
Asia Pac. J. Math. 2024 11:46

CONVERGENCE THEOREM OF OSILIKE-BERINDE-G-NONEXPANSIVE MAPPINGS IN
METRIC SPACES ENDOWED WITH GRAPH

KASINEE SOKHUMA1,∗, BUNCHANA VARACHANON2, DECH BOONPRAJAK1,
KRITSANA SOKHUMA3

1Faculty of Education, Shinawatra University, Pathum Thani 12160, Thailand
2Mathematics Program, Faculty of Science and Technology,

Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand
3Department of Mathematics, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand

∗Corresponding author: kasinee.s@mru.ac.th

Abstract. In this paper, we also prove the strong and ∆-convergence theorems of the S-iteration process
for Osilike-Berinde-G-nonexpansive mappings in metric spaces.
2020 Mathematics Subject Classification. 47H09; 47H10.
Key words and phrases. S-iteration; uniformly convex hyperbolic space; Osilike-Berinde-G-nonexpansive
mapping; G-quasinonexpansive mapping.

1. Introduction

Let C be a nonempty subset of a metric space (X, d). A mapping t : C → C is called a contraction if
there exists λ ∈ [0, 1) such that

d(t(x), t(y)) ≤ λd(x, y) for all x, y ∈ C. (1.1)

If (1.1) is valid when λ = 1 then t is said to be nonexpansive. A point x in C is called a fixed point of
t if t(x) = x.

Fixed point theory is an important tool for finding solutions of problems in the form of equations or
inequalities. One of the fundamental and celebrated results in metric fixed point theory is the Banach
contraction principle which stated that every contraction on a complete metric space always has a
unique fixed point. This principle has been generalized in many directions, see, e.g., [12–14, 22, 28, 29]
and references therein. Among other things, Osilike [22] generalized the concept of contractions to the
following class of mappings: there exist λ ∈ [0, 1) and L ∈ [0,∞) such that

d(t(x), t(y)) ≤ λd(x, y) + L · d(x, t(x)) for all x, y ∈ C.
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In 2007, Berinde and Berinde [5] extended this concept to multi-valued mappings in the following
manner: a multi-valued mapping T : C → CB(C) is called a weak contraction if there exist λ ∈ [0, 1)

and L ∈ [0,∞) such that

H(T (x), T (y)) ≤ λd(x, y) + L · d(x, t(x)) for all x, y ∈ C. (1.2)

If (1.2) is valid when λ = 1, then T is called an Osilike-Berinde-nonexpansive mapping. A point
x ∈ C is a fixed point of T if x ∈ T (x). We denote by F (T ) the set of all fixed points of T .

In 2019, Bunlue and Suantai [7] proved the existence of fixed points as well as the demi-closed
principle for Osilike-Berinde-nonexpansive mappings in Banach spaces satisfying the Opial’s condition.
It was quickly noted by Klangpraphan and Panyanak [19] that the results in [7] can be extended to
complete CAT(0) spaces.

On the other hand, Jachymski [15] combined the concepts of fixed point theory and graph theory
to prove a generalization of the Banach contraction principle in a complete metric space endowed
with a graph. In 2010, Beg et al. [4] extended Jachymski’s result to the general setting of a multi-
valued G-contraction. Later on, Alfuraidan and Khamsi [2] introduced the notion of multi-valued
G-nonexpansive mappings and proved the existence of fixed points for such kind of mappings in
hyperbolic metric spaces. Since then, the fixed point results in several kinds of metric spaces endowed
with graphs have been developed andmany papers have appeared, see, e.g., [3,6,8,11,16,23,25,32,35,37].

In 2009, Agarwal et al. [1] introduced the S-iteration following well-known iteration. For E a convex
subset of a linear space X and t a mapping of E into itself. In 2012, Sokhuma and Akkasriworn [31]
defined the S-iteration method scheme for a pair of single valued and multi-valued nonexpansive
mappings. In 2020, Thabet et al. [33] introduce the modified Agarwal-O’Regan-Sahu iteration process
(S-iteration) for finding endpoints of multi-valued nonexpansive mappings in the setting of Banach
spaces. Under suitable conditions, some weak and strong convergence results of the iterative sequence
generated by the proposed process are proved. Their results especially improve and unify some results
of Panyanak [27]. In 2021, Kaewkhao, Klangpraphan and Panyanak [16] proved the strong and ∆-
convergence theorems of the Ishikawa iteration process for the class ofG-quasinonexpansive mappings
which includes the class of Osilike-Berinde-G-nonexpansive mappings in metric spaces.

