
Asia Pac. J. Math. 2024 11:105

CONSTRUCTION OF RLUF-TYPE COPULA GENERATED BY RÜSCHENDORF METHOD
TO MODEL TIME-VARYING DEPENDENCY FOR DENGUE Reff, PRECIPITATION AND

TEMPERATURE

JOE VINCENT B. DELUAO1,∗, MILBURN O. MACALOS2, JAYROLD P. ARCEDE2

1Department of Mathematics, University of Southeastern Philippines, Philippines
2Department of Mathematics, Caraga State University, Philippines

∗Corresponding author: joe.deluao@usep.edu.ph

Received Oct. 10, 2024

Abstract. In this study, an RLUF-type copula was constructed using the Rüschendorf method to model
the dependence structure between climatic variables: daily precipitation and temperature; and Dengue’s
Effective Reproductive number, Reff. We derived key dependence measures, including Kendall’s tau,
Spearman’s rho, and upper-lower tail dependences. Using the Inference function for margins, we found
that Reff follows a three-parameter logistic distribution, daily precipitation aligns with the three-parameter
Generalized Pareto distribution, and temperature fits the Burr distribution. These marginal distributions
were integrated into the RLUF-type copula, which demonstrated superior predictive performance compared
to traditional copulas, such as Clayton, Gumbel, and Frank, as indicated by lower AIC and BIC values.
We also derived a closed-form joint cumulative distribution function (CDF) based on Sklar’s theorem for
pairings of Reff with temperature and precipitation. Additionally, a time-varying version of the RLUF-type
copula was developed by estimating the dependence parameter θ through a rolling time-window approach
using the ARIMA routine, which further improved the prediction accuracy. This time-varying copula was
then applied to predict the probability of a decrease in dengue transmission, given changes in climatic
conditions.
2020 Mathematics Subject Classification. 62H05; 60E05.
Key words and phrases. RLUF copula; Ruschendorf method; time-varying copula; conditional probability
models; ARIMA.

1. Introduction

Dengue fever continues to pose a critical public health challenge in the Philippines, a situation
exacerbated by the country’s warm and humid climate, which creates ideal breeding conditions for the
Aedes aegypti mosquito, the primary vector of the dengue virus. Recent epidemiological data highlight
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a 30% rise in dengue cases as of June 29, 2024, totaling 90,119 cases and 233 deaths, which marks a 19%
increase compared to the same period in 2023. Particularly alarming is the Caraga Region, where cases
have surged by 144%, reaching epidemic levels with 7,122 cases and 39 deaths reported from January 1
to August 17, 2024 [1,27]. These figures illustrate the intensifying strain on public health resources and
underscore the urgency of identifying effective mitigation strategies.

Research increasingly demonstrated that dengue transmission is intricately linked to climatic vari-
ables, particularly to precipitation and temperature. Precipitation, by creating stagnant water bodies,
facilitates mosquito breeding, leading to increased mosquito populations and consequently, higher
transmission rates [6, 23]. Temperature also plays a critical role by accelerating mosquito life cycles
and reducing the incubation period of the virus, thereby enhancing the transmission efficiency [5, 35].
Studies have consistently shown that as the temperature increases, dengue incidence also tends to
increase [6,16, 21, 30, 37–39]. Moreover, the interaction between high temperatures and heavy rainfall
compounds this effect, highlighting the complex and non-linear relationships between climate and dis-
ease spread [6,16,37]. Understanding these dependencies is essential for developing robust forecasting
and intervention strategies.

Traditionally, the prediction of dengue incidence has relied on statistical models such as regression
analysis and time series models [22,25], which often assume linear relationships and focus on marginal
effects. These models, however, may not adequately capture the non-linear and joint dependencies
between climatic factors. For example, the relationship between temperature and precipitation is likely
to be highly complex, and an isolated focus on either factor may not reflect their combined impact on
dengue transmission. Moreover, machine learning approaches have gained popularity in recent years
for spatial modeling of dengue spread [15, 19, 40]. While these models can achieve high predictive
accuracy, they often function as "black boxes," offering little interpretability regarding the specific
interactions between climatic factors and disease outcomes. Additionally, machine learning models
may suffer from overfitting, especially in the presence of limited or noisy epidemiological data, and
they typically do not account for the temporal lag effects that are crucial in understanding the delayed
impact of climatic conditions on dengue outbreaks.

To address these limitations, copula models offer a promising alternative by providing a flexible
framework for modeling complex dependencies between multiple variables, independent of their
marginal distributions. Introduced by Sklar in 1959, copulas have been widely adopted in fields such as
finance and insurance, following the pioneeringwork of Embrechts and co-authors in 1999 [13,28]. More
recently, they have found applications in diverse areas, including energy, forestry, and environmental
sciences [4], where understanding the dependencies between variables is critical for accurate prediction
and risk assessment.
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Copula models are particularly advantageous in the context of dengue transmission, for several
reasons. First, they allow for the modeling of nonlinear dependencies, capturing the intricate relation-
ships between temperature, precipitation, and dengue incidence more effectively than traditional linear
models. For instance, copulas can model situations in which the combined effects of temperature and
precipitation lead to a disproportionate increase in dengue transmission, effects that would be missed
in a linear model. Second, copulas enable the use of different marginal distributions for each variable,
which allows for greater flexibility whenmodeling climatic variables that may follow different statistical
distributions. This is particularly useful when dealing with variables such as precipitation, which often
exhibits skewed distributions, while temperature may follow a more symmetric pattern [18,29].

