

CONSISTENT IDEALS OF PSEUDO-COMPLEMENTED LATTICES

NOORBHASHA RAFI¹, RAVIKUMAR BANDARU², PRASHANT PATEL², RAHUL SHUKLA^{3,*}

¹Department of Mathematics, Bapatla Engineering College, Bapatla, Andhra Pradesh-522101, India

² Department of Mathematics, School of Advanced Sciences, VIT-AP University, Amaravati, Andhra Pradesh-522237, India

³ Department of Mathematical Sciences and Computing, Walter Sisulu University, Mthatha 5117, South Africa

*Corresponding author: rshukla@wsu.ac.za

Received Feb. 3, 2024

ABSTRACT. The notions of consistent ideals, fully consistent \mathcal{F}^{∇} -ideals, and closed ideals in a pseudocomplemented distributive lattice are introduced, and their characterization theorems are obtained. We also derived a set of equivalent conditions for every ideal of a pseudo-complemented distributive lattice to make it a consistent ideal. The concept of ornate prime \mathcal{F}^{∇} -ideal is introduced, and established equivalent conditions for every maximal \mathcal{F}^{∇} -ideal of a pseudo-complemented distributive lattice to make it an ornate prime \mathcal{F}^{∇} -ideal.

2020 Mathematics Subject Classification. 06D99.

Key words and phrases. consistent ideal; ornate prime \mathcal{F}^{∇} -ideal; maximal ideal; \mathcal{F} -stone lattice; \mathcal{I} -complemented lattice.

1. INTRODUCTION

In 1937, Stone [16] established a theory of a topological duality for distributive lattice. Katrinák [10] investigated the characterization of stone lattices. Many researchers [2–4, 8, 9] studied the properties of stone lattices extensively. In 1963, Varlet characterized pseudo-complemented lattice in terms of principal ideals. Further he established a concept of quasicomplemented lattice in 1968. In 1969, T.P. Speed [13] provided several ways to characterize A^* , and established some properties of congruences. After that he [14, 15] developed important results on homeomorphism and isomorphism. In 1972, Cornish [6] explored the properties of prime ideals and annihilator ideals and later he studied the properties of minimal prime ideals [5]. In 1972, B.A. Davey [7] introduced the concept of m-stone lattices and investigated its properties. In 2018, Badawy [1] introduced and studied normal filters in the class of stone lattices. Phaneedra Kumar et al. [11] introduced the concept of D-filters in a distributive lattice and the class of all minimal prime D-filters of the corresponding

DOI: 10.28924/APJM/11-47

quotient algebra with respect to this congruence. Recently, in 2022, M.S.Rao [12] defined and studied the concepts of coherent ideals and strongly coherent ideals in pseudo-complemented distributive lattices. This paper introduces and defines the concepts of consistent ideals, fully consistent \mathcal{F}^{∇} -ideals and ornate prime \mathcal{F}^{∇} -ideal with in pseudo-complemented distributive lattices. We establishes a set of equivalent conditions that determine an ideal in a pseudo-complemented distributive lattices to be consistent. It demonstrates that every fully consistent \mathcal{F}^{∇} -ideal and every closed ideal in a pseudo complemented distributive lattices is a consistent ideal. Later, we introduces the concept of quasi \mathcal{F} -stone pseudo complemented distributive lattices, which is a generalization of \mathcal{F} -stone lattices and it characterizes in terms of fully consistent ideals. We presents a notion of ornate prime \mathcal{F}^{∇} -ideal and study its characterizations. Our paper further establishes a set of equivalent conditions for a maximal \mathcal{F}^{∇} -ideal in a pseudo complemented distributive lattices to be fully consistent prime \mathcal{F}^{∇} -ideal. This characterization leads to better understanding of \mathcal{F}^{∇} -complemented lattices. Finally, the paper provides a set of equivalent conditions for a prime \mathcal{F}^{∇} -ideal in a pseudo complemented conditions for a prime \mathcal{F}^{∇} -ideal in a pseudo complemented distributive lattices to be fully consistent prime \mathcal{F}^{∇} -ideal. This characterization leads to better understanding of \mathcal{F}^{∇} -complemented lattices. Finally, the paper provides a set of equivalent conditions for a prime \mathcal{F}^{∇} -ideal in a pseudo complemented conditions for a prime \mathcal{F}^{∇} -ideal in a pseudo complemented distributive lattice to be considered as ornate \mathcal{F}^{∇} -ideal.

2. Preliminaries

Definition 2.1. [3] An algebra $(\mathcal{L}, \wedge, \vee)$ of type (2, 2) is called a distributive lattice if for all $\beta_1, \beta_2, \beta_3 \in \mathcal{L}$, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')

 $(1) \ \beta_1 \wedge \beta_1 = \beta_1, \ \beta_1 \vee \beta_1 = \beta_1,$ $(2) \ \beta_1 \wedge \beta_2 = \beta_2 \wedge \beta_1, \ \beta_1 \vee \beta_2 = \beta_2 \vee \beta_1,$ $(3) \ (\beta_1 \wedge \beta_2) \wedge \beta_3 = \beta_1 \wedge (\beta_2 \wedge \beta_3), \ (\beta_1 \vee \beta_2) \vee \beta_3 = \beta_1 \vee (\beta_2 \vee \beta_3),$ $(4) \ (\beta_1 \wedge \beta_2) \vee \beta_1 = \beta_1, \ (\beta_1 \vee \beta_2) \wedge \beta_1 = \beta_1,$ $(5) \ \beta_1 \wedge (\beta_2 \vee \beta_3) = (\beta_1 \wedge \beta_2) \vee (\beta_1 \wedge \beta_3),$ $(5') \ \beta_1 \vee (\beta_2 \wedge \beta_3) = (\beta_1 \vee \beta_2) \wedge (\beta_1 \vee \beta_3).$

A non-empty subset \mathcal{A} of a lattice \mathcal{L} is called an ideal(filter) of \mathcal{L} if $\gamma_1 \vee \gamma_2 \in \mathcal{A}(\gamma_1 \wedge \gamma_2 \in \mathcal{A})$ and $\gamma_1 \wedge \beta_1 \in \mathcal{A}(\gamma_1 \vee \beta_1 \in \mathcal{A})$ whenever $\gamma_1, \gamma_2 \in \mathcal{A}$ and $\beta_1 \in \mathcal{L}$. The set $\mathcal{I}(\mathcal{L})$ of all ideals of $(\mathcal{L}, \vee, \wedge, 0)$ forms a complete distributive lattice as well as the set $\mathcal{F}(\mathcal{L})$ of all filters of $(\mathcal{L}, \vee, \wedge, 1)$ forms a complete distributive lattice. A proper ideal (filter) \mathcal{M} of a lattice is called *maximal* if there exists no proper ideal(filter) \mathcal{N} such that $\mathcal{M} \subset \mathcal{N}$.

The set $(\gamma_1] = \{\beta_1 \in \mathcal{L} \mid \beta_1 \leq \gamma_1\}$ is called a principal ideal generated by γ_1 and the set of all principal ideals is a sublattice of $\mathcal{I}(\mathcal{L})$. Dually the set $[\gamma_1] = \{\beta_1 \in \mathcal{L} \mid \gamma_1 \leq \beta_1\}$ is called a *principal filter* generated by γ_1 and the set of all principal filters is a sublattice of $\mathcal{F}(\mathcal{L})$. A proper ideal (proper filter) \mathcal{P} of a lattice \mathcal{L} is called *prime* if for all $\gamma_1, \gamma_2 \in \mathcal{L}, \gamma_1 \land \gamma_2 \in \mathcal{P}$ ($\gamma_1 \lor \gamma_2 \in \mathcal{P}$) then $\gamma_1 \in \mathcal{P}$ or $\gamma_2 \in \mathcal{P}$. Every maximal ideal (filter) is prime.

Theorem 2.2. [6] A prime ideal \mathcal{P} of a distributive lattice \mathcal{L} is minimal if and only if to each $\beta_1 \in \mathcal{P}$, there exists $\beta_2 \notin \mathcal{P}$ such that $\beta_1 \wedge \beta_2 = 0$.

The pseudo-complement γ_2^* of an element γ_2 is the greatest element disjoint from γ_2 , if such an element exists. The defining property of γ_2^* is:

$$\gamma_1 \wedge \gamma_2 = 0 \Leftrightarrow \gamma_1 \wedge \gamma_2^* = \gamma_1 \Leftrightarrow \gamma_1 \le \gamma_2^*$$

where \leq is a partial ordering relation on the lattice \mathcal{L} .

A distributive lattice \mathcal{L} in which every element has a pseudo-complement is called a pseudocomplemented distributive lattice. For any two elements γ_1, γ_2 of a pseudo-complemented lattice, we have the following:

- (1) $\gamma_1 \leq \gamma_2 \Rightarrow (\gamma_2)^* \subseteq (\gamma_1)^*,$ (2) $\gamma_1 \leq \gamma_1^{**},$ (3) $\gamma_1^{***} = \gamma_1^*,$
- $(4) (\gamma_1 \vee \gamma_2)^* = \gamma_1^* \wedge \gamma_2^*,$
- (5) $(\gamma_1 \wedge \gamma_2)^{**} = \gamma_1^{**} \wedge \gamma_2^{**}.$

An element γ_1 of a pseudo-complemented distributive lattice \mathcal{L} is called a dense element if $\gamma_1^* = 0$ and the set \mathcal{D} of all dense elements of \mathcal{L} forms a filter in \mathcal{L} . An element $\gamma_1 \in \mathcal{L}$ is called a closed element if $\gamma_1^{**} = \gamma_1$.

Definition 2.3. [3] A pseudo-complemented distributive lattice \mathcal{L} is called a stone lattice if $\beta_1^* \lor \beta_1^{**} = 1$ for all $\beta_1 \in \mathcal{L}$.

