2 + (c1(h1 − α) + c2(h2 − α)) sin s sin t,

we have
(A(+)pB)α =

{
(x, y, z) ∈ R3

∣∣∣( x− x1 − x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 − y2
b1(h1 − α) + b2(h2 − α)

)2
+
( z − z1 − z2
c1(h1 − α) + c2(h2 − α)

)2
= 1
}
.

(2) If 0 ≤ s ≤ π, we have

fα1 (s)− gα1 (s+ π) = x1 − x2 + (a1(h1 − α)− a2(h2 − α)) cos s,

fα2 (s, t)− gα2 (s+ π, t) = y1 − y2 + (b1(h1 − α)− b2(h2 − α)) sin s cos t,

and

fα3 (s, t)− gα3 (s+ π, t) = z1 − z2 + (c1(h1 − α)− c2(h2 − α)) sin s sin t.

In the case of π ≤ s ≤ 2π, we have

fα1 (s)− gα1 (s− π) = fα1 (s)− gα1 (s+ π),

fα2 (s, t)− gα2 (s− π, t) = fα2 (s, t)− gα2 (s+ π, t),

and
fα3 (s, t)− gα3 (s− π, t) = fα3 (s, t)− gα3 (s+ π, t).

Thus

(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− x1 + x2
a1(h1 − α) + a2(h2 − α)

)2
+
( y − y1 + y2
b1(h1 − α) + b2(h2 − α)

)2
+
( z − z1 + z2
c1(h1 − α) + c2(h2 − α)

)2
= 1
}
.

(3) Let (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, then

xα(s) = fα1 (s) · gα1 (s)

= x1x2 + (x1a2(h2 − α) + x2a1(h1 − α)) cos s+ a1a2(h2 − α)(h1 − α) cos2 s,
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yα(s, t) = fα2 (s, t) · gα2 (s, t)

= y1y2 + (y1b2(h2 − α) + y2b1(h1 − α)) sin s cos t+ b1b2(h2 − α)(h1 − α) sin2 s cos2 t,

zα(s, t) = fα3 (s, t) · gα3 (s, t)

= z1z2 + (z1c2(h2 − α) + z2c1(h1 − α)) sin s sin t+ c1c2(h2 − α)(h1 − α) sin2 s sin2 t.

(4) Let (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 }, then

xα(s) =
x1 + a1(h1 − α) cos s
x2 − a2(h2 − α) cos s

, yα(s, t) =
y1 + b1(h1 − α) sin s cos t
y2 − b2(h2 − α) sin s cos t

,

zα(s, t) =
z1 + c1(h1 − α) sin s sin t
z2 − c2(h2 − α) sin s sin t

.

The proof is complete. �

Example 4.7. Let A = ((2, 6, 3, 8, 5, 4, 7))3, B = ((3, 4, 2, 5, 3, 6, 4))3. Then by Theorem 4.6, we
have the followings.

(1) For 0 < α < 1, the α-set of A(+)pB is

(A(+)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− 5

6(2− α) + 4(3− α)

)2
+
( y − 8

8(2− α) + 5(3− α)

)2
+
( z − 11

4(2− α) + 6(3− α)

)2
= 1
}
.

(2) For 0 < α < 1, the α-set of A(−)pB is

(A(−)pB)α =
{
(x, y, z) ∈ R3

∣∣∣( x− 1

6(2− α) + 4(3− α)

)2
+
( y − 2

8(2− α) + 5(3− α)

)2
+
( z − 3

4(2− α) + 6(3− α)

)2
= 1
}
.

(3) For 0 < α < 1, (A(·)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 },where

xα(s) = 6 + (12(3− α) + 12(2− α)) cos s+ 24(3− α)(2− α) cos2 s,

yα(s, t) = 15 + (25(3− α) + 24(2− α)) sin s cos t+ 40(3− α)(2− α) sin2 s cos2 t,

zα(s, t) = 28 + (42(3− α) + 16(2− α)) sin s sin t+ 24(3− α)(2− α) sin2 s sin2 t.