In this paper, motivated by the ideas of [1], [16], [27], [31] and [33], we prove the strong and
∆-convergence theorems of the S-iteration process for the class of G-quasinonexpansive mappings
which includes the class of Osilike-Berinde-G-nonexpansive mappings in metric spaces.

2. Preliminaries

Throughout this paper, N stands for the set of natural numbers and R stands for the set of real
numbers. Let G be a directed graph with a set of vertices V (G) and a set of edges E(G). In this
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paper, we assume that G contains all loops and has no parallel edges. Let x, y ∈ V (G). We say that x
dominates y if (x, y) ∈ E(G). Let A and B be nonempty subsets of V (G). We say that A dominates B if
(a, b) ∈ E(G) for all a ∈ A and b ∈ B.

Let (X, d) be a metric space, C a nonempty subset ofX andG = (V (G), E(G)) a directed graph such
that V (G) ⊆ C. We denote by CB(C) the family of nonempty closed bounded subsets of C and by
K(C) the family of nonempty compact subsets of C. The distance from a point x in X to a nonempty
subset B of X is defined by

dist(x,B) := inf{d(x, b) : b ∈ B}.

The Pompeiu-Hausdorff distance on CB(C) is defined by

H(A,B) := max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)} for all A, B ∈ CB(C).

A multi-valued mapping T : C → CB(C) is said to be edge-preserving if for each (x, y) ∈ E(G), the
following implication holds:

u ∈ T (x), v ∈ T (y) =⇒ (u, v) ∈ E(G).

Let λ ∈ [0, 1) and L ≥ 0. The mapping T is said to be (λ, L)-G-contraction if it is edge-preserving
and

H(T (x), T (y)) ≤ λd(x, y) + L · dist(y, T (x)) for all (x, y) ∈ E(G).

The existence of fixed points for (λ, L)-G-contraction is guaranteed by Tiammee and Suantai [34] in
the following result.

Theorem2.1. ([34]) LetC be a nonempty closed subset of a completemetric space (X, d) andG = (V (G), E(G))

be a directed graph such that V (G) = C. Let T : C → CB(C) be a (λ, L) − G-contraction such that

CT := {x ∈ C : (x, y) ∈ E(G) for some y ∈ T (x)} 6= ∅ . Suppose that the following property holds:

(*) for any sequence {xn} in C, if xn → x and (xn, xn+1) ∈ E(G) for all n ∈ N, then there exists a

subsequence {xnk
} of {xn} such that (xnk

, x) ∈ E(G) for all k ∈ N.

Then T has a fixed point in C.

Definition 2.2. Let (X, d) be a metric space, C a nonempty subset of X and G = (V (G), E(G)) a
directed graph such that V (G) ⊆ C. A multi-valued mapping T : C → CB(C) is said to be

(i) Osilike-Berinde-nonexpansive if there exists L ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(x, T (x)) for all x, y ∈ C;

(ii) Osilike-Berinde-G-nonexpansive if T is edge-preserving and there exists L ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(x, T (x)) for all (x, y) ∈ E(G);
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(iii) quasinonexpansive if F (T ) 6= ∅ and

H(T (x), T (y)) ≤ d(x, y) for all x ∈ C and y ∈ F (T );

(iv) G-quasinonexpansive if T is edge-preserving such that F (T ) 6= ∅ and

H(T (x), T (y)) ≤ d(x, y) for all (x, y) ∈ E(G) with y ∈ F (T ).

The following examples show that the class of Osilike-Berinde-nonexpansive mappings and the class
of Osilike-Berinde-G-nonexpansive mappings are different.