In addition, copulas can be extended to incorporate time-varying structures [9], which are critical
for modeling the dynamic relationships between climatic factors and dengue transmission over time.
Climatic variables such as rainfall may influence dengue incidence with a temporal lag, and dengue
cases often rise several weeks after periods of heavy rainfall owing to the mosquito breeding cycle [8].
Time-varying copulas allow us to model these lead-lag relationships, capturing how the dependence
between climatic factors and dengue changes dynamically over time. Finally, copulas are uniquely
suited for capturing tail dependence [10] and the tendency of extreme climatic events (e.g., an un-
usually hot and wet season) to coincide with extreme dengue outbreaks. This feature makes copulas
particularly valuable for predicting high-risk scenarios and providing better early warning for public
health interventions.

While many existing dengue prediction models have focused on marginal effects or advanced ma-
chine learning techniques, a few studies have applied copula models to investigate the joint dependence
of precipitation and temperature [3, 7, 11, 17, 31, 32, 41, 42]. To date, there have been no copula studies
related to dengue transmission. This represents a significant gap in the literature, and addressing this
gap is essential for improving dengue forecasting models.

This study investigated the dependence structure between dengue spread and climatic factors, such
as precipitation and temperature, using copula models to fill this gap. Specifically, we construct a
novel RLUF copula based on the Rüschendorf method and compare its performance in modeling these
dependencies to that of existing Archimedean copulas by employing the inference function for margins
(IFM) method. In addition, we will extend our models to incorporate time-varying copulas, allowing
us to capture the dynamic and evolving relationships between dengue spread and climatic factors. By
modeling both the nonlinear interactions and the temporal lags between climate variables and dengue
incidence, our approach aims to provide more accurate and interpretable insights into the drivers of
dengue outbreaks.
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2. Materials and Methods

2.1. Data Collection. Data on daily dengue cases in the Caraga Region, Philippines, from January 2015
to December 2020, were used to compute the dengue effective reproductive number, Reff, using the
SIR-UV model in [33]. Daily temperature (°C) and precipitation (mm) data for the same period were
sourced from the NASA POWER Data Viewer https://power.larc.nasa.gov/data-access-viewer/.
These variables form the basis for modeling the dependency structure.

2.2. Copula Framework. In this section, we describe the construction of a copula and how it will be
applied to model the dependency of the climatic factors and the spread of dengue.

A bivariate copula C is a function of two variables U1 and U2, each defined in [0, 1] such that:
(1) The range of the copula C(u1, u2) is in the unit interval [0, 1];
(2) C(u1, u2) = 0 if any ui = 0 for i = 1, 2;
(3) C(1, u2) = u2 and C(u1, 1) = u1.
Sklar’s theorem shows the relationship between a bivariate copula function C and a bivariate

distribution. Let X1 and X2 be two random variables and let F (x1, x2) = P (X1 ≤ x1, X2 ≤ x2) be
the joint distribution function with marginals F (x1) and F (x2). Then, there exists a bivariate copula
function such that

F (x1, x2) = C(F (x1), F (x2)).

Therefore, define ui = F (xi),
C(u1, u2) = F (x1, x2).

Several copula functions can be used to model the relationship between rainfall and temperature.
The most common include the Gaussian copula, Student’s t-copula, Clayton copula, and the Gumbel
copula. The choice of copula function depends on the nature of the relationship between rainfall and
temperature and the available data. However, in this paper, we will construct such a function through
Rüschendord method [36], while verifying it to be a copula, thanks to a result by [34] and compared it
to Clayton, Ali-Mikhail-Haq (AMH), Frank, Gumbel, Joe, Farlie-Gumbel-Morgenstern (FGM) copulas.

Because we only need a two-dimensional construction, we follow the construction presented in [26].
However, the procedure can be applied to a multivariate case, see [2]. The procedure starts with an
arbitrary real integrable function f(x, y) on [0, 1]2 and compute its marginals (i) f1(x) =

∫ 1
0 f(x, y)dy,

(ii) f2(y) =
∫ 1

0 f(x, y)dx and (iii)A =
∫ 1

0

∫ 1
0 f(x, y)dydx. By reassembling, f1(x, y) = f(x, y)− f1(x)−

f2(y) +A, we set c(x, y) = 1 + θf1(x, y), so that we have constructed the function

C(u, v) = uv + θ

∫ u

0

∫ v

0
f1(x, y)dydx (1)

to be verified as copula through following result.

https://power.larc.nasa.gov/data-access-viewer/
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Theorem 2.1. Let f and g be two non-zero absolutely continuous functions defined on [0, 1] such that f(0) =

f(1) = g(0) = g(1). Let Cθ be a function defined on [0, 1]2 by Ctheta(uv) = uv + θf(u)g(v), with θ ∈ R.

Then, Cθ is a copula if and only if

− 1

max{αγ, βδ}
≤ θ ≤ − 1

min{αδ, βγ}

where α = inf{f ′(u) : u ∈ A} < 0, β = sup{f ′(u) : u ∈ A} > 0, γ = inf{g′(v) : v ∈ B} < 0, and

δ = sup{g′(v) : v ∈ B} > 0, with A = {u ∈ [0, 1] : f ′(u) exists} and B = {v ∈ [0, 1] : g′(v) exists}.

Theorem 2.1 specifies the necessary and sufficient requirements for a bivariate copula to be charac-
terized by two real functions, f and g. It asserts that the function Cθ is a valid copula if and only if the
functions f and g are absolutely continuous on [0,1] and meet certain derivative criteria. The copula
Cθ is coined in literature as the RLUF copula [43].