Theorem 2.4. [3] *The following conditions are equivalent in a pseudo-complemented distributive lattice* \mathcal{L} *:*

- (1) \mathcal{L} is a stone lattice,
- (2) for $\beta_1, \beta_2 \in \mathcal{L}$, $(\beta_1 \wedge \beta_2)^* = \beta_1^* \vee \beta_2^*$,
- (3) for $\beta_1, \beta_2 \in \mathcal{L}, \ (\beta_1 \vee \beta_2)^{**} = \beta_1^{**} \vee \beta_2^{**}.$

For any non-empty subset \mathcal{A} of a distributive lattice \mathcal{L} , the annihilator [13] of \mathcal{A} is defined as $\mathcal{A} = \{\beta_1 \in \mathcal{L} \mid \gamma_1 \land \beta_1 = 0, \text{ for all } \gamma_1 \in \mathcal{A}\}$. For any $\emptyset \neq \mathcal{A} \subseteq \mathcal{L}, \mathcal{A}^*$ is an ideal of \mathcal{L} such that $\mathcal{A} \cap \mathcal{A}^* = \{0\}$. In case of $\mathcal{A} = \{\gamma_1\}$, we simply denote $\{\gamma_1\}^*$ by $(\gamma_1)^*$. Throughout the paper, \mathcal{L} represents a pseudo-complemented distributive lattice and \mathcal{F} represents a filter of \mathcal{L} .

3. Consistent ideals

This section presents the introduction of consistent ideals and fully consistent \mathcal{F}^{∇} -ideals within pseudo-complemented distributive lattices. We establishes a set of equivalent conditions that determine an ideal in a pseudo-complemented distributive lattice to be consistent. It demonstrates that every

fully consistent \mathcal{F}^{∇} -ideal and every closed ideal in a pseudo complemented distributive lattice is a consistent ideal. We introduces the concept of \mathcal{F} -stone lattices and establishes its characterization results. We define the notion of quasi \mathcal{F} -stone lattices and it characterizes in terms of fully consistent \mathcal{F}^{∇} -ideals.

Definition 3.1. Let \mathcal{I} be any ideal of distributive lattice \mathcal{L} . An ideal \mathcal{G} of \mathcal{L} is said to be an \mathcal{I} -ideal of \mathcal{L} if $\mathcal{I} \subseteq \mathcal{G}$.

Definition 3.2. Let S be a non empty subset of a pseudo-complemented lattice \mathcal{L} . For any filter \mathcal{F} of \mathcal{L} , define

$$\begin{split} \mathcal{S}^{\mathcal{F}} &= \{\gamma_1 \in \mathcal{L} \mid \mu_1^* \lor \gamma_1^* \in \mathcal{F}, \text{ for all } \mu_1 \in \mathcal{S} \} \\ & \text{and} \\ \mathcal{F}^{\nabla} &= \{\beta_1 \mid \beta_1^* \in \mathcal{F} \}. \end{split}$$

Clearly, we have that \mathcal{F}^{∇} is an ideal of \mathcal{L} .

Proposition 3.3. Let S be a non empty subset of a pseudo-complemented lattice \mathcal{L} . Then $S^{\mathcal{F}}$ is an \mathcal{F}^{∇} -ideal of \mathcal{L} .

Proof. For any $\mu_1 \in S$, we have that $\mu_1^* \vee 0^* = 0^* \in \mathcal{F}$ and hence $0 \in \mathcal{S}^{\mathcal{F}}$. Therefore $\mathcal{S}^{\mathcal{F}} \neq \emptyset$. Let $\gamma_1, \gamma_2 \in \mathcal{S}^{\mathcal{F}}$. Then $\mu_1^* \vee \gamma_1^* \in \mathcal{F}$ and $\mu_1^* \vee \gamma_2^* \in \mathcal{F}$, for all $\mu_1 \in S$. That implies $(\mu_1^* \vee \gamma_1^*) \wedge (\mu_1^* \vee \gamma_2^*) \in \mathcal{F}$ and hence $\mu_1^* \vee (\gamma_1 \vee \gamma_2)^* \in \mathcal{F}$, for all $\mu_1 \in S$. Therefore $\gamma_1 \vee \gamma_2 \in \mathcal{S}^{\mathcal{F}}$. Let $\gamma_1 \in \mathcal{S}^{\mathcal{F}}$. Then $\mu_1^* \vee \gamma_1^* \in \mathcal{F}$, for all $\mu_1 \in S$. Let μ_2 be any element of \mathcal{L} . Since $\mu_2 \wedge \gamma_1 \leq \gamma_1$, we get $\gamma_1^* \leq (\mu_2 \wedge \gamma_1)^*$. Then $\mu_1^* \vee \gamma_1^* \leq \mu_1^* \vee (\gamma_1 \wedge \mu_2)^*$. Since $\mu_1^* \vee \gamma_1^* \in \mathcal{F}$, we get $\mu_1^* \vee (\gamma_1 \wedge \mu_2)^* \in \mathcal{F}$. Therefore $\gamma_1 \wedge \mu_2 \in \mathcal{S}^{\mathcal{F}}$. Thus $\mathcal{S}^{\mathcal{F}}$ is an ideal of \mathcal{L} . Let $\beta_1 \in \mathcal{F}^{\nabla}$. Then $\beta_1^* \in \mathcal{F}$ and hence $\mu_1^* \vee \beta_1^* \in \mathcal{F}$, for all $\mu_1 \in S$. Therefore $\beta_1 \in \mathcal{S}^{\mathcal{F}}$. Thus $\mathcal{F}^{\nabla} \subseteq \mathcal{S}^{\mathcal{F}}$. \Box

The following lemma comes directly from the above definition.

Lemma 3.4. Let S and T be two non-empty subsets of a pseudo-complemented lattice \mathcal{L} . Then

(1) $\{0\}^{\mathcal{F}} = \mathcal{L} \text{ and } \mathcal{L}^{\mathcal{F}} = \mathcal{F}^{\nabla},$ (2) $\mathcal{S} \subseteq \mathcal{T} \text{ implies } \mathcal{T}^{\mathcal{F}} \subseteq \mathcal{S}^{\mathcal{F}},$ (3) $\mathcal{S} \subseteq \mathcal{S}^{\mathcal{F}\mathcal{F}},$ (4) $\mathcal{S}^{\mathcal{F}\mathcal{F}\mathcal{F}} = \mathcal{S}^{\mathcal{F}},$ (5) $\mathcal{S}^{\mathcal{F}} = \mathcal{L} \Leftrightarrow \mathcal{S} = \mathcal{F}^{\nabla}.$

Proposition 3.5. Let S and T be any two ideals of a pseudo-complemented lattice \mathcal{L} . Then $(S \lor T)^{\mathcal{F}} = S^{\mathcal{F}} \cap T^{\mathcal{F}}$.

Proof. Let $\gamma_1 \in S^{\mathcal{F}} \cap \mathcal{T}^{\mathcal{F}}$. Then $\mu_1^* \vee \gamma_1^* \in \mathcal{F}$, for all $\mu_1 \in S$ and $\mu_3^* \vee \gamma_1^* \in \mathcal{F}$, for all $\mu_3 \in \mathcal{T}$. That implies $(\mu_1^* \vee \gamma_1^*) \wedge (\mu_3^* \vee \gamma_1^*) \in \mathcal{F}$, which gives $(\mu_1^* \wedge \mu_3^*) \vee \gamma_1^* \in \mathcal{F}$. Therefore $(\mu_1 \vee \mu_3)^* \vee \gamma_1^* \in \mathcal{F}$, for

all $\mu_1 \lor \mu_3 \in \mathcal{S} \lor \mathcal{T}$. Hence $\gamma_1 \in (\mathcal{S} \lor \mathcal{T})^{\mathcal{F}}$. Thus $\mathcal{S}^{\mathcal{F}} \cap \mathcal{T}^{\mathcal{F}} \subseteq (\mathcal{S} \lor \mathcal{T})^{\mathcal{F}}$. Since $(\mathcal{S} \lor \mathcal{T})^{\mathcal{F}} \subseteq \mathcal{S}^{\mathcal{F}} \cap \mathcal{T}^{\mathcal{F}}$, we get $(\mathcal{S} \lor \mathcal{T})^{\mathcal{F}} = \mathcal{S}^{\mathcal{F}} \cap \mathcal{T}^{\mathcal{F}}$.

For any $\mu_1 \in \mathcal{L}$, we denote $(\{\mu_1\})^{\mathcal{F}}$ by $(\mu_1)^{\mathcal{F}}$.

From the above results we get the following result easily.

Corollary 3.6. For any elements β_1, β_2 in pseudo-complemented lattice \mathcal{L} , we have the following:

(1) $\beta_1 \leq \beta_2 \Rightarrow (\beta_2)^{\mathcal{F}} \subseteq (\beta_1)^{\mathcal{F}},$ (2) $(\beta_1 \lor \beta_2)^{\mathcal{F}} = (\beta_1)^{\mathcal{F}} \cap (\beta_2)^{\mathcal{F}},$ (3) $\beta_1 \in (\beta_2)^{\mathcal{F}} \Rightarrow \beta_1 \land \beta_2 \in \mathcal{F}^{\nabla},$ (4) $\beta_1^* = \beta_2^* \Rightarrow (\beta_1)^{\mathcal{F}} = (\beta_2)^{\mathcal{F}},$ (5) $\beta_1 \in \mathcal{F} \Rightarrow (\beta_1)^{\mathcal{F}} = \mathcal{F}^{\nabla}.$

It can be verified easily that $S^* \subseteq (S, \mathcal{F}^{\nabla})$ and $S^{\mathcal{F}} \subseteq (S, \mathcal{F}^{\nabla})$, where $(S, \mathcal{F}^{\nabla}) = \{\beta_1 \in \mathcal{L} \mid \beta_1 \land \mu_1 \in \mathcal{F}^{\nabla}\}$, for all $\mu_1 \in S\}$. Converse need not to be true in the following example.

Example 3.7. Let $\mathcal{L} = \{0, 1, 2, 3, 4, 5\}$ be a set with binary operations \lor , \land and unary operation \ast given in the following tables

\wedge	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	2	0	2	2
3	0	3	0	3	3	3
4	0	4	2	3	4	4
5	0	5	2	3	4	5

Table-1. Cayley table for the binary operation " \wedge ".

Table-2. Cayley table for the binary operation " \vee ".

\vee	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	1	1	1	1	1
2	2	1	2	4	4	5
3	3	1	4	3	4	5
4	4	1	4	4	4	5
5	5	1	5	5	5	5

Table-3. Cayley table for the unary operation "*".