Example 2.3. LetX be the Euclidean space R2 and C = [0, 1]× [0, 1] and let G = (V (G), E(G)) be such
that V (G) = {(0, 0), (1, 0)} and

E(G) = {((0, 0), (0, 0)), ((0, 0), (1, 0)), ((1, 0), (1, 0))}.

The graph G can be explained by the following diagram:

Let T : C → CB(C) be defined by

T (a, b) = {(a, 1− b)} for all (a, b) ∈ C.

It follows from Example 2.1 of [25] that T is nonexpansive and hence Osilike-Berinde-nonexpansive.
However, if we choose x = (0, 0), y = (1, 0), u = (0, 1) and v = (1, 1), then (x, y) ∈ E(G), u ∈ T (x) and
v ∈ T (y). But (u, v) /∈ E(G). This shows that T is not edge-preserving and hence is not Osilike-Berinde-
G-nonexpansive.

Example 2.4. LetX = R, C = [0, 1], G = (V (G), E(G)) be such that V (G) = [0, 12 ] and E(G) = {(x, y) :

x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) = [0, x2] for all x ∈ C.

It is easy to see that T is edge-preserving. Let (x, y) ∈ E(G). Then 0 ≤ x, y ≤ 1
2 . Thus,

H(T (x), T (y)) = H([0, x2], [0, y2]) =
∣∣x2 − y2∣∣ ≤ |x− y|+ dist(x, T (x)).

This shows that T is an Osilike-Berinde-G-nonexpansive mapping with L = 1. On the other hand, if
x = 1 and y = 1

2 , then

H(T (x), T (y)) = H([0, 1], [0,
1

4
]) =

∣∣∣∣1− 1

4

∣∣∣∣ > ∣∣∣∣1− 1

2

∣∣∣∣ = |x− y|+ L · dist(x, T (x)),
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for all L ≥ 0. This implies that T is not Osilike-Berinde-nonexpansive.

However, these two classes of mappings are identical under some additional conditions.

Proposition 2.5. ([16]) Let C be a nonempty subset of a metric space and T : C → CB(C) a multi-valued

mapping. Let G = (V (G), E(G)) be a directed graph such that V (G) = C and E(G) = C × C. Then the

following statements hold:

(i) T is Osilike-Berinde-nonexpansive if and only if T is Osilike-Berinde-G-nonexpansive.

(ii) T is quasinonexpansive if and only if T is G-quasinonexpansive.

The following proposition is an immediate consequence of Definition 2.2.

Proposition 2.6. ([16]) The following statements hold:

(i) If T is Osilike-Berinde-nonexpansive and F (T ) 6= ∅ , then T is quasinonexpansive.

(ii) If T is Osilike-Berinde-G-nonexpansive and F (T ) 6= ∅, then T is G-quasinonexpansive.

The following example shows that the converses of (i) and (ii) in Proposition 2.6 do not hold.

Example 2.7. Let X = R, C = [0, 1], G = (V (G), E(G)) be such that V (G) = C and E(G) = {(x, y) :

x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) =


[
0,
∣∣∣ x
x+1 sin

(
1
x

)∣∣∣] if x 6= 0;

{0} if x = 0.

It is easy to see that F (T ) = {0}. For x ∈ (0, 1], we have

H(T (x), T (0)) =

∣∣∣∣ x

x+ 1
sin

(
1

x

)∣∣∣∣ ≤ ∣∣∣∣ x

x+ 1

∣∣∣∣ ≤ |x− 0| .

This implies that T is quasinonexpansive. On the other hand, for each n ∈ N, we set
xn := 1

2nπ+(π/2) and yn := 1
2nπ . Then

H(T (xn), T (yn))− |xn − yn|
dist(xn, T (xn))

=

[
xn

xn + 1
− (yn − xn)

](
xn + 1

x2n

)
=

1

xn
− (yn − xn) (xn + 1)

x2n

= (2nπ + (π/2))− (2nπ + (π/2) + 1)

4n
→∞.

This implies that T is not Osilike-Berinde-nonexpansive. Since V (G) = C and E(G) = C × C, by
Proposition 2.5 T is G-quasinonexpansive and is not Osilike-Berinde-G-nonexpansive.