2.3. Model Fitting and Validation. In this study, model fitting for the copula was conducted using the
inference function for margins (IFM), a two-step procedure. First, the marginal distribution of each
variable was estimated independently. This involved selecting the appropriate univariate distribution
for each variable based on statistical criteria such as the chi-square test, Mean Squared Error (MSE),
Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). The process begins by
fitting the observed data to a candidate univariate distribution, where the parameters of the chosen
distribution are estimated by minimizing the MSE:

MSE =
1

n−m

n∑
i=1

(Oi − Ei)2

where n represents the number of observations,m the number of fitted parameters, Oi the observed
value, and Ei the expected value. If the chi-square test statistic is less than the critical value, the null
hypothesis (H0) is accepted, indicating that the selected distribution provides a satisfactory fit to the
data. Otherwise, alternative distributions were tested iteratively until the best fit was determined,
which was the one with the lowest MSE, AIC, and BIC. Once the best-fitting marginal distributions
are identified, the second step involves selecting and fitting the copula model. The parameters of the
selected copula were estimated by fitting the model to the data using methods such as the maximum
likelihood estimation (MLE). The copula’s goodness of fit was again assessed using statistical criteria
(MSE, AIC, and BIC) to ensure that the model accurately captured the dependencies between the
variables. For each pair of variables, the copula with the smallest MSE, AIC, and BIC values was
considered to be the best-fitting model. For example, in fitting the copula for the relationship between
Dengue’s effective reproductive number (Reff) and precipitation, the RLUF copula outperformed other
models such as the Clayton and Frank copulas. The final copula minimized the MSE and yielded lower
AIC and BIC values, indicating a superior fit to the observed data.
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Time-varying copulas were introduced by estimating copula parameter θt using a rolling time
window approach. This method allows the copula parameter to vary over time, thus capturing the
evolving dependencies between variables. The estimation of θt was further refined using ARIMA to
forecast the behavior of the parameters, ensuring robust and accurate modeling of the dependencies
between the climatic factors and dengue transmission.

Next, the selected univariate distributions for the random variables X (e.g., Reff) and Y (e.g.,
precipitation or temperature) are incorporated into the time-varying copula using Sklar’s theorem,
yielding a time-varying bivariate distribution function. This construction allows for the derivation of
conditional probabilities, which determine the probability of one variable given a fixed value of the
other. For instance, the conditional probability P (X ≤ x|Y = y; θt)was computed to provide insight
into how changes in one climatic factor (such as increased precipitation) affected the transmission
of dengue. The final step is to interpret the graph of the conditional probability P (X ≤ x|Y = y; θt).
This interpretation provides valuable insights into the relationship between the variables and their
dependency structure, facilitating predictions based on conditional probabilities derived from the
copula model.

3. Results and Discussion

3.1. Construction of RLUF copula. Inspired by extreme value theory, we set f(x, y) = xaybe−c1x
m−c2yn

with a, b ∈ R, c1, c2 > 0, andm,n are not equal to zero. Using some formulae in [14], we are able to
compute f1, f2 and A as follows

f1(x) =
xae−c1x

m

nc
b+1
n

2

γ

(
b+ 1

n
, c2

)
, (2)

f2(y) =
ybe−c2y

n

mc
a+1
m

1

γ

(
a+ 1

m
, c1

)
(3)

and
A =

1

mc
a+1
m

1 nc
b+1
n

2

γ

(
a+ 1

m
, c1

)
γ

(
b+ 1

n
, c2

)
. (4)

Noting the expression of f1(x, y), then c(x, y) leads to the following function

C(u, v) = uv + θ

γ (a+1
m , c1u

m
)

mc
a+1
m

1

−
γ
(
a+1
m , c1

)
mc

a+1
m

1

u

γ ( b+1
n , c2v

n
)

nc
b+1
n

2

−
γ
(
b+1
n , c2

)
nc

b+1
n

2

v

 . (5)

We claim that C in (5) is an RLUF copula.

Theorem 3.1. The function C in (5) is RLUF copula for

− 1

max{αγ0, βδ}
≤ θ ≤ − 1

min{αδ, βγ0}
,
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where
α = − 1

a+1

Γ(a+1
m

,c1)
mcm1

, β =
(

a
mc1

)a
e−

a
m + a,

γ0 = − 1
b+1

Γ( b+1
n
,c2)

ncn2
, δ =

(
b
nc2

)b
e−

b
n + γ0,

with a, b ∈ R, c1, c2 > 0 andm,n are not equal to zero.

Proof. We apply Theorem 2.1 by letting

f1(u) =
1

mc
a+1
m

1

[
γ

(
a+ 1

m
, c1u

m

)
− γ

(
a+ 1

m
, c1

)
u

]
,

and
f2(v) =

1

nc
b+1
n

2

[
γ

(
b+ 1

n
, c2v

n

)
− γ

(
b+ 1

n
, c2

)
v

]
.

Then f1(0) = f1(1) = f2(0) = f2(1) = 0. We now compute the admissible range of θ by calculating the
extrema of the functions f ′1 and f ′2 given by

f ′1(u) = uae−c1u
m −

γ
(
a+1
m , c1

)
mc

a+1
m

1

,

and
f ′2(v) = vbe−c2v

n −
γ
(
b+1
n , c2

)
nc

b+1
n

2

.

Moreover, we have
f ′′1 (u) = uae−c1u

m
(a−mc1u

m) ,

and
f ′′2 (v) = vbe−c2v

n
(b− nc2v

n) ,

respectively.
By setting these derivatives to zero, we obtain the critical values: u = 0,

(
a
mc1

) 1
m , and v = 0,

(
b
nc2

) 1
n .

