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Abstract. Adominating setDp ⊂ V (G) is said to be a perfect dominating set ofG if for every v ∈ V (G)\D,
there exists only one u ∈ D such that uv ∈ E(G). A dominating set Dri ⊂ V (G) is said to be a rings
dominating set if each vertex v ∈ V (G)\Dri is adjacent to atleast two vertices V (G)\Dri. In this paper, we
introduce the concept of perfect rings domination in graphs and graphs formed by binary operations and
show the existence of such dominating set in graph. We also provide the cases for graphs when the perfect
domination number and the rings domination number can be equal.
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1. Introduction

For many years, the concepts in graph theory and graph domination have always been one of the
most celebrated studies in mathematics mainly because it has a lot of research ideas due to its extensive
applications to different disciplines like economics and physics. It is evident because there are many
papers who study more on these [7], [11].

The concept of domination was introduced in 1962 by Berge [3] and many mathematicians have
introduced a lot of variants of dominations up until today. One of the variants of domination is the
perfect domination in graphs introduced by Livingston and Stout in [13]. This concept arose from the
idea of involving resource allocation and placement in parallel computers [14].

This research idea has caught the attention of many mathematicians and so Caay and Arugay in [5]
introduced the concept of perfect equitable domination in graphs. This is an extended concept of the
perfect domination by joining the concept of equitable domination introduced by Deepak, et.al. in [10].
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Also, Caay and Palahang in [6] introduced the concept of independent perfect domination in graphs.
There are also many variants of perfect dominations in graphs which are also found in [2,4, 15].

One of the newest developed variants of domination is the concept of rings domination in graph
in 2022 introduced by Saja Abed and M.N. Al-Harere in [1]. Since it is one of the newest concepts of
dominations, it has no further extension of studies yet until the following year, Caay in [4] studied
equitable rings domination in graphs.

In this study, we introduce the concept of perfect rings domination in graphs. This means that the
dominating set is perfect dominating and rings dominating at the same time. The layout of this paper
is as follows. Section 2 contains some preliminaries of graph theoretic notions that are used in the study
of this paper. In Section 3 we compare the perfect dominations and the rings dominations and derive
some important results of this comparison. In Section 4 we investigate the perfect rings dominations
and provide some important results of this paper while in Section 5, we provide important results on
the binary operations of graphs.

2. Preliminaries

Throughout this paper, the graph we consider here is a connected simple graph. That means, there
are no loops and multiple edges. A pair G = (V (G), E(G)) is called a graph (on V ). The elements
of V (G) are called the vertices of G and the elements of E(G) are called the edges of G. If no con-
fusion arises, we can use V and E to denote the set of vertices and set of edges of G, respectively.
Suppose v ∈ V , the neighborhood of v is the set NG(v) = {u ∈ V : uv ∈ E.}. Given D ⊆ V , the set
NG(D) = N(D) =

⋃
v∈DNG(v) and the set NG[D] = N [D] = D

⋃
N(D) are the open neighborhood and

the closed neighborhood of D respectively.

We denote ∆(G) and δ(G) to be the maximum and minimum degree of G, respectively. We denote
Pn, Cn,Kn, Tn andWn for the path graph, cycle graph, complete graph, trees and wheel graph of order
n, respectively.

Theorem 2.1. [8] A graph G is a cycle graph if and only if every vertex of G is adjacent to two other vertices.

Definition 2.2. [12] A spanning subgraph of a graph G is a subgraph obtained by deleting some
edges of Gwith the same vertex set.

Example 2.3. A cycle Cn is a spanning subgraph of a complete graphKn.

The following are the definitions of the binary operations in graphs used in this study: join, corona
and cartesian product.
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Definition 2.4. [12] The join G+H of the two graphs G and H is the graph with vertex set

V (G+H) = V (G) + V (H)

and the edge set

E(G+H) = E(G) ∪ E(H) ∪ {uv : u ∈ V (G), v ∈ V (H)} .

Definition 2.5. [9] The corona G ◦H of two graphs G andH is the graph obtained by taking one copy
of G of order n and n copies ofH , and then joining the ith vertex of G to every vertex in the ith copy of
H .