The concept of uniformly convex hyperbolic spaces is introduced by Leuştean [21].
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Definition 2.8. A hyperbolic space is a metric space (X, d) together with a function
W : X ×X × [0, 1]→ X such that for all x, y, z, w ∈ X and t, s ∈ [0, 1], we have

(W1) d(z,W (x, y, t)) ≤ (1− t)d(z, x) + td(z, y);

(W2) d(W (x, y, t),W (x, y, s)) = |t− s| d(x, y);

(W3)W (x, y, t) = W (y, x, 1− t);

(W4) d(W (x, z, t),W (y, w, t)) ≤ (1− t)d(x, y) + td(z, w).

For convenience, from now on, we will replaceW (x, y, t) by (1− t)x⊕ ty. A nonempty subset C of
X is said to be convex if (1 − t)x ⊕ ty ∈ C for all x, y ∈ C and t ∈ [0, 1]. Let G = (V (G), E(G)) be a
directed graph such that V (G) ⊆ C.We say that G is convex if for each x, y, u, v ∈ C and t ∈ [0, 1] such
that (x, u) and (y, v) are in E(G), we have ((1− t)x⊕ ty, (1− t)u⊕ tv) ∈ E(G).

The hyperbolic space (X, d) is said to be uniformly convex if for each (r, ε) ∈ (0,∞)× (0, 2], there
exists δ ∈ (0, 1] such that

d

(
1

2
x⊕ 1

2
y, z

)
≤ (1− δ)r,

for all x, y, z ∈ X with d(x, z) ≤ r, d(y, z) ≤ r and d(x, y) ≥ rε.

A function η : (0,∞)× (0, 2] → (0, 1] providing such a δ := η(r, ε) is called a modulus of uniform
convexity. In particular, if η is a nonincreasing function of r for every fixed ε, then we call η a monotone
modulus of uniform convexity.

The concept of 2-uniformly convex hyperbolic spaces is introduced by Khamsi and Khan [17].

Definition 2.9. Let (X, d) be a uniformly convex hyperbolic space. For each r ∈ (0,∞) and ε ∈ (0, 2],
we define

Ψ(r, ε) := inf

{
1

2
d2(x, z) +

1

2
d2(y, z)− d2(1

2
x⊕ 1

2
y, z)

}
,

where the infimum is taken over all x, y, z ∈ X such that d(x, z) ≤ r, d(y, z) ≤ r, and d(x, y) ≥ rε.We
say that (X, d) is 2-uniformly convex if

cM := inf

{
Ψ(r, ε)

r2ε2
: r ∈ (0,∞), ε ∈ (0, 2]

}
> 0.

In [20], the authors prove that

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− 4cM t(1− t)d2(x, y), (2.1)

for all x, y, z ∈ X and t ∈ [0, 1].

Example 2.10. (1) Every uniformly convex Banach space is a 2-uniformly convex hyperbolic space
(see [36]).

(2) If X is a CAT(0) space, then it is a 2-uniformly convex hyperbolic space with cM = 1
4 (see [17]).
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(3) If κ > 0 andX is a CAT(κ) space with diam(X) ≤ (π/2)−ε√
κ

for some ε ∈ (0, π/2), then by Lemma
2.3 of [24] we can conclude that

Ψ(r, ε) =
r2ε2R

8
,

where R = (π − 2ε)tan(ε). This clearly implies that X is a 2-uniformly convex hyperbolic space with
cM = R

8 .

From now on, X stands for a complete 2-uniformly convex hyperbolic space with a monotone
modulus of uniform convexity. Let C be a nonempty subset of X and {xn} be a bounded sequence in
X. The asymptotic radius of {xn} relative to C is defined by

r(C, {xn}) := inf

{
lim sup
n→∞

d(xn, x) : x ∈ C
}
.

The asymptotic center of {xn} relative to C is the set

A(C, {xn}) :=

{
x ∈ C : lim sup

n→∞
d(xn, x) = r(C, {xn})

}
.

It is known from [21] that if C is a nonempty closed convex subset of X , then A(C, {xn}) consists of
exactly one point. Now, we give the concept of ∆-convergence.