Since u ∈ [0, 1], we have the following intervals:
(
0,
(

a
mc1

) 1
m

)
and

((
a
mc1

) 1
m
, 1

)
. For ε > 0, the test

numbers are
(

a
(m+ε)c1

) 1
m ∈

(
0,
(

a
mc1

) 1
m

)
and

(
a

(m−ε)c1

) 1
m ∈

((
a
mc1

) 1
m
, 1

)
. We substitute these test

numbers to f ′′1 to determine the interval the function f ′1 is increasing or decreasing.
Observe that

f ′′1

((
a

(m+ ε)c1

) 1
m

)
=

[
a

(m+ ε)c1

]a−1
m

e−
a

m+ε

(
aε

m+ ε

)
> 0.

Inferring that f ′1 is increasing on the interval
(
0,
(

a
mc1

) 1
m

)
.

Similarly,

f ′′1

((
a

(mε)c1

) 1
m

)
=

[
a

(m− ε)c1

]a−1
m

e−
a

m−ε

(
− aε

m− ε

)
< 0,
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concluding that f ′1 is decreasing on the interval
((

a
mc1

) 1
m
, 1

)
.

Based on these computations, we deduced that the absolute maximum of f ′1 occurs at u =
(

a
mc1

) 1
m

which is
f ′1

((
a

mc1

) 1
m

)
=

(
a

mc1

) a
m

e−
a
m −

γ
(
a+1
m , c1

)
mc

a+1
m

1

,

leaving the endpoints u = 0 and u = 1 to be compared for the possible occurrence of the absolute
minimum.

Solving for f ′1(0) = −
γ(a+1

m
,c1)

mc
a+1
m

1

and f ′1(1) = e−c1 − γ(a+1
m

,c1)

mc
a+1
m

1

implies f ′1(0) < f ′1(1), which means that
the absolute minimum occurs at u = 0.

Hence,

α = inf{f ′1(u) : u ∈ [0, 1]} = f ′1(0) = −
−γ
(
a+1
m , c1

)
mc

a+1
m

1

,

and

β = sup{f ′1(u) : u ∈ [0, 1]} = f ′1

((
a

mc1

) 1
m

)
=

(
a

mc1

) a
m

e−
a
m + α.

A similar solution can be followed to obtain

γ0 = inf{f ′2(v) : v ∈ [0, 1]} = f ′2(0) = −
γ
(
b+1
n , c2

)
mc

b+1
n

2

,

and

δ = sup{f ′2(v) : v ∈ [0, 1]} = f ′2

((
b

nc2

) 1
n

)
=

(
b

nc2

) b
n

e−
b
n + δ.

Therefore, the function C is an RLUF copula. �

3.2. Dependence Properties of the Derived RLUF Copula. In this section, we derive the Kendall’s
tau, Spearman’s rho, and tail dependence of RLUF copula.

Theorem 3.2. Let C be the RLUF copula defined in Theorem 3.1. Then the Kendall’s tau associated with C is

given by

τ(C) =
8θ

mnc
a+1
m

1 c
b+1
n

2

γ (a+1
m , c1

)
2

−
γ
(
a+2
m , c1

)
c

1
m
1

γ ( b+1
n , c2

)
2

−
γ
(
b+2
n , c2

)
c

1
n
2

 . (6)

Proof. The Kendall’s tau can be derived using the following expression from [34],

τ(C) = 8θ

∫ 1

0
f1(u)du ·

∫ 1

0
f2(v)dv.
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We compute∫ 1

0
f1(u)du =

1

mc
a+1
m

1

[∫ 1

0
γ

(
a+ 1

m
, c1u

m

)
du−

∫ 1

0
γ

(
a+ 1

m
, c1

)
udu

]

=
1

mc
a+1
m

1

[∫ 1

0
γ

(
a+ 1

m
, c1u

m

)
du−

γ
(
a+1
m , c1

)
2

]
.

We can solve the integral using integration by parts where we assign the following variables:

p = γ

(
a+ 1

m
, c1u

m

)
; dq = du,

and

dp = (c1u
m)

a+1
m e−c1u

m ·mc1u
m−1du; q = u.

which leads to∫ 1

0
γ

(
a+ 1

m
, c1u

m

)
du = uv

(
a+ 1

m
, c1u

m

) ∣∣∣∣1
0

−
∫ 1

0
(c1u

m)
a+1
m e−c1u

m ·mc1u
m−1du

= γ

(
a+ 1

m
, c1

)
− γ

(
a+ 2

m
, c1

)
1

cm1

=
1

mc
a+1
m

1

γ (a+1
m , c1

)
2

−
γ
(
a+2
m , c1

)
c

1
m
1

 .
Likewise ∫ 1

0
f2(v)dv =

∫ 1

0

1

nc
b+1
n

2

[
γ

(
b+ 1

n
, c2v

n

)
− γ

(
b+ 1

n
, c2

)
v

]
dv

=
1

nc
b+1
n

2

γ ( b+1
n , c2

)
2

−
γ
(
b+2
n , c2

)
c

1
n
2

 .
Combining the results of the two integrals, we obtain the expression as desired. �

Since ρ(C) = 3
2τ(C), we have the following result.

Corollary 3.2.1. Let C be the RLUF copula defined in Theorem 3.1. Then the Spearman’s rho associated with C

is given by

ρ(C) =
12θ

mnc
a+1
m

1 c
b+1
n

2

γ (a+1
m , c1

)
2

−
γ
(
a+2
m , c1

)
c

1
m
1

γ ( b+1
n , c2

)
2

−
γ
(
b+2
n , c2

)
c

1
n
2

 .
Remark 1. We notice that RLUF copula does not register an upper and lower tail dependency.