Definition 2.6. [9, 12] The cartesian product G×H of two graphs G and H is the graph with vertex
set V (G×H) = V (G)× V (H) and e is an edge of G×H if and only if e = (ui, vj) (uk, vl) where either

i. i = k and vjvl ∈ E(H)

ii. j = l and uiuk ∈ E(G).

We will now introduce the concept of domination.

Definition 2.7. [3] A subset X of V is a dominating set of G if for every v ∈ V \X , there exists x ∈ X
such that xv ∈ E. That is,N [X] = V. The minimum cardinality of the dominating setX of G is called a
domination number of G and is denoted by γ(G).

Definition 2.8. [13] A dominating set S of G is said to be a perfect dominating set of G if when every
element v ∈ V is dominated by exactly one element in S. The cardinality of the smallest S ofG is called
perfect domination number of G and is denoted by γp(G).

Definition 2.9. [1] A dominating set S ofG is a rings dominating set if each vertex v ∈ V \S is adjacent
to atleast two vertices V \S. The cardinality of the minimal rings dominating set is called the rings

domination number and is denoted by γri(G).

Remark 2.10. In this paper, if a graph G has a perfect dominating set or a rings dominating set, then G
has a γp-set or G has a γri-set, respectively.

Remark 2.11. For a rings dominating set S of any graph G of order n, we have

(1) the order of G is n ≥ 4.
(2) for each v ∈ V \S, deg(v) ≥ 3.
(3) 1 ≤ |S| ≤ n− 3.

(4) 3 ≤ |V \S| ≤ n− 1.

(5) 1 ≤ γri(G) ≤ |S| ≤ n− 3.
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3. The Perfect Dominations and the Rings Dominations in Graphs

We present some important results of the perfect domination and the rings domination.

Proposition 3.1. For any integer n ≥ 2, γp (Pn) =
⌈n

2

⌉
.

Remark 3.2. In a path Pn, consecutive vertices of γp-set are either adjacent or at a distance 3 apart.

The proof of Theorem 3.1 and the observation of Remark 3.2 are similar from the paper of Caay and
Arugay in [5]. In fact, the result of γp-set of Pn is equal to the perfect equitable dominating set in [5]
but this concept is out of the study of this paper.

Lemma 3.3. Letm,n ≥ 3. Then γp (Kn) = γp (Wm) .

Lemma 3.4. [1] Letm ≥ 4 and n ≥ 3. Then γri (Kn) = γri (Wm) .

Lemma 3.5. [1] Trees have no rings dominating set.

Dealing with the new concept domination which is the perfect rings domination in graphs, it is
natural to ask how the perfect domination and rings domination relate to each other in terms of number.
The result however is negative in general, but for some specific graphs, there is a specific relationship
of this two concepts.

Theorem 3.6. Let G be a graph of order n ≥ 4 that is not formed by a binary operations of graphs. If γp-set

and the γri-set of G are equal, then for such dominating set S, every vertex of V (G) \ S has degree atleast 3.

Conversely, if every vertex of V (G) \ S has degree atleast 3 and is adjacent to exactly one vertex in S, then S is

the γp-set and the γri-set of G.

Proof. Let γp(G) = γri(G). If S be such dominating set, then by the definition, every vertex of V (G) \ S

is adjacent to atleast 2 vertices in V (G) \ S. Since S is also a γp-set, every vertex of V (G) \ S is adjacent
to exactly one vertex in S. Thus, every vertex in V (G) \ S has degree atleast 3. Conversely, suppose
every vertex of V (G) \ S has degree atleast 3 and is adjacent to exactly one vertex in S. Then every
vertex in V (G) \ S is adjacent to atleast 2 vertices in V (G) \ S. By the definition, S is γri-set and is also
a γp-set. Hence, γp(G) = γri(G). �

The necessary condition of Theorem 3.6 now introduces the concept of perfect rings domination. We
now introduce formally the concept.

Definition 3.7. A dominating set S ⊂ V is said to be perfect rings dominating set of G if for every
u ∈ V \S, there exists only one v ∈ S such that uv ∈ E and there exist at least two vertices us and ut in
V \S such that uus, uut ∈ E. The minimum cardinality of S is called perfect rings domination number
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of G and is denoted by γpri(G). Moreover, if S ⊆ V (G) is a perfect rings dominating set of G, then S is
a γpri-set of G.