*	0	1	2	3	4	5
	1	0	3	2	0	0

Then $(\mathcal{L}, \lor, \land, *, 0, 1)$ is a pseudo-complemented distributive lattice. Consider a filter $\mathcal{F}_1 = \{1, 2, 4, 5\}$ and an ideal $\mathcal{F}_1^{\nabla} = \{0, 3\}$ of \mathcal{L} . Take $\mathcal{S} = \{2, 3\}$. Clearly, we have that $\mathcal{S}^* = \{0\}$, $\mathcal{S}^{\mathcal{F}_1} = \{0, 3\}$, and Hence $\mathcal{S}^* \subsetneq (\mathcal{S}, \mathcal{F}_1^{\nabla})$. Consider a filters $\mathcal{F}_2 = \{1\}$ and an ideal $\mathcal{F}_2^{\nabla} = \{0\}$ of \mathcal{L} . Take $\mathcal{S} = \{2\}$. Clearly, we have that $\mathcal{S}^{\mathcal{F}_2} = \{0\}$ and $(\mathcal{S}, \mathcal{F}_2^{\nabla}) = \{0, 3\}$. Hence $\mathcal{S}^{\mathcal{F}_2} \subsetneq (\mathcal{S}, \mathcal{F}_2^{\nabla})$.

Definition 3.8. A pseudo-complemented lattice \mathcal{L} is said to be \mathcal{F} -stone if $\beta_1^* \vee \beta_1^{**} \in \mathcal{F}$, for all $\beta_1 \in \mathcal{L}$ (i.e., $\beta_1^* \in (\beta_1)^{\mathcal{F}}$, for all $\beta_1 \in \mathcal{L}$).

Example 3.9. Let $\mathcal{L} = \{0, 1, 2, 3, 4\}$ be a set with binary operations \lor , \land and unary operation \ast given in the following tables

Λ	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	2	0	2
3	0	3	0	3	3
4	0	4	2	3	4

Table-1. Cayley table for the binary operation " \wedge ".

Table-2. Cayley table for the binary operation " \vee ".

\vee	0	1	2	3	4
0	0	1	2	3	4
1	1	1	1	1	1
2	2	1	2	4	4
3	3	1	4	3	4
4	4	1	4	4	4

Table-3. Cayley table for the unary operation "*".

					-
*	0	1	2	3	4
	1	0	3	2	0

Then $(\mathcal{L}, \lor, \land, *, 0, 1)$ is a pseudo-complemented distributive lattice. If $\mathcal{F} = \{1, 4\}$ then \mathcal{F} is a filter of \mathcal{L} . Also $\beta_1^* \lor \beta_1^{**} \in \mathcal{F}$ for all $\beta_1 \in \mathcal{L}$. Hence \mathcal{L} is \mathcal{F} -stone. But \mathcal{L} is not a stone lattice since $2^* \lor (2^*)^* = 3 \lor 3^* = 3 \lor 2 = 4 \neq 1$.

Example 3.10. Let $\mathcal{L} = \{0, 1, 2, 3, 4, 5, 6\}$ be a set with binary operations \lor , \land and unary operation * given in the following tables

\wedge	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	2	0	2	0	2
3	0	3	0	3	3	5	5
4	0	4	2	3	4	5	6
5	0	5	0	5	5	5	5
6	0	6	2	5	6	5	6

Table-1. Cayley table for the binary operation " \wedge ".

Table-2. Cayley table for the binary operation " \vee ".

							-
\vee	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	1	1	1	1	1	1
2	2	1	2	4	4	6	6
3	3	1	4	3	4	3	4
4	4	1	4	4	4	4	4
5	5	1	6	3	4	5	6
6	6	1	6	4	4	6	6

Table-3. Cayley table for the unary operation "*".

*	0	1	2	3	4	5	6
	1	0	3	2	0	2	0

Then $(\mathcal{L}, \lor, \land, ^*, 0, 1)$ is a pseudo-complemented distributive lattice. If $\mathcal{F} = \{1, 4\}$ then \mathcal{F} is a filter of \mathcal{L} . Also $\beta_1^* \lor \beta_1^{**} \in \mathcal{F}$ for all $\beta_1 \in \mathcal{L}$. Hence \mathcal{L} is \mathcal{F} -stone. But \mathcal{L} is not a stone lattice since $2^* \lor (2^*)^* = 3 \lor 3^* = 3 \lor 2 = 4 \neq 1$.

Theorem 3.11. In a pseudo-complemented lattice \mathcal{L} , The following are equivalent:

- (1) \mathcal{L} is an \mathcal{F} -stone lattice,
- (2) for any ideal S of \mathcal{L} , $S^{\mathcal{F}} = (S, \mathcal{F}^{\nabla})$,
- (3) for any $\beta_1 \in \mathcal{L}$, $(\beta_1)^{\mathcal{F}} = (\beta_1, \mathcal{F}^{\nabla})$,
- (4) for any two ideals S, T of $\mathcal{L}, S \cap T \subseteq \mathcal{F}^{\nabla} \Leftrightarrow S \subseteq T^{\mathcal{F}}$,

(5) for $\beta_1, \beta_2 \in \mathcal{L}, \beta_1 \wedge \beta_2 \in \mathcal{F}^{\nabla} \Rightarrow \beta_1^* \vee \beta_2^* \in \mathcal{F}.$

Proof. (1) \Rightarrow (2): Assume \mathcal{L} is an \mathcal{F} -stone lattice. Then $\beta_1 \in (\beta_1^*)^{\mathcal{F}}$ for all $\beta_1 \in \mathcal{L}$. Let \mathcal{S} be an ideal of \mathcal{L} and $\gamma_1 \in (\mathcal{S}, \mathcal{F}^{\nabla})$. Then $\gamma_1 \wedge \gamma_2 \in \mathcal{F}^{\nabla}$, for all $\gamma_2 \in \mathcal{S}$. That implies $(\gamma_1 \wedge \gamma_2)^* \in \mathcal{F}$, which gives $(\gamma_1 \wedge \gamma_2)^{***} \in \mathcal{F}$. That implies $(\gamma_1^{**} \wedge \gamma_2^{**})^* \in \mathcal{F}$. Therefore $\gamma_1^{**} \wedge \gamma_2^{**} \in \mathcal{F}^{\nabla}$ and hence $(\gamma_1^* \vee \gamma_2^*)^* \in \mathcal{F}^{\nabla}$, for all $\gamma_2 \in \mathcal{S}$. That implies $\gamma_1^* \vee \gamma_2^* \in \mathcal{F}$, for all $\gamma_2 \in \mathcal{S}$. Therefore $\gamma_1 \in \mathcal{S}^{\mathcal{F}}$ and hence $\mathcal{S}^{\mathcal{F}} = (\mathcal{S}, \mathcal{F}^{\nabla})$. (2) \Rightarrow (3): It is obvious.

 $(3) \Rightarrow (4): \text{Assume (3). Let } S, \mathcal{T} \text{ be two ideals of } \mathcal{L} \text{ with } S \cap \mathcal{T} \subseteq \mathcal{F}^{\nabla}. \text{ Let } \gamma_1 \in S. \text{ Clearly, we have that } \gamma_1 \land \gamma_2 \in S \cap \mathcal{T}, \text{ for all } \gamma_2 \in \mathcal{T}. \text{ That implies } \gamma_1 \land \gamma_2 \in \mathcal{F}^{\nabla}. \text{ Therefore } \gamma_1 \in (\gamma_2, \mathcal{F}^{\nabla}) = (\gamma_2)^{\mathcal{F}} \text{ and hence } \gamma_2^* \lor \gamma_1^* \in \mathcal{F}. \text{ Thus } \gamma_1 \in \mathcal{T}^{\mathcal{F}}. \text{ Conversely, assume that } S \subseteq \mathcal{T}^{\mathcal{F}}. \text{ Let } \gamma_1 \in S \cap \mathcal{T}. \text{ Then } \gamma_1 \in S \subseteq \mathcal{T}^{\mathcal{F}} \text{ and } \gamma_1 \in \mathcal{T}. \text{ That implies } \gamma_1 \in \mathcal{T} \cap \mathcal{T}^{\mathcal{F}} \subseteq \mathcal{F}^{\nabla}. \text{ Hence } S \cap \mathcal{T} \subseteq \mathcal{F}^{\nabla}.$

(4) \Rightarrow (5): Assume condition (4). Let $\beta_1 \land \beta_2 \in \mathcal{F}^{\nabla}$. Then $(\beta_1] \cap (\beta_2] \subseteq \mathcal{F}^{\nabla}$. By our assumption, we have that $(\beta_1] \subseteq (\beta_2]^{\mathcal{F}}$ and hence $\beta_1 \in (\beta_2]^{\mathcal{F}}$. Therefore $\beta_2^* \lor \beta_1^* \in \mathcal{F}$.

(5) \Rightarrow (1): Assume condition (5). We have that $\beta_1 \wedge \beta_1^* \in \mathcal{F}^{\nabla}$, for all $\beta_1 \in \mathcal{L}$. By our assumption we get that $\beta_1^* \vee \beta_1^{**} \in \mathcal{F}$.

Theorem 3.12. A pseudo-complemented lattice is \mathcal{F} -stone if and only if $(\beta_1)^{\mathcal{FF}} = (\beta_1^*)^{\mathcal{F}}$, for all $\beta_1 \in \mathcal{L}$.