We calculate the upper tail dependence

λU = lim
u→1−

1− 2u+ C(u, u)

1− u
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by noting that

C(u, u) = u2+
θ

mnc
a+1
m

1 c
b+1
n

2

[
γ

(
a+ 1

m
, c1u

m

)
− γ

(
a+ 1

m
, c1

)
u

] [
γ

(
b+ 1

n
, c2u

n

)
− γ

(
b+ 1

n
, c2

)
u

]
and

dC(u, u)

du
= 2u+

θ

mnc
a+1
m

1 c
b+1
n

2

[
γ

(
a+ 1

m
, c1u

m

)
− γ

(
a+ 1

m
, c1

)
u

]
[
(c2u

n)
b+1
n
−1 e−c2u

n (
nc2u

n−1
)
− γ

(
b+ 1

n
, c2

)]
+

[
γ

(
b+ 1

n
, c2u

n

)
− γ

(
b+ 1

n
, c2

)
u

] [
(c1u

m)
a+1
m
−1 e−c1u

m (
mc1u

m−1
)
− γ

(
a+ 1

m
, c1

)]
,

which leads to
λU = lim

u→1−

−2 + dC(u,u)
du

−1
= lim

u→1−

−2 + 2

−1
= 0.

This is similar to the lower tail dependence

λL = lim
u→0+

C(u, u)

u
= 0.

Although the RLUF copula demonstrates superior performance in capturing the non-linear depen-
dencies between Reff and climatic variables, as we will see in the next sections, the RLUF copula does
not exhibit tail dependence, as both the upper and lower tail dependence coefficients (λU and λL) are
zero. This suggests that the model is less sensitive to extreme values of temperature and precipitation,
which may coincide with severe Dengue outbreaks. Future research could explore copula modifications
that incorporate tail dependence for improvement.

3.3. Probabilistic Modeling with Dengue Reff. We analyzed the relationship between Dengue’s
effective reproductive number (Reff), precipitation, and temperature in the Caraga Region. Table 1
provides the descriptive statistics of these variables from January 2015 to December 2020.

Table 1. Descriptive Statistic of the Dengue Reff, Precipitation and Temperature in
Caraga Region January 2015 to December 2020

Variables Mean SD Minimum Maximum Skewness Kurtosis

Reff 0.964 0.357 0.00 1.95 -0.381 0.0889
Precipitation 7.223 9.521 0.00 114.99 4.223 30.7571
Temperature 24.068 0.82 20.5 27.15 -0.309 0.4553

The mean Reff of 0.964 indicates moderate disease transmission, with values ranging from 0 to
1.95. Precipitation data exhibits high variability with frequent extreme events, while temperature data
shows stability, averaging 24.07°C. Precipitation has a high skewness (4.223), suggesting infrequent
but intense rainfall, while the temperature and Reff distributions are relatively symmetric.
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Next, we fit the distribution of the three underlying variables to theoretical distributions. Two tests
were used for each distribution: (1) the Chi-Square Goodness of Fit test and; (2) the least MSE, AIC
and BIC.

Table 2. Comparison of Fitted Probability Distribution to Reff of Dengue Disease in
Caraga Region at a 95% Confidence Level (α = 0.05)

Distributions Parameters p-value Conclusion MSE AIC BIC

3-parameter Dagum
α = 11.442

β = 1.336

k = 0.20992

1.00 Accept H0 0.0165 -3890.64 -8967.69

3-parameter Gamma
α = 0.34706

β = 1.39188

k = 6.72888

1.00 Accept H0 0.00017 -8458.16 -19466.38

3-parameter Logistic
µ = 0.98901

σ = 0.19822

k = −0.07808
1.00 Accept H0 0.00013 -8458.16 -19466.38

Table 2 compares the fit of three probability distributions (Dagum, Gamma, Logistic) to the Dengue
Reff data in the Caraga Region. All distributions passed the chi-square goodness-of-fit test with a
p-value of 1.00, indicating that the null hypothesis (H0) was not rejected. Among the distributions,
the 3-parameter Logistic model exhibited the best fit with the lowest Mean Squared Error (MSE =
0.00013), and the lowest Akaike Information Criterion (AIC = -8458.16) and Bayesian Information
Criterion (BIC = -19466.38). The 3-parameter Gamma model followed closely in terms of fit, with a
slightly higher MSE (0.00017). The Dagum distribution, while still acceptable, showed a relatively
higher MSE (0.0165) and thus a weaker fit compared to the other two models.

Figures 1A and 1B visually confirm the strong fit of the 3-parameter Logistic distribution, as both
the CDF and PDF curves align well with the empirical data.

Table 3 compares the fit of three probability distributions (General Pareto, Pearson 6, Burr) to the
precipitation data in the Caraga Region. All distributions passed the chi-square goodness-of-fit test
with a p-value of 1.00, meaning the null hypothesis (H0) was not rejected.

The 3-parameter General Pareto distribution provided the best fit, as indicated by the lowest Mean
Squared Error (MSE = 0.00003), Akaike Information Criterion (AIC = -9825.86), and Bayesian In-
formation Criterion (BIC = -22615.63). The Burr distribution also performed well with a low MSE
(0.00004), although it exhibited slightly higher AIC and BIC values. In contrast, the 3-parameter
Pearson 6 distribution showed a weaker fit with the highest MSE (0.2188) and significantly higher
AIC (-1439.94) and BIC (-3306.33) values compared to the other two distributions. Figures 1C and 1D
visually confirm its fit.
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Table 3. Comparison of Fitted Probability Distribution to Precipitation in Caraga Region
at a 95% Confidence Level (α = 0.05)