Definition 2.11. Let C be a nonempty closed convex subset of X and x ∈ C. Let {xn} be a bounded
sequence in X.We say that {xn} ∆-converges to x if A(C, {un}) = {x} for every subsequence {un} of
{xn}. In this case we write ∆− lim

n→∞
xn = x.

It is known from [18] that every bounded sequence in X has a ∆-convergent subsequence. The
following fact can be found in [10].

Lemma 2.12. Let C be a nonempty closed convex subset of X and {xn} be a bounded sequence in X . If

A(C, {xn}) = {x} and {un} is a subsequence of {xn} with A(C, {un}) = {u} and the sequence {d(xn, u)}

converges, then x = u.

In [34], Tiammee et al. introduce a property that is stronger than the condition (*) in Theorem 2.1.

Definition 2.13. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a directed
graph such that V (G) = C. Then C is said to have property G if for any sequence {xn} in C such that
∆− lim

n→∞
xn = x ∈ C, there exists a subsequence {xnk

} of {xn} such that (xnk
, x) ∈ E(G) for all k ∈ N.

Now, we introduce the demiclosed principle for Osilike-Berinde-G-nonexpansive mappings in
complete uniformly convex hyperbolic spaces of Theorem 3.2 in [16].

Theorem 2.14. ( [16]) Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a directed

graph such that V (G) = C and C has property G. Let T : C → K(C) be an Osilike-Berinde-G-nonexpansive

mapping with L ≥ 0. Then I − T is demiclosed.
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We can obtain the following fixed point theorem of Theorem 3.3 in [16].

Theorem 2.15. ( [16]) Let C be a nonempty bounded closed convex subset of X and G = (V (G), E(G)) be a

convex directed graph such that V (G) = C and C has property G. Let T : C → K(C) be a Osilike-Berinde-G-

nonexpansive mapping. Suppose there exist u ∈ CT and µ ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + µ · dist(y, αu⊕ (1− α)T (x)), (2.2)

for all α ∈ [0, 1] and (x, y) ∈ E(G). Then T has a fixed point in C.

Notice that Theorem 2.15 is an extension of Theorem 4.2 in [19].

Theorem 2.16. ( [19]) Let E be a nonempty bounded closed convex subset of a Hadamard space (X, d) and

T : E → K(E) be a B2-nonexpansive mapping. Suppose there exist u ∈ E and L ≥ 0 such that

H(T (x), T (y)) ≤ d(x, y) + L · dist(y, αu⊕ (1− α)T (x)), (2.3)

for all x, y ∈ E and α ∈ [0, 1]. Then T has a fixed point in E.

3. Convergence Theorem

In this section, we prove strong and ∆-convergence theorems of the S-iteration process for G-
quasinonexpansive mappings and obtain the results for Osilike-Berinde-G-nonexpansive mappings as
corollaries.

In 2009, Agarwal et al. [1] introduced the S-iteration following well-known iteration. For E a convex
subset of a linear spaceX and t a mapping of E into itself, the iterative sequence {xn} of the S-iteration
process is generated from x1 ∈ E and is defined by

yn = (1− βn)xn + βntxn,

xn+1 = (1− αn)txn + αntyn,

for all n ∈ N,where {αn}, {βn} are sequence in (0, 1) satisfying the condition:

∞∑
n=1

αnβn(1− βn) =∞.

In 2012, Sokhuma and Akkasriworn [31] defined the S-iteration method scheme for a pair of single
valued and multi-valued nonexpansive mappings as follow:

Let E be a nonempty compact convex subset of a uniformly convex Banach space X , and t : E → E

and T : E → KC(E) be a single valued nonexpansive mapping and a multi-valued nonexpansive
mapping, respectively. Assume in addition thatF (t)∩F (T ) 6= ∅ and T (w) = {w} for allw ∈ F (t)∩F (T ).