Proof. Assume that \mathcal{L} is \mathcal{F} -stone. Let $\beta_1 \in \mathcal{L}$. Clearly, we have that $(\beta_1)^* \subseteq (\beta_1, \mathcal{F}^{\nabla}) = (\beta_1)^{\mathcal{F}}$ and hence $(\beta_1)^{\mathcal{F}} \subseteq (\beta_1^*)^{\mathcal{F}}$. Let $\gamma_1 \in (\beta_1)^{\mathcal{F}}$. Then $\gamma_1^* \lor \beta_1^* \in \mathcal{F}$ and hence $\gamma_1^{**} \land \beta_1^{**} \in \mathcal{F}^{\nabla}$. Let $\gamma_2 \in (\beta_1^*)^{\mathcal{F}}$. Then $\gamma_2^* \lor \beta_1^{**} \in \mathcal{F}^{\nabla}$. And hence $\gamma_2^{**} \land \beta_1^* \in \mathcal{F}^{\nabla}$. Since $\gamma_1^{**} \land \beta_1^{**} \in \mathcal{F}^{\nabla}$, we get that $(\gamma_1^{**} \land \beta_1^{**}) \lor (\beta_1^* \land \gamma_2^{**}) \in \mathcal{F}^{\nabla}$. That implies $(\gamma_1^{**} \land \gamma_2^{**}) \land ((\gamma_1^{**} \land \beta_1^{**}) \lor (\beta_1^* \land \gamma_2^{**})) \in \mathcal{F}^{\nabla}$. That implies $(\gamma_1^{**} \land \gamma_2^{**}) \land ((\gamma_1^{**} \land \beta_1^{**}) \lor (\beta_1^* \lor \beta_1^*) \in \mathcal{F}^{\nabla}$. By our assumption, we get that $(\gamma_1^{**} \land \gamma_2^{**})^* \lor (\beta_1^{**} \lor \beta_1^*) \in \mathcal{F}$. That implies $(\gamma_1^{**} \land \gamma_2^{**})^* \lor (\beta_1^{**} \land \beta_1^{**}) \in \mathcal{F}^{\nabla}$. By our assumption, we get that $(\gamma_1^{**} \land \gamma_2^{**})^* \lor (\beta_1^{**} \lor \beta_1^*) \in \mathcal{F}^{\nabla}$. Therefore $\gamma_2 \in (\beta_1)^{\mathcal{F}\mathcal{F}}$ and hence $(\beta_1^*)^{\mathcal{F}} \subseteq (\beta_1)^{\mathcal{F}\mathcal{F}}$. Thus $(\beta_1^*)^{\mathcal{F}\mathcal{F}} = (\beta_1^*)^{\mathcal{F}\mathcal{F}}$. Conversely assume that $(\beta_1)^{\mathcal{F}\mathcal{F}} = (\beta_1^*)^{\mathcal{F}\mathcal{F}}$, for all $\beta_1 \in \mathcal{L}$. Since $\beta_1 \in (\beta_1)^{\mathcal{F}\mathcal{F}}$, we get that $\beta_1 \in (\beta_1^*)^{\mathcal{F}\mathcal{F}}$ and hence $\beta_1^* \lor \beta_1^* \in \mathcal{F}$, for all $\beta_1 \in \mathcal{L}$. Thus \mathcal{L} is \mathcal{F} -stone.

The concept of consistent ideals is introduced in pseudo-complemented lattices.

Definition 3.13. An ideal S of a pseudo-complemented lattice \mathcal{L} is called a *consistent ideal* if for all $\gamma_1, \gamma_2 \in \mathcal{L}, (\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$ and $\gamma_1 \in S$ imply that $\gamma_2 \in S$.

Example 3.14. From the Example-3.7, consider a filter $\mathcal{F} = \{1, 3, 4, 5\}$ and an ideal $\mathcal{I} = \{0, 2\}$. It is easy to verify that \mathcal{I} is a consistent ideal.

Lemma 3.15. *In a pseudo-complemented lattice L, we have the following:*

- (1) for any $\gamma_1 \in \mathcal{L}$, $(\gamma_1)^{\mathcal{F}}$ is a consistent ideal,
- (2) for any element γ_1 of an ideal S, with $(\gamma_1)^{\mathcal{FF}} \subseteq S$, S is a consistent ideal of \mathcal{L} .

Theorem 3.16. In a pseudo-complemented lattice *L*, the following are equivalent:

- (1) for any $\gamma_1 \in \mathcal{L}$, $(\gamma_1]$ is a consistent ideal,
- (2) every ideal is a consistent ideal,
- (3) every prime ideal is a consistent ideal,
- (4) for $\beta_1, \beta_2 \in \mathcal{L}, (\beta_1)^{\mathcal{F}} = (\beta_2)^{\mathcal{F}}$ implies $\beta_1 = \beta_2$.

Proof. (1) \Rightarrow (2): Assume condition (1). Let S be an ideal of \mathcal{L} . Choose $\beta_1, \beta_2 \in \mathcal{L}$. Suppose $(\beta_1)^{\mathcal{F}} = (\beta_2)^{\mathcal{F}}$ and $\beta_1 \in S$. Then clearly $(\beta_1] \subseteq S$. Since $\beta_1 \in (\beta_1]$ and $(\beta_1]$ is a consistent ideal, we have $\beta_2 \in (\beta_1] \subseteq S$. Therefore S is a consistent ideal.

$(2) \Rightarrow (3)$: It's obvious.

(3) \Rightarrow (4): Assume (4). Let $\beta_1, \beta_2 \in \mathcal{L}$ such that $(\beta_1)^{\mathcal{F}} = (\beta_2)^{\mathcal{F}}$. Suppose $\beta_1 \neq \beta_2$. Then there exists a prime ideal \mathcal{N} of \mathcal{L} such that $\beta_1 \subseteq \mathcal{N}$ and $\beta_2 \notin \mathcal{N}$. By our assumption, \mathcal{N} is a consistent ideal of \mathcal{L} . Since $(\beta_1)^{\mathcal{F}} = (\beta_2)^{\mathcal{F}}$ and $\beta_1 \in \mathcal{N}$, we get $\beta_2 \in \mathcal{N}$, which is a contradiction. Hence $\beta_1 = \beta_2$.

(4) \Rightarrow (1): Assume (4). Let $(\beta_1]$ be a principal ideal ideal of \mathcal{L} . Let $\gamma_1, \gamma_2 \in \mathcal{L}$ such that $(\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$ and $\gamma_1 \in (\beta_1]$. By our assumption, we get that $\gamma_1 = \gamma_2$ and hence $\gamma_2 \in (\beta_1]$. Thus $(\beta_1]$ is a consistent ideal of \mathcal{L} .

Definition 3.17. Let S be an \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} . Define $\chi(S)$ as follows:

$$\chi(\mathcal{S}) = \{\gamma_1 \in \mathcal{L} \mid (\gamma_1)^{\mathcal{F}} \lor \mathcal{S} = \mathcal{L}\}$$

Lemma 3.18. Let S, T be two F^{∇} -ideals of a pseudo-complemented lattice \mathcal{L} . We have the following:

(1) $S \subseteq T \Rightarrow \chi(S) \subseteq \chi(T)$, (2) $\chi(S \cap T) = \chi(S) \cap \chi(T)$, (3) $\chi(S) \subseteq S$.

Proof. (1) and (2) are verified easily.

(3) Let $\gamma_1 \in \chi(S)$. Then $(\gamma_1)^{\mathcal{F}} \vee S = \mathcal{L}$. Since $\gamma_1 \in \mathcal{L}$, there exist elements $\beta_2 \in (\gamma_1)^{\mathcal{F}}$ and $\mu_1 \in S$ such that $\gamma_1 = \beta_2 \vee \mu_1$. Since $\beta_2 \in (\gamma_1)^{\mathcal{F}}$, we have that $\beta_2^* \vee \gamma_1^* \in \mathcal{F}$ and hence $\gamma_1 \wedge \beta_2 \in \mathcal{F}^{\nabla} \subseteq S$. That implies $\gamma_1 \wedge \mu_1 \in S$. Therefore $\gamma_1 = \gamma_1 \wedge \gamma_1 = \gamma_1 \wedge (\beta_2 \vee \mu_1) = (\gamma_1 \wedge \beta_2) \vee (\gamma_1 \wedge \mu_1) = \gamma_1 \wedge \mu_1 \in S$. Thus $\chi(S) \subseteq S$.

Proposition 3.19. Let S be an \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} . Then $\chi(S)$ is an ideal \mathcal{L} .

Proof. Since $(0)^{\mathcal{F}} = \mathcal{L}$, we have that $(0)^{\mathcal{F}} \lor \mathcal{S} = \mathcal{L}$. Then $0 \in \chi(\mathcal{S})$ and hence $\chi(\mathcal{S}) \neq \emptyset$. Let $\gamma_1, \gamma_2 \in \chi(\mathcal{S})$. Then $(\gamma_1)^{\mathcal{F}} \lor \mathcal{S} = (\gamma_2)^{\mathcal{F}} \lor \mathcal{S} = \mathcal{L}$. Now, $(\gamma_1 \lor \gamma_2)^{\mathcal{F}} \lor \mathcal{S} = \{(\gamma_1)^{\mathcal{F}} \cap (\gamma_2)^{\mathcal{F}}\} \lor \mathcal{S} = \{(\gamma_1)^{\mathcal{F}} \lor \mathcal{S}\} \cap \{(\gamma_2)^{\mathcal{F}} \lor \mathcal{S}\} = \mathcal{L}$. Therefore $\gamma_1 \vee \gamma_2 \in \chi(S)$. Let $\gamma_1 \in \chi(S)$. Then $\mathcal{L} = (\gamma_1)^{\mathcal{F}} \vee S$. Let μ_2 be any element of \mathcal{L} . Since $(\gamma_1)^{\mathcal{F}} \subseteq (\gamma_1 \wedge \mu_2)^{\mathcal{F}}$, we get that $\mathcal{L} = (\gamma_1)^{\mathcal{F}} \vee S \subseteq (\gamma_1 \wedge \mu_2)^{\mathcal{F}} \vee S$ and hence $(\gamma_1 \wedge \mu_2)^{\mathcal{F}} \vee S = \mathcal{L}$. Therefore $\gamma_1 \wedge \mu_2 \in \chi(S)$. Hence $\chi(S)$ is an ideal of \mathcal{L} .

Definition 3.20. An \mathcal{F}^{∇} -ideal \mathcal{S} of a pseudo-complemented lattice \mathcal{L} is said to be *fully consistent* if $\mathcal{S} = \chi(\mathcal{S})$.

Proposition 3.21. *Every fully consistent* \mathcal{F}^{∇} *-ideal of a pseudo-complemented lattice is a consistent ideal.*

Proof. Let S be a fully consistent ideal of a pseudo-complemented lattice \mathcal{L} . Then $S = \chi(S)$. Let $\gamma_1, \gamma_2 \in \mathcal{L}$ with $(\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$ and $\gamma_1 \in S = \chi(S)$. That implies $(\gamma_1)^{\mathcal{F}} \lor S = \mathcal{L}$. Therefore $(\gamma_2)^{\mathcal{F}} \lor S = \mathcal{L}$ and hence $\gamma_2 \in \chi(S) = S$. Thus S is a consistent ideal of \mathcal{L} .