(4) For 0 < α < 1, (A(/)pB)α = {(xα(s), yα(s, t), zα(s, t)) ∈ R3 | 0 ≤ s ≤ 2π, 0 ≤ t ≤ π
2 },where

xα(s) =
3 + 6(2− α) cos s
2− 4(3− α) cos s

, yα(s, t) =
5 + 8(2− α) sin s cos t
3− 5(3− α) sin s cos t

,

zα(s, t) =
7 + 4(2− α) sin s sin t
4− 6(3− α) sin s sin t

.
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The membership function of the 3-dimensional trapezoidal fuzzy set is a function defined on R3

with values in [0, 1]. In case of the 3-dimensional trapezoidal fuzzy set A = ((2, 6, 3, 8, 5, 4, 7))3,
we represent the values of the membership function with colors, as shown in Figure 7. Cutting the
graph of A with plane z = 7, we obtain Figure 8. In Figure 9, we restrict the domain to the cutting
plane and then represent the membership function as the graph on R2. Then we observe that the
3-dimensional trapezoidal fuzzy set is an extension of the 2-dimensional trapezoidal fuzzy set. In the
case of the 3-dimensional trapezoidal fuzzy set B = ((3, 4, 2, 5, 3, 6, 4))3, we represent the values
of membership function with colors, as shown in Figure 10. Cutting the graph of Awith plane z = 4,
we obtain Figure 11. In Figure 12, we restrict the domain to the cutting plane and then represent the
membership function as the graph on R2. The graphs of A(+)pB and A(−)pB are shown in Figure 13
and 14, respectively. In Figure 15 and 16, we present two types of the graph for A(·)pB and six types of
the graph for A(/)pB, respectively.

Figure 7. A3 Figure 8. A3/2 Figure 9. A3
2

Figure 10. B3 Figure 11. B3/2 Figure 12. B3
2

Figure 13. A3(+)B3 Figure 14. A3(−)B3 Figure 15. A3(·)B3
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Figure 16. A3(/)B3

The Mathematica commands to obtain the above graphs are as follows.

(Figure 7)
reg2 = ImplicitRegion[1 ≤ Sqrt[(x - 3)2/6 + (y - 5)2/8 + (z - 7)2/4] ≤ 2, {x, y, z}];

DensityPlot3D[ 2 - Sqrt[(x - 3)2/6 + (y - 5)2/8 + (z - 7)2/4], {x, y, z} ∈ reg2, PlotPoints→ 100, Color-
Function→ "SunsetColors", OpacityFunction→ 0.05, BoxRatios→ {Sqrt[6], Sqrt[8], 2}, PlotLegends
→ Automatic]

(Figure 8)
reg2 = ImplicitRegion[1 ≤ Sqrt[(x - 3)2/6 + (y - 5)2/8 + (z - 7)2/4] ≤ 2, {x, y, z}];

DensityPlot3D[2 - Sqrt[(x - 3)2/6 + (y - 5)2/8 + (z - 7)2/4], {x, y, z} ∈ reg2, PlotPoints→ 100, Color-
Function→ "SunsetColors", OpacityFunction→ 0.05, PlotRange→ {{3 - 2 Sqrt[6], 3 + 2 Sqrt[6]}, {5 - 2
Sqrt[8], 5 + 2 Sqrt[8]}, {3, 7}, {0, 1}}, BoxRatios→ {Sqrt[6], Sqrt[8], 1}, PlotLegends→ Automatic]

(Figure 9)
reg4 = ImplicitRegion[ 1 ≤ Sqrt[(x - 3)2/6 + (y - 5)2/8] ≤ 2, {x, y}];

A1 := Plot3D[ 2 - Sqrt[(x - 3)2/6 + (y - 5)2/8], {x, y}∈ reg4, ColorFunction→ "SunsetColors", PlotRange
→ {{3 - 2 Sqrt[6], 3 + 2 Sqrt[6]}, {5 - 2 Sqrt[8], 5 + 2 Sqrt[8]}}, BoxRatios → {Sqrt[6], Sqrt[8], 1},
PlotPoints→ 100, PlotLegends→ Automatic]

reg5 = ImplicitRegion[ 0 ≤ Sqrt[(x - 3)2/6 + (y - 5)2/8] ≤ 1, {x, y}];