Asia Pac. J. Math. 2024 11:46 9 of 15

Suppose {xn} is generated iterative by x1 ∈ E,

yn = (1− βn)xn + βnzn,

xn+1 = (1− αn)zn + αntyn,

for all n ∈ N,where zn ∈ T (xn) and {αn}, {βn} are sequences of positive numbers satisfying 0 < a ≤

αn, βn ≤ b < 1. Then the sequence {xn} converges strongly to a common fixed point of t and T .
In this paper, we present an iteration method modifying the above ones and call it the S-iteration.
Let C be a nonempty convex subset ofX , and {αn}, {βn} be sequences in [0, 1], and T : C → CB(C)

be a multi-valued mapping. The sequence of S-iteration is defined by x1 ∈ C, yn = (1− βn)xn ⊕ βnzn,

xn+1 = (1− αn)zn ⊕ αnz′n,
(3.1)

where zn ∈ T (xn) and z′n ∈ T (yn).

Lemma 3.1. Let C be nonempty convex subset of X and G = (V (G), E(G)) be a convex directed graph such

that V (G) ⊆ C. Let T : C → CB(C) be an edge-preserving mapping. Let {yn} and {xn} be defined by (3.1).

If x1 dominates p ∈ F (T ), then xn and yn dominate p for all n ∈ N.

Proof. Since (x1, p) ∈ E(G) and T is edge-preserving, (z1, p) ∈ E(G). It follows from the convexity
of G that (y1, p) ∈ E(G). Since T is edge-preserving, (z′1, p) ∈ E(G). By the convexity of G we have
(x2, p) ∈ E(G). Continue in this way, we can show that (yn, p) ∈ E(G) and (xn, p) ∈ E(G) for all
n ≥ 2. �

Recall that a multi-valued mapping T : C → CB(C) is said to satisfy the endpoint condition [30] if
F (T ) 6= ∅ and T (x) = {x} for all x ∈ F (T ). A sequence {xn} in X is said to be Fejér monotone with
respect to C if

d(xn+1, c) ≤ d(xn, c) for all c ∈ C and n ∈ N.

The following lemma shows that the sequence of S-iteration defined by (3.1) is Fejér monotone with
respect to the fixed point set of G-quasinonexpansive mapping.

Lemma 3.2. Let C be a nonempty convex subset of X and G = (V (G), E(G)) be a convex directed graph such

that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive mapping satisfying the endpoint condition.

Let {xn} be defined by (3.1). If x1 dominates F (T ), then {xn} is Fej́er monotone with respect to F (T ).

Proof. Let p ∈ F (T ). By Lemma 3.1, {xn} and {yn} dominate p. Since T is G-quasi nonexpansive and
satisfies the endpoint condition,
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d(yn, p) ≤ (1− βn)d(xn, p) + βnd(zn, p)

≤ (1− βn)d(xn, p) + βnH(T (xn), T (p))

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p).

This implies that

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(z′n, p)

≤ (1− αn)H(T (xn), T (p)) + αnH(T (yn), T (p))

≤ (1− αn)d(xn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

Therefore, {xn} is Fejér monotone with respect to F (T ). �

The following lemmas are also needed.

Lemma 3.3. Let C be a nonempty closed convex subset of X and T : C → CB(C) be a multivalued mapping.

If I − T is demiclosed, then F (T ) is closed in X .

Proof. Let {xn} be a sequence in F (T ) such that lim
n→∞

xn = x. Then dist(xn, T (xn)) = 0 for all n ∈ N. It
follows from the demiclosedness of I − T that x ∈ T (x), and hence x ∈ F (T ). This shows that F (T ) is
closed in X . �

Lemma 3.4. Let C be a nonempty closed convex subset of X and T : C → CB(C) be a multi-valued mapping

such that I − T is demiclosed. If {xn} is a bounded sequence in C such that lim
n→∞

dist(xn, Txn) = 0 and

{d(xn, v)} converges for all v ∈ F (T ), then ωw(xn) ⊆ F (T ). Here ωw(xn) :=
⋃
A(C, {un}), where the union

is taken over all subsequences {un} of {xn}.Moreover, ωw(xn) consists of exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that A(C, {un}) = {u}. Since
{un} is bounded, there exists a subsequence {vn} of {un} such that ∆ − lim

n→∞
vn = v ∈ C. It follows

from Proposition 2.5 and the demiclosedness of I − T that u = v ∈ F (T ). This implies ωw(xn) ⊆ F (T ).
Next, we show that ωw(xn) consists of exactly one point. Let {un} be a subsequence of {xn} with
A(C, {un}) = {u} and let A(C, {xn}) = {x}. Since u ∈ ωw(xn) ⊆ F (T ), {d(xn, u)} converges. By
Proposition 2.5, x = u. This completes the proof. �

Now, we prove the ∆-convergence theorem.
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Theorem 3.5. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a convex directed

graph such that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive mapping satisfying the endpoint

condition and I − T is demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be defined by (3.1) such that x1
dominates F (T ). Then {xn} ∆-converges to a fixed point of T .