Definition 3.22. An ideal S of a pseudo-complemented lattice \mathcal{L} is said to be closed if $S = S^{\mathcal{FF}}$.

Example 3.23. From the Example-3.7, consider a filter $\mathcal{F} = \{1, 4, 5\}$ and an ideal $\mathcal{S} = \{0, 3\}$ of \mathcal{L} . Clearly, we have that $\mathcal{S}^{\mathcal{FF}} = \mathcal{S}$. Therefore \mathcal{S} is closed.

Clearly \mathcal{F}^{∇} is the smallest closed ideal and \mathcal{L} is the largest closed ideal.

Proposition 3.24. *Every closed ideal of a pseudo-complemented lattice* \mathcal{L} *is a consistent ideal.*

Proof. Let S be a closed ideal of a pseudo-complemented lattice \mathcal{L} . Then $S = S^{\mathcal{FF}}$. Let $\gamma_1, \gamma_2 \in \mathcal{L}$ with $(\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$ and $\gamma_1 \in S$. Then $\gamma_2 \in (\gamma_2)^{\mathcal{FF}} = (\gamma_1)^{\mathcal{FF}} \subseteq S^{\mathcal{FF}} = S$. Hence S is a consistent ideal of \mathcal{L} .

Definition 3.25. A pseudo-complemented lattice \mathcal{L} is said to be quasi \mathcal{F} -stone if $(\gamma_1)^{\mathcal{F}} \lor (\gamma_1)^{\mathcal{FF}} = \mathcal{L}$, for all $\gamma_1 \in \mathcal{L}$.

Theorem 3.26. *Every* \mathcal{F} *-stone lattice is a quasi* \mathcal{F} *-stone lattice.*

Proof. Assume that \mathcal{L} is a \mathcal{F} -stone lattice. Then $\gamma_1^* \vee \gamma_1^{**} \in \mathcal{F}$, for all $\gamma_1 \in \mathcal{L}$. Therefore $(\gamma_1^* \vee \gamma_1^{**}] \subseteq (\mathcal{F}]$ and hence $(\gamma_1^*] \vee (\gamma_1^{**}] = \mathcal{L}$. By our assumption, we have that $(\gamma_1)^* = (\gamma_1)^{\mathcal{F}}$. Therefore $(\gamma_1)^{\mathcal{F}} \vee (\gamma_1)^{\mathcal{FF}} = \mathcal{L}$. Thus \mathcal{L} is quasi \mathcal{F} -stone.

Generally, the converse of the above result doesn't hold. We can illustrate this with the subsequent example.

Example 3.27. Let $\mathcal{L} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be a set with binary operations \lor , \land and unary operation * given in the following tables

\wedge	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	2	0	2	2	0	2	0	2
3	0	3	0	3	3	8	6	6	8	8
4	0	4	2	3	4	9	6	7	8	9
5	0	5	2	8	9	5	0	2	8	9
6	0	6	0	6	6	0	6	6	0	0
7	0	7	2	6	7	2	6	7	0	2
8	0	8	0	8	8	8	0	0	8	8
9	0	9	2	8	9	9	0	2	8	9

Table-1. Cayley table for the binary operation " \wedge ".

Table-2. Cayley table for the binary operation " \lor ".

								-	-	
\vee	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	1	1	1	1	1	1	1	1	1
2	2	1	2	4	4	5	7	7	9	9
3	3	1	4	3	4	1	3	4	3	4
4	4	1	4	4	4	1	4	4	4	4
5	5	1	5	1	1	5	1	1	5	5
6	6	1	7	3	4	1	6	7	3	4
7	7	1	7	4	4	1	7	7	4	4
8	8	1	9	3	4	5	3	4	8	9
9	9	1	9	4	4	5	4	4	9	9

Table-3. Cayley table for the unary operation "*".

*	0	1	2	3	4	5	6	7	8	9	
	1	0	3	2	0	6	5	8	7	6	

Then $(\mathcal{L}, \lor, \land, ^*, 0, 1)$ is a pseudo-complemented distributive lattice. If $\mathcal{F} = \{1, 5\}$ then \mathcal{F} is a filter of \mathcal{L} . Clearly, we have that $(\gamma_1)^{\mathcal{F}} \lor (\gamma_1)^{\mathcal{FF}} = \mathcal{L}$, for all $\gamma_1 \in \mathcal{L}$. Hence \mathcal{L} is a quasi \mathcal{F} -stone. But \mathcal{L} is not \mathcal{F} -stone, since $2^* \lor (2^*)^* = 3 \lor 3^* = 3 \lor 2 = 4 \notin \mathcal{F}$.

Theorem 3.28. In a pseudo-complemented lattice \mathcal{L} , the following are equivalent:

(1) \mathcal{L} is a quasi \mathcal{F} -stone lattice,

- (2) every closed \mathcal{F}^{∇} -ideal is fully consistent,
- (3) for each $\gamma_1 \in \mathcal{L}, (\gamma_1)^{\mathcal{FF}}$ is fully consistent.

Proof. (1) \Rightarrow (2): Assume (1). Let S be a closed \mathcal{F}^{∇} -ideal of \mathcal{L} . Then $\mathcal{S}^{\mathcal{F}\mathcal{F}} = S$. Let $\gamma_1 \in S$. Then $(\gamma_1)^{\mathcal{F}\mathcal{F}} \subseteq \mathcal{S}^{\mathcal{F}\mathcal{F}}$. That implies $\mathcal{L} = (\gamma_1)^{\mathcal{F}} \lor (\gamma_1)^{\mathcal{F}\mathcal{F}} \subseteq (\gamma_1)^{\mathcal{F}} \lor \mathcal{S}^{\mathcal{F}\mathcal{F}} = (\gamma_1)^{\mathcal{F}} \lor S$ and hence $(\gamma_1)^{\mathcal{F}} \lor S = \mathcal{L}$. Therefore $\gamma_1 \in \chi(S)$. Thus $S \subseteq \chi(S)$. Since $\chi(S) \subseteq S$, we have that $\chi(S) = S$. Hence S is fully consistent.

(2) \Rightarrow (3): Assume (2). Clearly, we have that for any $\gamma_1 \in \mathcal{L}$, $(\gamma_1)^{\mathcal{FF}}$ is closed. By our assumption, we get that, $(\gamma_1)^{\mathcal{FF}}$ is fully consistent.

(3) \Rightarrow (1): Assume (3). Let $\gamma_1 \in \mathcal{L}$. Then $\chi((\gamma_1)^{\mathcal{FF}}) = (\gamma_1)^{\mathcal{FF}}$. Since $\gamma_1 \in (\gamma_1)^{\mathcal{FF}}$, we have that $(\gamma_1)^{\mathcal{FF}} \lor (\gamma_1)^{\mathcal{FF}} = \mathcal{L}$. Hence \mathcal{L} is a quasi \mathcal{F} -stone lattice.

Example 3.29. In Example-3.27, if $\mathcal{F} = \{1, 5\}$ then \mathcal{F} is a filter of \mathcal{L} and $\mathcal{F}^{\nabla} = \{0, 6\}$ is an ideal of \mathcal{L} . Also, $(0)^{\mathcal{F}} = (6)^{\mathcal{F}} = \mathcal{L}, (0)^{\mathcal{FF}} = (6)^{\mathcal{FF}} = \mathcal{L}^{\mathcal{F}} = \{0, 6\} = \mathcal{F}^{\nabla} \text{ and } (1)^{\mathcal{F}} = (2)^{\mathcal{F}} = (3)^{\mathcal{F}} = (4)^{\mathcal{F}} = (5)^{\mathcal{F}} =$ $(7)^{\mathcal{F}} = (8)^{\mathcal{F}} = (9)^{\mathcal{F}} = \{0, 6\}.$ Hence $(1)^{\mathcal{FF}} = (2)^{\mathcal{FF}} = (3)^{\mathcal{FF}} = (4)^{\mathcal{FF}} = (5)^{\mathcal{FF}} = (7)^{\mathcal{FF}} = (8)^{\mathcal{FF}} = (1)^{\mathcal{FF}} = ($ $(9)^{\mathcal{FF}} = \{0, 6\}^{\mathcal{F}} = \mathcal{L}.$ Now, $\chi((0)^{\mathcal{FF}}) = \{0, 6\} = (0)^{\mathcal{FF}},$ $\chi((1)^{\mathcal{FF}}) = \mathcal{L} = (1)^{\mathcal{FF}},$ $\chi((2)^{\mathcal{FF}}) = \mathcal{L} = (2)^{\mathcal{FF}},$ $\chi((3)^{\mathcal{FF}}) = \mathcal{L} = (3)^{\mathcal{FF}}.$ $\chi((4)^{\mathcal{FF}}) = \mathcal{L} = (4)^{\mathcal{FF}},$ $\chi((5)^{\mathcal{FF}}) = \mathcal{L} = (5)^{\mathcal{FF}},$ $\chi((6)^{\mathcal{FF}}) = \{0, 6\} = (6)^{\mathcal{FF}},$ $\chi((7)^{\mathcal{FF}}) = \mathcal{L} = (7)^{\mathcal{FF}}.$ $\chi((8)^{\mathcal{FF}}) = \mathcal{L} = (8)^{\mathcal{FF}}$ $\chi((9)^{\mathcal{FF}}) = \mathcal{L} = (9)^{\mathcal{FF}}.$ Therefore, $\chi((\beta_1)^{\mathcal{FF}}) = (\beta_1)^{\mathcal{FF}}$, for all $\beta_1 \in \mathcal{L}$ and $(\gamma_1)^{\mathcal{F}} \vee (\gamma_1)^{\mathcal{FF}} = \mathcal{L}$ for all $\gamma_1 \in \mathcal{L}$. Hence, for any $x \in \mathcal{L}, (\beta_1)^{\mathcal{FF}}$ is a fully consistent ideal of \mathcal{L} and every closed \mathcal{F}^{∇} -ideal is fully consistent ideal of \mathcal{L} .

4. Ornate prime \mathcal{F}^{∇} -ideals

In this section, the notion of ornate prime \mathcal{F}^{∇} -ideals is introduced in pseudo-complemented distributive lattices. Characterization theorems of ornate prime \mathcal{F}^{∇} -ideals are derived for every prime \mathcal{F}^{∇} -ideal turn into an ornate prime and every maximal \mathcal{F}^{∇} -ideal come to be an ornate prime \mathcal{F}^{∇} -ideal. The concept of \mathcal{I} -complemented lattice is introduced and \mathcal{F}^{∇} -complemented lattices are characterized. Finally, a set of equivalent conditions is derived for every maximal \mathcal{F}^{∇} -ideal to qualify as ornate.