A2 := Plot3D[1, {x, y} ∈ reg5, PlotRange→ {{3 - 2 Sqrt[6], 3 + 2 Sqrt[6]}, {5 - 2 Sqrt[8], 5 + 2 Sqrt[8]}},
BoxRatios→ {Sqrt[6], Sqrt[8], 1}, PlotPoints→ 100, PlotLegends→ Automatic]

Show[A1, A2]

(Figure 10)
reg2 = ImplicitRegion[ 2 ≤ Sqrt[(x - 2)2/4 + (y - 3)2/5 + (z - 4)2/6] ≤ 3, {x, y, z}];

DensityPlot3D[ 3 - Sqrt[(x - 2)2/4 + (y - 3)2/5 + (z - 4)2/6], {x, y, z} ∈ reg2, PlotPoints → 100,
ColorFunction→ "SunsetColors", OpacityFunction→ 0.05, BoxRatios→ {Sqrt[4], Sqrt[5], Sqrt[6]},
PlotLegends→ Automatic]
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(Figure 11)
reg2 = ImplicitRegion[ 2 ≤ Sqrt[(x - 2)2/4 + (y - 3)2/5 + (z - 4)2/6] ≤ 3, {x, y, z}];

DensityPlot3D[ 3 - Sqrt[(x - 2)2/4 + (y - 3)2/5 + (z - 4)2/6], {x, y, z} ∈ reg2, PlotPoints → 100,
ColorFunction→ "SunsetColors", OpacityFunction→ 0.05, PlotRange→ {{-4, 8}, {3 - 4 Sqrt[5], 3 + 4
Sqrt[5]}, {-4, 4}, {0, 1}}, BoxRatios→ {Sqrt[6], Sqrt[8], 1}, PlotLegends→ Automatic]

(Figure 12)
reg4 = ImplicitRegion[ 2 ≤ Sqrt[(x - 2)2/4 + (y - 3)2/5] ≤ 3, {x, y}];

A1 := Plot3D[ 3 - Sqrt[(x - 2)2/4 + (y - 3)2/5], x, y ∈ reg4, ColorFunction→ "SunsetColors", PlotRange
→ {{-4, 8}, {3 - 4 Sqrt[5], 3 + 4 Sqrt[5]}}, BoxRatios→ {Sqrt[6], Sqrt[8], 1}, PlotLegends→ Automatic]

reg5 = ImplicitRegion[ 0 ≤ Sqrt[(x - 2)2/4 + (y - 3)2/5] ≤ 2, {x, y}];

A2 := Plot3D[1, {x, y} ∈ reg5, PlotRange→ {{-4, 8}, {3 - 4 Sqrt[5], 3 + 4 Sqrt[5]}}, BoxRatios→ {Sqrt[6],
Sqrt[8], 1}, PlotLegends→ Automatic]

Show[A1, A2]

(Figure 13)
reg2 = ImplicitRegion[ 2 ≤ Sqrt[(x - 5)2/24 + (y - 8)2/31 + (z - 11)2/26] ≤ 3, {x, y, z}];

h[a−] := DensityPlot3D[ 1 - ((x - 5)/(6 (2 - a) + 4 (3 - a)))2 - ((y - 8)/(8 (2 - a) + 5 (3 - a)))2 - ((z
- 11)/(4 (2 - a) + 6 (3 - a)))2, {x, y, z} ∈ reg2, PlotPoints → 100, ColorFunction → "SunsetColors",
OpacityFunction→ 0.05, BoxRatios→ {Sqrt[24], Sqrt[31], Sqrt[26]}, PlotLegends→ Automatic];

Show[h[1]]