Proof. Let p ∈ F (T ). It follows from (2.1) that

d2(yn, p) ≤ (1− βn)d2(xn, p) + βnd
2(zn, p)− 4cMβn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnH
2(T (xn), T (p))− 4cMβn(1− βn)d2(xn, zn)

≤ (1− βn)d2(xn, p) + βnd
2(xn, p)− 4cMβn(1− βn)d2(xn, zn)

= d2(xn, p)− 4cMβn(1− βn)d2(xn, zn).

This implies

d2(xn+1, p) ≤ (1− αn)d2(zn, p) + αnd
2(z′n, p)− 4cMαn(1− αn)d2(zn, z

′
n)

≤ (1− αn)H2(T (xn), T (p)) + αnH
2(T (yn), T (p))− 4cMαn(1− αn)d2(zn, z

′
n)

≤ (1− αn)d2(xn, p) + αnd
2(yn, p)

≤ (1− αn)d2(xn, p) + αnd
2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn)

= d2(xn, p)− 4cMαnβn(1− βn)d2(xn, zn).

Thus
∞∑
n=1

a2(1− b)d2(xn, zn) ≤
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞. (3.2)

So that lim
n→∞

d2(xn, zn) = 0, and hence lim
n→∞

dist(xn, T (xn)) = 0. By Lemma 3.3, {d(xn, v)} converges
for all v ∈ F (T ). By Lemma 3.4, ωw(xn) consists of exactly one point and is contained in F (T ). This
shows that {xn} ∆-converges to an element of F (T ). �

As a consequence of Theorems 2.14 and Theorem 3.5, we can obtain the following corollary.

Corollary 3.6. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a convex directed

graph such that V (G) = C and C has property G. Let T : C → K(C) be an Osilike-Berinde-G-nonexpansive

mapping satisfying the endpoint condition. Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be defined by (3.1) such that

x1 dominates F (T ). Then {xn} ∆-converges to a fixed point of T.

Next, we will prove strong convergence theorems. Recall that a multi-valued mapping T : C →

CB(C) is said to satisfy condition (IG) if F (T ) 6= ∅ and there exists a nondecreasing function f :

[0,∞)→ [0,∞) with f(0) = 0, f(r) > 0 for r ∈ (0,∞) such that dist(x, T (x)) ≥ f(dist(x, F (T ))) for all
xwhich dominates F (T ). The following fact can be found in [9].
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Lemma 3.7. Let E be a nonempty closed subset of X and {xn} a Fej́er monotone sequence with respect to E.

Then {xn} converges strongly to an element of E if and only if lim
n→∞

dist(xn, E) = 0.

Theorem 3.8. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a convex directed

graph such that V (G) ⊆ C. Let T : C → CB(C) be a G-quasinonexpansive mapping satisfying the endpoint

condition. Suppose that T satisfies condition (IG) and I − T is demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1) and

{xn} be defined by (3.1) such that x1 dominates F (T ). Then {xn} converges strongly to a fixed point of T .

Proof. By Lemma 3.3, F (T ) is closed in X . As in the proof of Theorem 3.5, we can show that
lim
n→∞

dist(xn, T (xn)) = 0. Since T satisfies condition (IG), lim
n→∞

dist(xn, F (T )) = 0. By Lemma 3.2, {xn}
is Fejér monotone with respect to F (T ). The conclusion follows from Lemma 3.7. �

Corollary 3.9. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a convex directed

graph such that V (G) ⊆ C. Let T : C → CB(C) be an Osilike-Berinde-G-nonexpansive mapping satisfying

the endpoint condition. Suppose that T satisfies condition (IG). Let αn, βn ∈ [a, b] ⊂ (0, 1) and {xn} be defined

by (3.1) such that x1 dominates F (T ). Then {xn} converges strongly to a fixed point of T .