Lemma 4.1. For any prime \mathcal{F}^{∇} -ideal \mathcal{N} of a pseudo-complemented lattice \mathcal{L} and $\gamma_1 \notin \mathcal{N}$, we have $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$.

Proof. Let \mathcal{N} be a prime ideal of \mathcal{L} with $\gamma_1 \notin \mathcal{N}$. Also, let $\gamma_2 \in (\gamma_1)^{\mathcal{F}}$. Then $\gamma_2^* \vee \gamma_1^* \in \mathcal{F}$. That implies $\gamma_2^{**} \wedge \gamma_1^{**} \in \mathcal{F}^{\nabla}$. Therefore $\gamma_2 \wedge \gamma_1 \in \mathcal{F}^{\nabla} \subseteq \mathcal{N}$. Since $\gamma_1 \notin \mathcal{N}$, we get that $\gamma_2 \in \mathcal{N}$. Hence $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. \Box

Definition 4.2. A prime \mathcal{F}^{∇} -ideal \mathcal{N} of a pseudo-complemented lattice \mathcal{L} is said to be *ornate* if to each $\gamma_1 \in \mathcal{N}$, there exists $\gamma_2 \notin \mathcal{N}$ such that $\gamma_1^* \lor \gamma_2^* \in \mathcal{F}$.

Example 4.3. Let $\mathcal{L} = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ be a set with binary operations \lor , \land and unary operation * given in the following tables

\wedge	0	1	2	3	4	5	6	7	8
0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	9
2	0	2	2	0	2	2	2	2	2
3	0	3	0	3	3	3	3	3	3
4	0	4	2	3	4	4	4	4	4
5	0	5	2	3	4	5	6	7	8
6	0	6	2	3	4	6	6	6	6
7	0	7	2	3	4	7	6	7	7
8	0	8	2	3	4	8	6	7	8

Table-1. Cayley table for the binary operation " \wedge ".

Table-2. Cayley table for the binary operation " \vee ".

\vee	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1	1
2	2	1	2	4	4	5	6	7	8
3	3	1	4	3	4	5	6	7	8
4	4	1	4	4	4	5	6	7	8
5	5	1	5	5	5	5	5	5	5
6	6	1	6	6	6	5	6	7	8
7	7	1	7	7	7	5	7	7	8
8	8	1	8	8	8	5	8	8	8

Table-3. Cayley table for the unary operation "*".

*	0	1	2	3	4	5	6	7	8
	1	0	3	2	0	0	0	0	0

Then $(\mathcal{L}, \lor, \land, ^*, 0, 1)$ is a pseudo-complemented distributive lattice. Consider a filter $\mathcal{F} = \{1, 2, 4, 5, 6, 7, 8\}$ and an ideal $\mathcal{F}^{\nabla} = \{0, 3\}$ of \mathcal{L} . Clearly $\mathcal{P} = \{0, 2, 3, 4, 6\}$ is a prime \mathcal{F}^{∇} -ideal, but not ornate, because for the element $2 \in \mathcal{P}$ there is no element $\beta_1 \notin \mathcal{P}$ such that $2^* \lor \beta_1^* \in \mathcal{F}$.

Lemma 4.4. For any ornate prime \mathcal{F}^{∇} -ideal \mathcal{N} of a pseudo-complemented lattice \mathcal{L} and $\gamma_1 \in \mathcal{L}$, we have $\gamma_1 \in \mathcal{N}$ if and only if $(\gamma_1)^{\mathcal{FF}} \subseteq \mathcal{N}$.

Proof. Assume that $\gamma_1 \in \mathcal{N}$. Let $\mu_1 \in (\gamma_1)^{\mathcal{FF}}$. Then $(\gamma_1)^{\mathcal{F}} \subseteq (\mu_1)^{\mathcal{F}}$. Since $\gamma_1 \in \mathcal{N}$ and \mathcal{N} is ornate, $\gamma_1^* \vee \gamma_2^* \in \mathcal{F}$, for some $\gamma_2 \notin \mathcal{N}$. Then $\gamma_2 \in (\gamma_1)^{\mathcal{F}} \subseteq (\mu_1)^{\mathcal{F}}$. Since $\gamma_2 \notin \mathcal{N}$, we have that $(\gamma_2)^{\mathcal{F}} \subseteq \mathcal{N}$. Therefore $\mu_1 \in (\mu_1)^{\mathcal{FF}} \subseteq (\gamma_2)^{\mathcal{F}} \subseteq \mathcal{N}$. Hence $(\gamma_1)^{\mathcal{FF}} \subseteq \mathcal{N}$.

Theorem 4.5. A prime \mathcal{F}^{∇} -ideal \mathcal{N} of a pseudo-complemented lattice \mathcal{L} is ornate if and only if it satisfies

$$\gamma_1 \notin \mathcal{N} \Leftrightarrow (\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$$

Proof. Let \mathcal{N} be a prime \mathcal{F}^{∇} -ideal of \mathcal{L} . Assume that \mathcal{N} is ornate and $\gamma_1 \in \mathcal{L}$. Suppose $\gamma_1 \notin \mathcal{N}$. By Lemma 4.1, we get $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. Conversely, assume that $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. Suppose $\gamma_1 \in \mathcal{N}$. Since \mathcal{N} is ornate, there exists $\gamma_2 \notin \mathcal{N}$ such that $\gamma_1^* \vee \gamma_2^* \in \mathcal{F}$. Hence $\gamma_2 \in (\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$, which is a contradiction. Therefore $\gamma_1 \notin \mathcal{N}$.

Conversely, assume that $\gamma_1 \notin \mathcal{N} \Leftrightarrow (\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. Suppose $\gamma_1 \in \mathcal{N}$. By our assumption, we have $(\gamma_1)^{\mathcal{F}} \nsubseteq \mathcal{N}$. Then $\gamma_2 \notin \mathcal{N}$, for some $\gamma_2 \in (\gamma_1)^{\mathcal{F}}$. Therefore $\gamma_1^* \lor \gamma_2^* \in \mathcal{F}$ and hence \mathcal{N} is ornate. \Box

Theorem 4.6. Every ornate prime \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice is a consistent ideal.

Proof. Let \mathcal{N} be an ornate prime \mathcal{F}^{∇} -ideal of \mathcal{L} . Suppose $\gamma_1, \gamma_2 \in \mathcal{L}$ with $(\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$ and $\gamma_1 \in \mathcal{N}$. Then $\gamma_1^* \lor \mu_1^* \in \mathcal{F}$, for some $\mu_1 \notin \mathcal{N}$. That implies $\mu_1 \in (\gamma_1)^{\mathcal{F}} = (\gamma_2)^{\mathcal{F}}$. Since $\mu_1 \in (\gamma_2)^{\mathcal{F}}$, we have that $\gamma_2 \land \mu_1 \in \mathcal{F}^{\nabla} \subseteq \mathcal{N}$. Since \mathcal{N} is prime and $\mu_1 \notin \mathcal{N}$, it gives that $\gamma_2 \in \mathcal{N}$. Hence \mathcal{N} is a consistent ideal.

Definition 4.7. Let \mathcal{N} be a prime \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} . Define $\lambda(\mathcal{N}) = \{\gamma_1 \in \mathcal{L} \mid (\gamma_1)^{\mathcal{F}} \notin \mathcal{N}\}.$

Lemma 4.8. Let \mathcal{N} be a prime \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} . Then $\lambda(\mathcal{N})$ is an ideal contained in \mathcal{N} .

Proof. Let \mathcal{N} be a prime ideal of a pseudo-complemented lattice \mathcal{L} . Then $(0)^{\mathcal{F}} = \mathcal{L} \nsubseteq \mathcal{N}$ and hence $0 \in \lambda(\mathcal{N})$. Therefore $\lambda(\mathcal{N}) \neq \emptyset$. Let $\gamma_1, \gamma_2 \in \lambda(\mathcal{N})$. Then $(\gamma_1)^{\mathcal{F}} \nsubseteq \mathcal{N}$ and $(\gamma_2)^{\mathcal{F}} \nsubseteq \mathcal{N}$. Since \mathcal{N} is prime, we get $(\gamma_1 \vee \gamma_2)^{\mathcal{F}} = (\gamma_1)^{\mathcal{F}} \cap (\gamma_2)^{\mathcal{F}} \nsubseteq \mathcal{N}$. Therefore $\gamma_1 \vee \gamma_2 \in \lambda(\mathcal{N})$. Let $\gamma_1 \in \lambda(\mathcal{N})$ and $\gamma_2 \leq \gamma_1$. Then $(\gamma_1)^{\mathcal{F}} \oiint \mathcal{N}$ and $(\gamma_1)^{\mathcal{F}} \subseteq (\gamma_2)^{\mathcal{F}}$. Since $(\gamma_1)^{\mathcal{F}} \oiint \mathcal{N}$, we get $(\gamma_2)^{\mathcal{F}} \oiint \mathcal{N}$. Therefore $\gamma_2 \in \lambda(\mathcal{N})$ and hence $\lambda(\mathcal{N})$ is an ideal of \mathcal{L} . Now, let $\gamma_1 \in \lambda(\mathcal{N})$. Then, we get $(\gamma_1)^{\mathcal{F}} \oiint \mathcal{N}$. Hence there exists $\mu_1 \in (\gamma_1)^{\mathcal{F}}$ such that $\mu_1 \notin \mathcal{N}$. Since $\mu_1 \in (\gamma_1)^{\mathcal{F}}$, we get $\mu_1 \wedge \gamma_1 \in \mathcal{F}^{\nabla} \subseteq \mathcal{N}$. Since $\mu_1 \notin \mathcal{N}$, we must have $\gamma_1 \in \mathcal{N}$. Therefore $\lambda(\mathcal{N}) \subseteq \mathcal{N}$.