Distributions Parameters Chi-Square Test MSE AIC BIC

p-value Conclusion

3-parameter

General Pareto

µ = −10965
σ = 5.8902

k = 0.1969

1.00 Accept H0 0.00003 -9825.86 -22615.63

3-parameter

Pearson 6

α1 = 1.848

α2 = 5.9111

β = 39.161

1.00 Accept H0 0.2188 -1439.94 -3306.33

Burr
α = 0.937

β = 49617

k = 7.305

1.00 Accept H0 0.00004 -9518.18 -21907.15

Table 4. Comparison of Fitted Probability Distribution to Temperature in Caraga Region
at a 95% Confidence Level (α = 0.05)

Distributions Parameters Chi-Square Test MSE AIC BIC

p-value Conclusion

Burr
α = 43.433

β = 24.612

k = 2.0011

1.00 Accept H0 0.00003 -9639.58 -22186.69

Dagum

α = 15.247

β = 5.0332

g = 19.625

k = 0.37395

1.00 Accept H0 0.00009 -8803.10 -20257.55

Kumaraswamy

α1 = 5.4811

α2 = 283.10

a = 20.093

b = 32.107

1.00 Accept H0 0.00011 -8661.51 -19931.51

Table 4 indicates that all three distributions (Burr, Dagum, and Kumaraswamy) provide a satisfactory
fit to the temperature data, as evidenced by the p-value of 1.00 for the Chi-Square Test, which leads
to the acceptance of the null hypothesis H0. Among the distributions, the Burr distribution had the
lowest Mean Squared Error (MSE) and Bayesian Information Criterion (BIC), suggesting that it might
provide the best fit to the data. The AIC values further support the good fit of these distributions, with
lower AIC values indicating better fit. Figures 1E and 1F also confirm the fit.
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(a) 3-parameter Logistic CDF Fitted to
Reff

(b) 3-parameter Logistic PDF Fitted to
Reff

(c) 3-parameter General Pareto CDF Fit-
ted to Precipitation

(d) 3-parameter General Pareto PDF Fit-
ted to Precipitation

(e) Burr CDF Fitted to Temperature (f) Burr PDF Fitted to Temperature

Figure 1. Comparison of CDF and PDF Fits for Different Distributions in the Caraga
Region
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Table 5. Model Comparison of the Distribution of Effective Reproductive Number and
Precipitation in Caraga Region at a 95% Confidence Level (α = 0.05)

Copula Parameters p-value Conclusion MSE AIC BIC

Clayton θ = 0.055 1.00 Accept H0 0.00001128 -10838.18 -24952.75
AMH θ = 0.101 1.00 Accept H0 0.000015 -10552.53 -24295.03
Frank θ = −0.00099 1.00 Accept H0 0.037 -3127.49 -7198.24
Gumbel θ = 1.00 1.00 Accept H0 0.058 -2703.39 -6221.70
Joe θ = 1.029 1.00 Accept H0 0.00002 -10269.57 -23643.47
FGM θ = 0.102 1.00 Accept H0 0.00001 -10542.09 -24270.98

a = 0.122

b = −0.725

c1 = 2.657

RLUF c2 = 4.704 1.00 Accept H0 8.62× 10−6 -11081.26 -25493.94
m = 0.409

n = 1.100

θ = 0.1774

Table 5 indicates that all copula models tested had p-values of 1.00 in the Chi-Square Goodness of
Fit test, leading to the acceptance of the null hypothesis (H0) that the sample was drawn from the
specified copula. This acceptance suggests that the sample data for the distribution of the effective
reproductive number and precipitation fit well with all tested copula models. However, further analysis
based on the MSE, AIC, and BIC values can provide insights into the relative goodness of fit among
the copula models. Among the tested copula models, the RLUF copula had the smallest MSE, AIC,
and BIC, indicating that the RLUF copula is the most suitable copula for describing the simultaneous
occurrence of Reff and precipitation.
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Table 6. Model Comparison of the Distribution of Effective Reproductive Number and
Temperature in Caraga Region at a 95% Confidence Level (α = 0.05)

Copula Parameters p-value Conclusion MSE AIC BIC

Clayton θ = 0.0682 1.00 Accept H0 9.75× 10−6 -10976.40 -25271.01
AMH θ = 0.137 1.00 Accept H0 0.000011 -10838.45 -24953.37
Frank θ = −0.0009 1.00 Accept H0 0.038 -3107.34 -7151.83
Gumbel θ = 1.000 1.00 Accept H0 0.057 -2713.36 -6244.67
Joe θ = 1.045 1.00 Accept H0 0.000018 -10362.67 -23857.85
FGM θ = 0.140 1.00 Accept H0 0.000011 -10818.58 -24907.61

a = 0.063

b = −0.570

c1 = 1.014

RLUF c2 = 1.014 1.00 Accept H0 7.40× 10−6 -11226.63 -25828.66
m = 0.989

n = 0.950

θ = 0.223

Similarly, Table 6 shows the RLUF copula’s superior predictive performance compared with the
traditional copulas considered. This implies that the RLUF copula better captures the nonlinear
dependencies between dengue’s Reff and climatic variables, thus offering a more accurate model for
understanding and predicting the relationship between climate conditions and dengue transmission.