(Figure 14)
reg2 = ImplicitRegion[ 2 ≤ Sqrt[(x - 1)2/24 + (y - 2)2/31 + (z - 3)2/26] ≤ 3, {x, y, z}];

h[a−] := DensityPlot3D[ 1 - ((x - 1)/(6 (2 - a) + 4 (3 - a)))2 - ((y - 2)/(8 (2 - a) + 5 (3 - a)))2 - ((z
- 3)/(4 (2 - a) + 6 (3 - a)))2, {x, y, z} ∈ reg2, PlotPoints → 100, ColorFunction → "SunsetColors",
OpacityFunction→ 0.05, BoxRatios→ {Sqrt[24], Sqrt[31], Sqrt[26]}, PlotLegends→ Automatic];

Show[h[1]]

(Figure 15)
g[a−] := ParametricPlot3D[{6 + (12 (3 - a) + 12 (2 - a)) Cos[s] + 24 (3 - a) (2 - a) (Cos[s])2, 15 +
(25 (3 - a) + 24 (2 - a)) Sin[s] Cos[t] + 40 (3 - a) (2 - a) (Sin[s])2 (Cos[t])2, 28 + (42 (3 - a) + 16
(2 - a)) Sin[s] Sin[t] + 24 (3 - a) (2 - a) (Sin[s])2 (Sin[t])2}, {s, 0, 2 Pi}, {t, - Pi/2, Pi/2}, PlotStyle→
Directive[RGBColor[0.2, 0.5 + a/2, 0.5 + a/2], Opacity[0.3]], BoxRatios→ {1, 1, 1}];
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tg = Table[g[i], i, 0, 0.5, 0.1];

Show[tg]

(Figure 16)
g[a−] := ParametricPlot3D[{(3 + 6 (2 - a) Cos[s])/(2 - 4 (3 - a) Cos[s]), (5 + 8 (2 - a) Sin[s] Cos[t])/(3
- 5 (3 - a)/4 Sin[s] Cos[t]), (7 + 4 (2 - a) Sin[s] Sin[t])/(4 - 6 (3 - a) Sin[s] Sin[t]) }, {s, 0, 2 Pi}, {t, - Pi/2,
Pi/2}, PlotStyle→ Directive[RGBColor[0.2, 0.5 + a/2, 0.5 + a/2], Opacity[0.3]], BoxRatios→ {1, 1, 1}];

tg = Table[g[i], {i, 0, 0.5, 0.1}];

Show[tg]

5. Conclusion

Research on various types of fuzzy numbers is crucial in fuzzy theory. While triangular fuzzy
numbers have received significant attention in research, trapezoidal fuzzy sets and pentagonal fuzzy
numbers have been relatively understudied. Through previous research, we conducted a study on
extension operators for generalized trapezoidal fuzzy sets in one dimension [1]. This research has
been cited in various fields. Additionally, we extended the results obtained in one dimension to two
dimensions by introducing parameter operators. This study, too, has been widely cited and applied for
research on parametric operators between 2D trapezoidal fuzzy sets. Thus, in this study, we aimed to
extend the parametric operators for trapezoidal fuzzy sets to three dimensions, deriving new results to
be utilized across various fields similarly to the findings in one and two dimensions. In conclusion, we
extended the parametric operator for trapezoidal fuzzy sets to three dimensions. Since it was defined
in 3D space, the domain became a convex set in the 3D space including the interior, thereby making the
alpha cut the boundary surface of a 3D elliptic curve. We defined and computed parametric operators
between 3D trapezoidal fuzzy sets, presenting the results in a graph. Although the graph was defined
in 3D space and rendered in 4D, it could not be depicted in 3D. The presented graph was illustrated in
three dimensions using a specific definition of a fuzzy number, where the membership function values
ranged between 0 and 1. The membership function value at each point was represented as the color
intensity at that point. Slicing the graph with a plane passing through the longest axis revealed different
function values expressed through varying color intensities on the plane. Notably, a certain portion at
the center, being a trapezoidal fuzzy set, shared the same color. By presenting the graph, this result
would be referenced and utilized in various fields, similar to the one-dimensional and two-dimensional
findings. These results suggest significant patterns within trapezoidal fuzzy sets, indicating diverse
applications across fields. Additionally, our study would pave the way for future research, offering
new avenues for deeper understanding and advancements in fuzzy set theory and its applications.
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