The set of all prime \mathcal{F}^{∇} -ideals of a pseudo-complemented lattice \mathcal{L} is denoted by $Spec^{\mathcal{F}^{\nabla}}\mathcal{L}$. For any $\beta_1 \in \mathcal{L}$, we define $\Re(\beta_1) = \{\mathcal{N} \in Spec^{\mathcal{F}^{\nabla}}\mathcal{L} \mid \beta_1 \notin \mathcal{N}\}.$

Theorem 4.9. For any $\beta_1 \in \mathcal{L}$, we have $(\beta_1)^{\mathcal{F}} \subseteq \bigcap_{\mathcal{N} \in \Re(\beta_1)} \lambda(\mathcal{N})$.

Proof. Let $\beta_2 \in (\beta_1)^{\mathcal{F}}$ and $\mathcal{N} \in \Re(\beta_1)$. Then $\beta_1^* \vee \beta_2^* \in \mathcal{F}$ and $\beta_1 \notin \mathcal{N}$. That implies $\beta_1 \in (\beta_2)^{\mathcal{F}}$ and $\beta_1 \notin \mathcal{N}$. It gives that $(\beta_2)^{\mathcal{F}} \nsubseteq \mathcal{N}$. Therefore $\beta_2 \in \lambda(\mathcal{N})$ and hence $(\beta_1)^{\mathcal{F}} \subseteq \lambda(\mathcal{N})$, for all $\mathcal{N} \in \Re(\beta_1)$. Thus $(\beta_1)^{\mathcal{F}} \subseteq \bigcap_{\mathcal{N} \in \Re(\beta_1)} \lambda(\mathcal{N})$.

Corollary 4.10. For any $\beta_1 \in \mathcal{L}$, we have $\beta_1 \notin \mathcal{P}$ implies $(\beta_1)^{\mathcal{F}} \subseteq \lambda(\mathcal{N})$.

Proposition 4.11. *Every ornate prime* \mathcal{F}^{∇} *-ideal of a pseudo-complemented lattice* \mathcal{L} *is minimal.*

Proof. Let \mathcal{N} be an ornate prime \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} and $\gamma_1 \in \mathcal{L}$. Suppose $\gamma_1 \in \mathcal{N}$. Since \mathcal{N} is ornate, $\gamma_1^* \lor \gamma_2^* \in \mathcal{F}$, for some $\gamma_2 \notin \mathcal{N}$. Then $\gamma_1 \land \gamma_2 \in \mathcal{F}^{\nabla}$. That is for any $\gamma_1 \in \mathcal{N}$, there is $\gamma_2 \notin \mathcal{N}$ such that $\gamma_1 \land \gamma_2 \in \mathcal{F}^{\nabla}$. Hence \mathcal{N} is minimal. \Box

Example 4.12. From Example-4.3, Consider a filter $\mathcal{F} = \{1, 2, 4, 5, 6, 7, 8, \}$ and an ideal $\mathcal{F}^{\nabla} = \{0, 3\}$. Clearly, $\mathcal{P} = \{0, 2, 3, 4\}$ is a minimal prime \mathcal{F}^{∇} -ideal Clearly, \mathcal{P} is not ornate, because for the element $2 \in \mathcal{P}$, there is no element $\beta_1 \notin \mathcal{P}$ such that $2^* \vee \beta_1^* \in \mathcal{F}$.

Theorem 4.13. For any prime \mathcal{F}^{∇} -ideal \mathcal{N} of an \mathcal{F} -stone lattice \mathcal{L} , we have \mathcal{N} contains a unique ornate prime \mathcal{F}^{∇} -ideal $\lambda(\mathcal{N})$.

Proof. Clearly, \mathcal{N} contains a minimal prime \mathcal{F}^{∇} -ideal, say \mathcal{M} . Let $\gamma_1 \in \mathcal{M}$. Since \mathcal{M} is minimal, $\gamma_1 \wedge \gamma_2 \in \mathcal{F}^{\nabla}$, for some $\gamma_2 \notin \mathcal{M}$. Since \mathcal{L} is \mathcal{F} -stone, $\gamma_1^* \vee \gamma_2^* \in \mathcal{F}$. Therefore \mathcal{M} is ornate and hence \mathcal{N} contains an ornate prime \mathcal{F}^{∇} -ideal \mathcal{M} . Let \mathcal{M}_1 and \mathcal{M}_2 be two ornate prime \mathcal{F}^{∇} -ideals with $\mathcal{M}_1 \subseteq \mathcal{N}$ and $\mathcal{M}_2 \subseteq \mathcal{N}$. Suppose $\mathcal{M}_1 \neq \mathcal{M}_2$. Choose $\mu_1 \in \mathcal{M}_1 \setminus \mathcal{M}_2$. Since $\mu_1 \wedge \mu_1^* = 0 \in \mathcal{M}_2$ and $\mu_1 \notin \mathcal{M}_2$, we must have $\mu_1^* \in \mathcal{M}_2$. Since \mathcal{M}_1 is minimal, we get that $\mathcal{L} \setminus \mathcal{M}_1$ is a maximal filter such that $\mu_1 \notin \mathcal{L} \setminus \mathcal{M}_1$. Since $\mathcal{L} \setminus \mathcal{M}_1$ is maximal, we get $(\mathcal{L} \setminus \mathcal{M}_1) \vee [\mu_1) = \mathcal{L}$. Then $0 = \mu_3 \wedge \mu_1$, for some $\mu_3 \notin \mathcal{M}_1$. That implies $\mu_1^* \wedge \mu_3 = \mu_3$. Since $\mu_3 \in \mathcal{L} \setminus \mathcal{M}_1$, we get that $\mu_1^* \in \mathcal{L} \setminus \mathcal{M}_1$. Since $\mu_1^* \wedge \mu_1^{**} = 0$, we get that $\mu_1^{**} \in \mathcal{M}_1$. That implies $0^* = \mu_1^* \vee \mu_1^{**} \in \mathcal{M}_2 \vee \mathcal{M}_1 \subseteq \mathcal{N}$, which is a contradiction. Hence \mathcal{N} contains a unique ornate prime \mathcal{F}^{∇} -ideal. Since \mathcal{L} is \mathcal{F} -stone and $\lambda(\mathcal{N}) \subseteq \mathcal{N}$, we get that \mathcal{N} contains the unique ornate prime \mathcal{F}^{∇} -ideal, precisely $\lambda(\mathcal{N})$.

Theorem 4.14. In a pseudo-complemented lattice \mathcal{L} , the following are equivalent:

- (1) \mathcal{L} is an \mathcal{F} -stone lattice,
- (2) for any $\mathcal{N} \in Spec^{\mathcal{F}^{\nabla}}\mathcal{L}, \lambda(\mathcal{N})$ is prime,
- (3) for any $\beta_1, \beta_2 \in \mathcal{L}, \beta_1 \wedge \beta_2 \in \mathcal{F}^{\nabla} \Rightarrow (\beta_1)^{\mathcal{F}} \vee (\beta_2)^{\mathcal{F}} = \mathcal{L}.$

Proof. (1) \Rightarrow (2): Assume (1). Let \mathcal{N} be a prime \mathcal{F}^{∇} -ideal of \mathcal{L} . By Theorem 4.13, we have that $\lambda(\mathcal{N}) = \mathcal{N}$ is prime.

(2) \Rightarrow (3): Assume (2). Let $\beta_1, \beta_2 \in \mathcal{L}$ with $\beta_1 \wedge \beta_2 \in \mathcal{F}^{\nabla}$. Suppose $(\beta_1)^{\mathcal{F}} \vee (\beta_2)^{\mathcal{F}} \neq \mathcal{L}$. Then $(\beta_1)^{\mathcal{F}} \vee (\beta_2)^{\mathcal{F}} \subseteq \mathcal{N}$, for some $\mathcal{N} \in Spec^{\mathcal{F}^{\nabla}}\mathcal{L}$. That implies $(\beta_1)^{\mathcal{F}} \subseteq \mathcal{N}$ and $(\beta_2)^{\mathcal{F}} \subseteq \mathcal{N}$. Therefore $\beta_1 \notin \lambda(\mathcal{N})$ and $\beta_2 \notin \lambda(\mathcal{N})$. Since $\lambda(\mathcal{N})$ is prime, we get that $0 = \beta_1 \wedge \beta_2 \notin \lambda(\mathcal{N})$, which is a contradiction. Therefore $(\beta_1)^{\mathcal{F}} \vee (\beta_2)^{\mathcal{F}} = \mathcal{L}$.

 $(3) \Rightarrow (1): \text{Assume for any } \beta_1, \beta_2 \in \mathcal{L}, \beta_1 \land \beta_2 \in \mathcal{F}^{\nabla} \Rightarrow (\beta_1)^{\mathcal{F}} \lor (\beta_2)^{\mathcal{F}} = \mathcal{L}. \text{ Then } 1 \in (\beta_1)^{\mathcal{F}} \lor (\beta_2)^{\mathcal{F}}.$ That implies there exist $\gamma_1 \in (\beta_1)^{\mathcal{F}}$ and $\gamma_2 \in (\beta_2)^{\mathcal{F}}$ such that $\gamma_1 \lor \gamma_2 = 1$. That implies $\gamma_1^* \land \gamma_2^* = 0$. Since $\gamma_1 \in (\beta_1)^{\mathcal{F}}$ and $\gamma_2 \in (\beta_2)^{\mathcal{F}}$, we get $\gamma_1^* \lor \beta_1^* \in \mathcal{F}$ and $\gamma_2^* \lor \beta_2^* \in \mathcal{F}.$ Now, $\beta_1^* \lor \beta_2^* = (\beta_1^* \lor \beta_2^*) \lor (\gamma_1^* \land \gamma_2^*) = (\beta_1^* \lor \beta_2^* \lor \gamma_1^*) \land (\beta_1^* \lor \beta_2^* \lor \gamma_2^*) \in \mathcal{F}.$ Therefore $\beta_1^* \lor \beta_2^* \in \mathcal{F}.$ By Theorem-3.11, we get that \mathcal{L} is \mathcal{F} -stone. \Box

Theorem 4.15. Let \mathcal{F} be a filter of \mathcal{L} . Then \mathcal{L} is \mathcal{F} -stone if and only if $(\beta_1)^{\mathcal{F}} \vee (\beta_1^*)^{\mathcal{F}} = \mathcal{L}$, for all $\beta_1 \in \mathcal{L}$.