The following example supports Theorem 3.5.

Example 3.10. Let X = (R, | · |), C = [0, 1] and G = (V (G), E(G)) be such that V (G) = [0, 1) and
E(G) = {(x, y) : x, y ∈ V (G)}. Let T : C → CB(C) be defined by

T (x) =


[
0, x2

] if x ∈ [0, 1);

{1} if x = 1.

It is easy to see that G is convex and T is edge-preserving. Notice also that F (T ) = {0, 1} and T
satisfies the endpoint condition. If x = 1 and y = 1

2 , then

H(T (x), T (y)) = H({1},
[
0,

1

4

]
) = 1 >

1

2
= |x− y| .

This implies that T is not quasinonexpansive. On the other hand, if (x, y) ∈ E(G) such that y ∈ F (T ),
then y = 0 and hence

H(T (x), T (y)) = H(
[
0, x2

]
, {0}) = x2 ≤ x = |x− y| .

This shows that T is G-quasinonexpansive. Moreover, if {vn} is a sequence in C such that ∆ −

lim
n→∞

vn = v and lim
n→∞

dist(vn, T (vn)) = 0, then either v = 0 or v = 1. This implies that I − T is
demiclosed. Let αn, βn ∈ [a, b] ⊂ (0, 1). By Theorem 3.5, for any starting point x1 ∈ [0, 1), the sequence
{xn} defined by 3.1 converges to a point x ∈ F (T ). However, since 1 > x1 ≥ x2 ≥ ..., it must be the
case that x = 0.
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Finally, we prove a strong convergence theorem for hemicompact mappings. Recall that a multi-
valued mapping T : C → CB(C) is said to be hemicompact if for any sequence {xn} in C such that
lim
n→∞

dist(xn, T (xn)) = 0, there exists a subsequence {xnk
} of {xn} and q ∈ C such that lim

k→∞
xnk

= q.

The following fact is also needed.

Lemma 3.11. ([26]) Let {αn}, {βn} be two real sequences in [0, 1) such that βn → 0 and
∑
αnβn =∞. Let

{γn} be a nonnegative real sequence such that
∑
αnβn(1− βn)γn <∞. Then {γn} has a subsequence which

converges to zero.

Theorem 3.12. Let C be a nonempty closed convex subset of X and G = (V (G), E(G)) be a convex directed

graph such that V (G) ⊆ C and C has property G. Let T : C → CB(C) be an Osilike-Berinde-G-nonexpansive

mapping satisfying the endpoint condition. Let αn, βn ∈ [0, 1) be such that βn → 0 and
∑
αnβn = ∞ and

{xn} be defined by (3.1) such that x1 dominates F (T ). If T is hemicompact, then {xn} converges strongly to a

fixed point of T.

Proof. From (3.2) we get that
∞∑
n=1

αnβn(1− βn)d2(xn, zn) <∞.

By Lemma 3.11, there exist subsequences {xnk
} and {znk

} of {xn} and {zn} respectively, such that
lim
k→∞

d(xnk
, znk

) = 0, and hence lim
k→∞

dist(xnk
, T (xnk

)) = 0. Since T is hemicompact and C has property
G, by passing to a subsequence, we may assume that there exists q ∈ C such that lim

k→∞
xnk

= q and
(xnk

, q) ∈ E(G) for all k ∈ N. Since T is Osilike-Berinde-G-nonexpansive, there exists L ≥ 0 such that

H(T (xnk
), T (q)) ≤ d(xn, q) + L · dist(xn, T (xnk

)) for all k ∈ N.

This implies that

dist(q, T (q)) ≤ d(q, xnk
) + dist(xnk

, T (xnk
)) +H(T (xnk

), T (q))

≤ 2d(xnk
, q) + (1 + L) · dist(xnk

, T (xnk
))→ 0 as k →∞.

Thus q ∈ T (q). By Lemma 3.2, lim
n→∞

d(xn, q) exists and hence q is the strong limit of {xn}. �
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