According to Sklar’s theorem, the bivariate distribution of simultaneous occurrence of Reff and
precipitation is

F1(x, y) =
1 − 1

(1+0.3e−y)5

1 + (1.4 − 0.4x)12.5
+0.02

[
1.6 − Γ

(
2.7, 2.7

(
1

1 + (1.4 − 0.4x)12.5

)0.41
)

− 0.9

1 + (1.4 − 0.4x)12.8

]
[

0.002 − 2 − Γ

(
0.2, 4.7

(
1 − 1

(1 + 0.3y)5.1

)1.1
)

+
3.6

(1 + 0.03y)5.1

] (7)

and the bivariate distribution of simultaneous occurrence of Reff and temperature is

F2(x, y) =
1 − 1

(1+3.8×10−61y43.4)2

1 + (1.4 − 0.4x)12.8
+0.2

[
1 − Γ

(
1.1, 1.01

(
1

1 + (1.4 − 0.4x)12.8

)0.99
)

− 0.6

1 + (1.4 − 0.4x)12.8

]
[

0.3 − Γ

(
0.5, 1.01

(
1 − 1

(1 + 3.8 × 10−61y43.4)2

)0.95
)

+
1.7

(1 + 3.8 × 10−61y43.4)2

]
.

(8)
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(a) Bivariate Logistic-General Pareto Fitted to Si-
multaneous Occurrence of Reff and Precipitation

(b) Bivariate Logistic-Burr Fitted to Simultaneous
Occurrence of Reff and temperature

Figure 2. Bivariate Distributions of Simultaneous Occurrence of Reff and Precipitation,
and Reff and Temperature

In the subsequent section, we introduce the time-varying RLUF copula, which provides an additional
layer of accuracy by dynamically adjusting dependency parameters over time. The rolling time window
approach, combined with ARIMA forecasting, allows the model to reflect real-time changes in climatic
conditions and their impact on dengue transmission. This dynamic modeling marks a substantial
advancement over static copula models, which cannot account for the evolving dependencies.

First, we generate a sequence of values of the copula parameter θ of the RLUF copula using the rolling
window approach with a length of 100 data points per window. We fit 100 data points to the RLUF
copula holding the parameters a, b, c1, c2,m and n and estimate the copula parameter, then traverse
one data point while maintaining the length of the window.
Next, we modeled the sequence of the generated copula parameter values using the ARIMA process.
Figures 3a and 3b present the time series plot of the copula parameter θt for the bivariate distribution of
Reff and precipitation and bivariate distribution of Reff and temperature, respectively, based on RLUF
copula while holding other parameters constant.
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(a) Time Series Plot of the Estimated Copula Pa-
rameter θt for Reff and Precipitation

(b) Time Series Plot of the Estimated Copula Pa-
rameter θt for Reff and Temperature

Figure 3. Time Series Plots of the Estimated Copula Parameter θ

Tables 7 and 8 provide the Augmented-Dicky-Fuller (ADF) test for the copula parameter θt for the
distribution of Reff and precipitation, and the distribution of Reff and temperature, respectively, at a
95% confidence level (α = 0.05). The result shows that the distributions’ copula parameter θt should
first undergo differencing (d = 1) to satisfy the stationary assumption.

Table 7. Augmented Dickey-Fuller Test for Estimated Copula Parameter θt for Reff and
Precipitation at a 95% Confidence Level (α = 0.05)

Differencing Test Statistic
Critical Value

(α = 0.05)
p-value Conclusion

0 -3.17846 -3.41259 0.089 Accept H0

1 -4.17525 -3.41259 0.005 Reject H0

Table 8. Augmented Dickey-Fuller Test for Estimated Copula Parameter θt for Reff and
Temperature at a 95% Confidence Level (α = 0.05)

Differencing Test Statistic
Critical Value

(α = 0.05)
p-value Conclusion

0 -3.25114 -3.41259 0.075 Accept H0

1 -3.88913 -3.41259 0.013 Reject H0
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From Table 9, the best ARIMA model for the time series of the estimated copula parameter θt for the
distribution of Reff and precipitation is ARIMA(1, 1, 2) because it has the lowest values of AIC and
BIC.

Table 9. Comparison of the Possible ARIMAModels for the Time Series of Estimated
Copula Parameter θt for Reff and Precipitation with I = 1

p q Loglikelihood AIC BIC

1 1 10394 -20780 -20757

1 2 10394.4 -20778.9 -20750.6

Similarly, Table 10 provides evidence that the best time-series model for describing the behavior of
the estimated copula parameter θt for the distribution of Reff and temperature is ARIMA(1, 1, 1).

Table 10. Comparison of the Possible ARIMA Models for the Time Series of Estimated
Copula Parameter θt for Reff and Temperature with I = 1

p q Loglikelihood AIC BIC

1 1 10079.5 -20151 -20128.4

1 2 10079.8 -20149.6 -20121.4

1 3 10080.2 -20148.4 -20114.5

From Table 11, the equation used to forecast θt for the distribution of Reff and precipitation based on
RLUF copula will be

θt = 0.3495θt−1 + εt + 0.124εt−1 + 6× 10−6 (9)

where εt and εt−1 are the errors.
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Table 11. Final Estimates of the Parameters of ARIMAModels for the Time Series of
Estimated Copula Parameter θt for Reff and Precipitation with I = 1

Process Coefficients SE t-value p-value

AR(1) 0.3495 0.0875 3.99 0.00

MA(1) 0.1249 0.0927 1.35 0.178

Constant 6× 10−6 3.2× 10−4 0.19 0.853

Likewise, based on the final estimates of the parameters of ARIMAmodels presented in Table 12, the
equation used to forecast θt for the distribution of Reff and temperature based on RLUF copula will be

θt = 0.5474θt−1 + εt + 0.387εt−1 + 4× 10−6 (10)

where εt and εt−1 are the errors.