Remark 3.8. In this study, if u belongs to a γpri-set S ofG, then for any v ∈ V (G)\S such that uv ∈ E(G),
we say that u perfect rings dominates the vertex v, or v is perfect rings dominated by u.

Example 3.9. Consider the graph in Figure 1 with the vertex set

V (G) = {u1, u2, u3, u4, u5, u6, u7, u8},

Consider the set S = {u1, u8}. Note that u2, u3 and u4 are perfect rings dominated by u1, and u5, u6
and u7 are perfect rings dominated by u8. This means that S is a γpri-set of G. Hence, γpri(G) = 2.

Figure 1. Example of γpe0-set in a graph G.

Remark 3.10. For any given graph G, the following is obvious observation from the definition.
i. γpri(G) ≤ γp(G); and
ii. γpri(G) ≤ γri(G).

4. The Perfect Rings Domination in Graphs

In this section, we present the results of perfect rings domination of simple graphs or the graphs
that are not formed by binary operation.

Theorem 4.1. LetG be any graph of order n ≥ 4. Then γpri(G) = 1 if and only if ∆(G) = n− 1 and δ(G) ≥ 3.

Proof. Suppose γpri(G) = 1. Then if S is γpri-set ofG, |S| = 1. Let v ∈ S. Then deg(v) = n− 1. Now for
every u ∈ V \S, u is adjacent to v and to at least 2 vertices not equal to v. This means that deg(u) ≥ 3.
Conversely, suppose v ∈ V with deg(v) = n − 1. Let u ∈ V with deg(u) ≥ 3. Then uv ∈ E. Thus, v
dominates u and all other vertices ofG. Also deg(u) ≥ 3 implies that u is adjacent to at least two vertices
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dominated by v. Thus, v ∈ S, the γpri-set of G. Now suppose there exists w ∈ S with v 6= w. Then
there exists w ∈ V such that ww ∈ E. But vw ∈ E since deg(v) = n− 1. This contradicts the definition.
Thus, v = w and so |S| = 1 implying γpri(G) = 1 . �

Theorem 4.2. Let S be a subset of the vertex set V of a graph G. Then S is a perfect dominating set if and only

if V \S which forms a cycle of order at least 3 and every element x ∈ V \S is adjacent to exactly one element of S

Proof. Let S ⊂ V be a perfect rings dominating set. By definition, every x ∈ V \S is adjacent to exactly
one element in S and there exist at least two vertices in V \S that are adjacent to x. By Theorem 2.1, x
and its adjacent vertices form a cycle. The converse directly follows from Theorem 2.1 and Definition
3.7. �

Theorem 4.3. Let G be a graph. If G is either a complete graph or a wheel graph of order at least 4, then

γpri(G) = 1.

The proof of Theorem 4.3 is very obvious that it follows directly from the definition of a perfect
domination and the fact that the number of vertices is at least 4 shows directly the message of rings
domination.

Following the definition of the perfect rings domination, it is obvious that using the Theorem 3.5,
the following proposition hold.

Proposition 4.4. There does not exist a γpri-set in Pn. In general, there does not exist a γpri-set in Tn.

Furthermore, There does not exist a γpri-set in Cn.

5. The Perfect Rings Dominations in Some Binary Operations

In this section, we investigate the perfect rings domination in graphs formed by some binary opera-
tions. Let us briefly recall some binary operations.

Theorem 5.1. Let G and H be graphs. Then G+H has γpri-set and its γpri-set is the γpri-set of G if either of

the following holds:

(i) G is a complete graph; or

(ii) G is a wheel graph.

Moreover, γpri(G+H) = 1.

Proof. Suppose G is a complete graph. Then by Theorem 4.3, γpri(G) = 1. This means that if S is a
γpri(G), |S| = 1. Let u ∈ S. Let u be the vertex in G+H corresponding to u in G. Then u ∈ S where S
is the set corresponding to the set S. By the definition of the join of graphs, u is adjacent to all vertices
of H . Similar argument follows for the case when G is a wheel graph. �
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The following theorem will show that the converse of Theorem 5.1 holds true but for a special case
of complete graph which is a trivial graph.

Theorem 5.2. Let G and H be graphs. If G+H has γpri-set equal to the γpri-set of G, then γpri(G+H) = 1

if and only if G is a trivial graph.