Table 12. Final Estimates of the Parameters of ARIMAModels for the Time Series of
Estimated Copula Parameter θt for Reff and Temperature with I = 1

Process Coefficients SE t-value p-value

AR(1) 0.5474 0.0902 6.07 0.00

MA(1) 0.3870 0.0994 3.89 0.00

Constant 4× 10−6 2.6× 10−5 0.16 0.872

Tables 13 and 14 shows the superiority of the time-varying RLUF copula over RLUF in modeling the
distribution of Reff and precipitation with fixed parameters (a = 0.122, b = −0.725, c1 = 2.657, c2 =

4.704,m = 0.409 and n = 1.1), and the distribution of Reff and temperature with fixed parameters
(a = 0.063, b = −0.57, c1 = 1.014, c2 = 1.014,m = 0.989 and n = 0.95).
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Table 13. Model Comparison of the Distribution of Effective Reproductive Number and
Precipitation with Fixed Parameters (a = 0.122, b = −0.725, c1 = 2.657, c2 = 4.704,m =

0.409 and n = 1.100)

Copula
Chi-Square Goodness of Fit Test

MSE AIC BIC

p-values Conclusion

RLUF 1.00 Accept H0 8.63× 10−6 -11081.27 -25493.95

Time-varying RLUF 1.00 Accept H0 8.57× 10−6 -11090.15 -25517.5

Table 14. Model Comparison of the Distribution of Effective Reproductive Number and
Temperature with Fixed Parameters (a = 0.063, b = −0.570, c1 = 1.014, c2 = 1.014,m =

0.989 and n = 950)

Copula
Chi-Square Goodness of Fit Test

MSE AIC BIC

p-values Conclusion

RLUF 1.00 Accept H0 7.41× 10−6 -11226.63 -25828.67

Time-varying RLUF 1.00 Accept H0 7.35× 10−6 -11235.36 -25851.85

3.4. Time-varying Conditional Distribution. We will now apply the concept of conditional distri-
bution to determine the behavior of dengue spread as the temperature or precipitation increases at a
specific time.
Given the events A and B, the probability of occurrence of A given B is given by

P (A|B) =
P (A ∩B)

P (B)
.

If the event A is the event that the spread of Dengue disease is decreasing (X ≤ 1) and B is the event
that the precipitation is equal to y (Y = y), where X and Y are random variables associated with Reff

and precipitation, respectively. Then

P (X ≤ 1|Y = y) =
P (X ≤ 1 ∩ Y = y)

P (Y = y)

=

∂
∂yF1(x, y)

d
dyFP (y)

,
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where F1 is the bivariate distribution of Reff and precipitation, while FP is the CDF of precipitation. If
we are about to consider the specific time these events will occur, then we have

P (X ≤ x|Y = y) =

∂
∂yF1(x, y; θt)

d
dyFp(y)

.

Likewise, the chance that the Dengue disease will decrease (X ≤ 1) given a specific temperature
(Z = z) at a specific time, is

P (X ≤ 1|Y = y) =
∂
∂zF2(x, z; θt)

d
dyFT (y)

,

where F2 is the time bivariate distribution of Reff and temperature, while FT is the CDF of temperature.
Figures 4a and 4b present graphs of P (Reff ≤ 1|Precipitation = y; θt) and P (Reff ≤ 1|Temperature =

z; θt), respectively, for t = 1, 160, 175, 304 and 360 days. Based on Figure 4a, the chance of a decrease in
the dengue spread decreases as precipitation increases. In other words, the risk of dengue increases
with increasing precipitation. Our study results were supported by [24], who found that the risk of
dengue increases between 0-3 months after extremely wet conditions. On the other hand, Figure 4b
shows that as the temperature increases to 22.6°C, the chance of a decrease in dengue spread increases,
but the risks of dengue are high between 22.6°C and 24.5°C. The chance of being safe from dengue
spikes up to 24.5 °C. It was highlighted in [12] that there is a specific range of temperatures in which
dengue risk is high, but very high temperatures may reduce the risk of infection.

(a) P (Reff ≤ 1|Precipitation = y; θt) (b) P (Reff ≤ 1|Temperature = z; θt)

Figure 4. Behavior of Probability of Decrease in Dengue Spread, Reff Through Time as
Precipitation and Temperature Increases
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4. Conclusion

This study developed a novel RLUF-type copula using the Rüschendorf method to model the time-
varying dependencies between climatic factors (precipitation, temperature) and Dengue’s Effective
Reproductive Number (Reff ). The RLUF-type copula demonstrated superior predictive performance
compared to traditional copulas such as Clayton, Gumbel, and Frank, as evidenced by lower MSE, AIC,
and BIC values. By incorporating time-varying copulas with rolling window estimation and ARIMA
modeling, this study successfully captured dynamic shifts in dependencies over time, providing robust
forecasting capabilities for Dengue transmission based on changing climatic conditions.

The results offer a deeper understanding of the complex, nonlinear relationships between temper-
ature, precipitation, and Dengue outbreaks, showing that higher precipitation generally increases
transmission risk, while temperature effects fluctuate within critical thresholds. The practical appli-
cation of these findings can significantly improve early-warning systems and support more effective
intervention strategies in regions like the Caraga Region of the Philippines, where Dengue remains a
persistent threat.

While the RLUF copula captures the dependencies between Dengue transmission and climatic
factors, the absence of tail dependence presents an opportunity for further improvement. Future
research should focus on enhancing the copula to incorporate tail dependence, which would allow for
a more robust modeling of extreme climatic events and their potential to trigger large-scale outbreaks.
Such enhancements would offer a more comprehensive framework for public health forecasting and
intervention strategies.

This versatile framework not only improves public health forecasting for Dengue but also offers a
foundation for predictive models of other climate-sensitive diseases across various geographic regions,
making it a powerful tool for global public health risk assessment and intervention strategies. This
study sets a new benchmark for dynamic epidemiological models, providing essential tools to address
the increasing challenges posed by climate change and global public health risks.
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