Proof. Suppose G + H has γpri-set equal to the γpri-set of G. If G is a trivial graph, then the result
follows. Conversely, if γpri(G+H) = 1, then the γpri-set of G has a cardinality of 1. Using Theorem 5.1
the result directly follows in particular. �

Remark 5.3. Theorem 5.1 and Theorem 5.2 hold if we swap the rule for G and H since the join of graph
is “commutative” in nature.

Note that Proposition 4.4 tells that trees don’t have γpri-set but the following corollary shows that
when tree is added by either a complete graph or a wheel graph, the γpri-set exists.

Corollary 5.4. Let G be any graph or order n. Then G+ Tn has γpri-set and its γpri-set is the γpri-set of G if

and only if G is either a complete graph or a wheel graph. Moreover, γpri(G+ Tn) = 1.

Proof. Let S be a γpri-set of G+ Tn. By Proposition 4.4, S 6⊆ V (Tn). Thus, S ⊆ V (G). Now by Theorem
5.1 the result follows. The converse follows by Theorem 5.1. �

Theorem 5.5. Let G and H be nontrivial graphs. Then γpri(G ◦H) = |V (G)|.

Proof. Let vi ∈ V (G) and uj ∈ V (H). Let S ⊆ V (G ◦H) be the γpri-set of G ◦H .

If S ⊆ V (G)\V (H). Suppose |S| < |V (G)|. Then there exists vk ∈ V (G)\S. LetH i be the ith copy of
H joined in the ith vertex of G. Then Hk is the kth copy of H joined in vk ∈ V (G). Let ukj ∈ V

(
Hk
)
.

Then vkukj ∈ E(G ◦H) for all j. Thus N [S] 6= V (G ◦H). This is a contradiction. If S > |V (G)|, then
this is all but contradiction by the assumption of the case. Therefore, |S| = |V (G)|.

If S ⊆ V (H)\V (G). Consider V (H)k, the kth copy of the V (H). Let Sk ⊆ V (H)k be the kth disjoint
subset of V (H) of the γpri-set S. Suppose

∣∣∣Sk
∣∣∣ > 1. Then there exist ukr , uks ∈ V (H) with r 6= s that

dominates the other vertex ukt . Since every uki is adjacent to vk ∈ V (G), ukr and uks both dominate vk.
This is a contradiction to the definition. Thus

∣∣∣Sk
∣∣∣ = 1. Since there are |V (G)| copies of Si and every Si

are disjoint, it follows that |S| =
∣∣∣Sk
∣∣∣ |V (G)| = |V (G)|.

Therefore either of the case, γpri(G ◦H) = |V (G)|. This proves the claim. �

Corollary 5.6. Let G be any graph of order n ≥ 3. If H is a trivial graph, Kn or Wn, n ≥ 4, then

γpri(G ◦H) = |V (G)|.
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Remark 5.7. Note that Proposition 4.4 tells us that γpri-set of Pn does not exist. However, when a
cartesian product is done, there is an exception. Consider the following propositions below.

Proposition 5.8. Let n andm be positive integers such thatm ≤ n. Then

γpri (Pn × Pm) ≤ m
⌈n

3

⌉
.

Proof. We assume that the vertices of Pn×Pm are arranged in a manner as rows and columns positions
as shown below.

For instance consider the vertex uivj where ui ∈ V (Pn) and vj ∈ V (Pm), the vertex that is placed
in the ith row and jth column position in the figure. The given vertex is adjacent to a vertex in the
(i− 1)th row that is not dominated by any vertex in the ith row. In particular, uivj is adjacent to ui−1vj ,
but uivj−1 or uivj+1 is not adjacent to ui−1vj . Also, such ui−1vj is adjacent to at least two vertices not in
the ith row. Thus, this arrangement qualifies for γri-set and so our focus is to form the γp-set. Since
m ≤ n, we consider the arrangement of n for choosing the possible elements of γp-set to be multiplied
m times since our goal is to choose the smallest possible value. Without loss of generality, we may
assume that n represents the number of rows. Then we havem number of columns. Consider the first
column. This is Pn. By Theorem 3.1, we have

⌈n
3

⌉
. Using the fact that there arem columns, the result

automatically follows. �

Proposition 5.9. Let n be even positive integer. Then

γpri (P4n × P4n) ≤

4

n/2∑
k=0

4(k + 1) + 1

 ⌈
2n

3

⌉
.

Proof. Consider P4 × P4 and label the vertices as shown below.
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Note that the graph formed a central cycle of order 4 with vertices u2v2, u2v3, u3v3 and u3v2. The
same things goes if we consider P8 × P8.We inductively extend the graph so that we have P4n × P4n for
a very large n. Assume that the vertices are arranged in the same manner as rows and column positions
as shown below. For instance, the vertex uivj is located in the ith row and jth column position.

Observe that we have a central cycle of order 4 with vertices

u4n/2v4n/2, u4n/2v4n/2+1, u4n/2+1v4n/2+1 and u4n/2+1v4n/2

For instance, observe that u4n/2v4n/2+1 is adjacent to vertices u4n/2v4n/2+2 and
u4n/2−1v4n/2+1 but not to u4n/2−1v4n/2+2, u4n/2−2v4n/2+3 and so on. We make an imaginary path P ′

from u4n/2v4n/2+1 to u4n/2−1v4n/2+2 to u4n/2−2v4n/2+3 and so on until u1v4n. The resulting P ′ is of
length 2n. Note that each vertices of P ′ have at least 4 adjacent vertices and so their adjacent vertices
not belong to P ′ have also at least 4 degrees. This means we can only focus on the existence of γp-set.
By Theorem 3.1, we have

⌈
2n

3

⌉
to choose from P ′ for the possible members of γpri-set of P4n × P4n.

Since every element of P ′ is part of a cycle of different order and the entire cycle can dominate the
neighboring cycle such that every vertices of the neighboring cycle is dominated once by the selected
cycle, the selection of elements for γpri-set is uniquely determined so that the total number is as smallest
as possible. In this case we select the central cycle since it is the smallest cycle in the pattern. This
means, from the vertices of P ′, we choose u4n/2v4n/2+1. By Remark 3.2, the next vertex is u4n/2v4n/2+1.
Continuing the process, we get the last vertex of P ′ as u1v4n. Also by Remark 3.2, it is possible that in
γp-set for P ′, the vertices could be two consecutive vertices. If this case happens, thenwemay choose the
next cycle after the central since it is the smallest cycle among the others. By this, wemay have two cases.

• Case 1. Suppose the selection of vertices P ′ are all 3 distance apart. Then from u4n/2v4n/2+1

from the cycle of order 4, the next vertex is u4n/2−3v4n/2+4 and is part of the cycle of order
4(4). Thus, by induction, the chosen vertex from P ′ to dominate the rest of the vertices are
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u4n/2−(1+2kv4n/2+2k and is part of the cycle of order 4k. Thus the sum of the sizes of the cycles

containing those chosen vertices is less than or equal to
n/2∑
k=0

4(4k).

• Case 2. Suppose there exists two consecutive vertices by Remark 3.2. Then, choosing the
cycle next to the central and such cycle is of order 8. In this case, the chosen vertex is move
one unit away from the central. In this case, each cycle of the chosen vertex is of size 4k + 4.
Thus the sum of the sizes of the cycles containing those chosen vertices is less than or equal to
n/2∑
k=0

4(4k + 4) + 4.

Simplifying each of the case, we obtain the desired result.
�

Theorem 4.3 tells us that there exists a γpri-set of a complete graph and a wheel graph. However,
performing the cartesian product of withKn will result differently.

Proposition 5.10. Let G be any graph of order n with δ(G) = 1 and ∆(G) < n− 1, then Kn ×G does not

have γpri-set.

The following results are obvious and easy to show.

Theorem 5.11. For any integer n ≥ 3, γpri(Kn ×Kn) = 1.

Corollary 5.12. γpri(P2 × P2) = 1.

6. Conclusion and Recommendations

From the study of perfect domination introduced by Livingston and Stout in [?] as a response of
the problem in resource allocation and placement in parallel computers, and the rings domination
introduced by Saaja and Al-Harere in [1], the concept of perfect rings domination is introduced in
this study. We provide the concept with existence of such domination and bounds on the number for
simple graphs and graphs produced by binary operations like join, corona and cartesian product. This
concept offers a wide range of applications especially in analyzing how the placement of computer
networks is done properly to maximize the connection and yet to minimize the cost of the use of routers
for internet source without compromising the speed of connectivity. To this concept we recommend
that one can investigate this variant of domination to other binary binary operations including the
strong product.
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