Proof. Assume that $(\beta_1)^{\mathcal{F}} \vee (\beta_1^*)^{\mathcal{F}} = \mathcal{L}$, for all $\beta_1 \in \mathcal{L}$. Since $(\beta_1^*)^{\mathcal{F}} \subseteq (\beta_1^*, \mathcal{F}^{\nabla})$, we get that $(\beta_1, \mathcal{F}^{\nabla}) \vee ((\beta_1^*], \mathcal{F}^{\nabla}) = \mathcal{L}$. Since $(\beta_1)^* \subseteq (\beta_1, \mathcal{F}^{\nabla})$, we get that $(\beta_1^*] \vee (\beta_1^{**}] = \mathcal{L}$. Then $1 \in (\beta_1^*] \vee (\beta_1^{**}]$. That implies there exist $\gamma_1 \in (\beta_1^*]$ and $\gamma_2 \in (\beta_1^{**}]$ such that $\gamma_1 \vee \gamma_2 = 1$. Since $\gamma_1 \in (\beta_1^*]$ and $\gamma_2 \in (\beta_1^{**}]$, we get that $\gamma_1 \leq \beta_1^*$ and $\gamma_2 \leq \beta_1^{**}$. That implies $1 = \gamma_1 \vee \gamma_2 \leq \beta_1^* \vee \beta_1^{**}$, which gives $\beta_1^* \vee \beta_1^{**} \in \mathcal{F}$. Hence \mathcal{L} is \mathcal{F} -stone. Converse part is clear.

The set of all maximal \mathcal{F}^{∇} -ideals of a pseudo-complemented lattice \mathcal{L} by $Max^{\mathcal{F}^{\nabla}}\mathcal{L}$. For any \mathcal{F}^{∇} -ideal \mathcal{S} of a pseudo-complemented lattice \mathcal{L} , define $\mathcal{M}_{\mathcal{S}} = \{\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L} \mid \mathcal{S} \subseteq \mathcal{N}\}.$

Theorem 4.16. Let S be an \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} . Then $\chi(S) = \bigcap_{\mathcal{N} \in \mathcal{M}_{S}} \lambda(\mathcal{N})$.

Proof. Let $\gamma_1 \in \chi(S)$ and $S \subseteq \mathcal{N}$ where $\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$. Then $\mathcal{L} = (\gamma_1)^{\mathcal{F}} \vee S \subseteq (\gamma_1)^{\mathcal{F}} \vee \mathcal{N}$. Suppose $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$, then $\mathcal{N} = \mathcal{L}$, which is a contradiction. That implies $(\gamma_1)^{\mathcal{F}} \nsubseteq \mathcal{N}$. Therefore $\gamma_1 \in \lambda(\mathcal{N})$, for all $\mathcal{N} \in \mathcal{M}_S$. Hence $\chi(S) \subseteq \bigcap_{\mathcal{N} \in \mathcal{M}_S} \lambda(\mathcal{N})$.

Conversely, let $\gamma_1 \in \bigcap_{\mathcal{N} \in \mathcal{M}_S} \lambda(\mathcal{N})$. Then, we get $\gamma_1 \in \lambda(\mathcal{N})$ for all $\mathcal{N} \in \mathcal{M}_S$. Suppose $(\gamma_1)^{\mathcal{F}} \vee S \neq \mathcal{L}$. Then there exists $\mathcal{N}_0 \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$ such that $(\gamma_1)^{\mathcal{F}} \vee S \subseteq \mathcal{N}_0$. That implies $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}_0$ and $S \subseteq \mathcal{N}_0$. Since $S \subseteq \mathcal{N}_0$, by hypothesis, we get $\gamma_1 \in \lambda(\mathcal{N}_0)$. That implies $(\gamma_1)^{\mathcal{F}} \notin \mathcal{N}_0$, which is a contradiction. Therefore $(\gamma_1)^{\mathcal{F}} \vee S = \mathcal{L}$ and hence $\gamma_1 \in \chi(S)$. Thus $\bigcap_{\mathcal{N} \in \mathcal{M}_S} \lambda(\mathcal{N}) \subseteq \chi(S)$.

Definition 4.17. Let \mathcal{I} be an ideal of \mathcal{L} . A distributive lattice \mathcal{L} is said to be \mathcal{I} -complemented if for any $\gamma_1 \in \mathcal{L}$ there exists an element $\gamma_2 \in \mathcal{L}$ such that $\gamma_1 \wedge \gamma_2 \in \mathcal{I}$ and $\gamma_1 \vee \gamma_2 = 1$.

Clearly, we have that every Boolean algebra is an \mathcal{I} -complemented, but converse need not to be true. **Example 4.18.** Let $\mathcal{L} = \{0, 1, 2, 3, 4\}$ be a set with binary operations \lor , \land given in the following tables

\wedge	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	2	2	2
3	0	3	2	3	2
4	0	4	2	2	4

Table-2. Cayley table for the binary operation " \lor ".

\vee	0	1	2	3	4
0	0	1	2	3	4
1	1	1	1	1	1
2	2	1	2	3	4
3	3	1	3	3	1
4	4	1	4	1	4

Then $(\mathcal{L}, \lor, \land, 0, 1)$ is a distributive lattice. If $\mathcal{I} = \{0, 2\}$ then \mathcal{I} is an ideal of \mathcal{L} . Clearly, \mathcal{L} is an \mathcal{I} -complemented lattice.

As there are no hidden difficulties to prove the following theorem we omit its proof.

Theorem 4.19. In a pseudo-complemented lattice *L*, the following are equivalent:

(1) \mathcal{L} is a \mathcal{F}^{∇} -complemented lattice,

- (2) every maximal \mathcal{F}^{∇} -ideal is ornate,
- (3) for any $\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$, $\lambda(\mathcal{N})$ is maximal,

(4) for any $S, T \in I(\mathcal{L}), S \lor T = \mathcal{L} \Rightarrow \chi(S) \lor \chi(T) = \mathcal{L},$

- (5) for any $S, T \in I(\mathcal{L}), \chi(S) \lor \chi(T) = \chi(S \lor T),$
- (6) for any $\mathcal{M}, \mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$ with $\mathcal{M} \neq \mathcal{N}, \lambda(\mathcal{M}) \lor \lambda(\mathcal{N}) = \mathcal{L},$
- (7) for any $\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$, \mathcal{N} is the unique member of $Max^{\mathcal{F}^{\nabla}}\mathcal{L}$ such that $\lambda(\mathcal{N}) \subseteq \mathcal{N}$.

Proposition 4.20. *Every prime fully consistent* \mathcal{F}^{∇} *-ideal of a pseudo-complemented lattice* \mathcal{L} *is minimal.*

Proof. Let \mathcal{N} be a prime fully consistent \mathcal{F}^{∇} -ideal of a pseudo-complemented lattice \mathcal{L} and $\gamma_1 \in \mathcal{N}$. Then $\gamma_1 \in \chi(\mathcal{N})$. That implies $(\gamma_1)^{\mathcal{F}} \vee \mathcal{N} = \mathcal{L}$. There exist $\mu_1 \in (\gamma_1)^{\mathcal{F}}$ and $\mu_3 \in \mathcal{N}$ such that $\mu_1 \vee \mu_3 = 1$. Since $\mu_1 \in (\gamma_1)^{\mathcal{F}}$, we get $\mu_1 \wedge \gamma_1 \in \mathcal{F}^{\nabla}$. Suppose $\mu_1 \in \mathcal{N}$. Since $\mu_3 \in \mathcal{N}$, we get $1 = \mu_1 \vee \mu_3 \in \mathcal{N}$ which is a contradiction. Therefore $\mu_1 \notin \mathcal{N}$. That is, for any $\gamma_1 \in \mathcal{N}$, there exists $\mu_1 \notin \mathcal{N}$ such that $\mu_1 \wedge \gamma_1 \in \mathcal{F}^{\nabla}$. Hence \mathcal{N} is minimal. **Example 4.21.** From Example-4.3, consider a filter $\mathcal{F} = \{1, 2, 4, 5, 6, 7, 8\}$ and an ideal $\mathcal{F}^{\nabla} = \{0, 3\}$. Clearly, $\mathcal{P} = \{0, 2, 3, 4, 5, 6, 7, 8\}$ is a maximal \mathcal{F}^{∇} -ideal. Clearly, \mathcal{P} is not a fully consistent ideal, because $(2)^{\mathcal{F}} \lor \mathcal{P} = \mathcal{F}^{\nabla} \lor \mathcal{P} \neq \mathcal{L}$.

For every maximal \mathcal{F}^{∇} -ideal in a pseudo-complemented lattice, a collection of equivalent conditions is established to transform it into a fully consistent \mathcal{F}^{∇} -ideal.

Theorem 4.22. In a pseudo-complemented lattice *L*, the following are equivalent:

- (1) \mathcal{L} is a \mathcal{F}^{∇} -complemented lattice,
- (2) every maximal \mathcal{F}^{∇} -ideal is a fully consistent,
- (3) every maximal \mathcal{F}^{∇} -ideal is minimal.

Proof. (1) \Rightarrow (2): Assume (1). Let \mathcal{N} be a maximal \mathcal{F}^{∇} -ideal of \mathcal{L} . By the above Theorem-4.19, we have that $\lambda(\mathcal{N}) = \mathcal{N}$. Let $\gamma_1 \in \chi(\mathcal{N})$. Then $(\gamma_1)^{\mathcal{F}} \vee \mathcal{N} = \mathcal{L}$. If $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$, we get $\mathcal{N} = \mathcal{L}$, which is a contradiction. Therefore $(\gamma_1)^{\mathcal{F}} \notin \mathcal{N}$ and hence $\gamma_1 \in \lambda(\mathcal{N})$. Thus $\chi(\mathcal{N}) \subseteq \lambda(\mathcal{N})$. Let $\gamma_1 \in \lambda(\mathcal{N})$. Then $(\gamma_1)^{\mathcal{F}} \notin \mathcal{N}$. Since \mathcal{N} is maximal, we have that $(\gamma_1)^{\mathcal{F}} \vee \mathcal{N} = \mathcal{L}$. Therefore $\gamma_1 \in \chi(\mathcal{N})$ and hence $\lambda(\mathcal{N}) = \chi(\mathcal{N}) = \mathcal{N}$. Thus \mathcal{N} is fully consistent.

(2) \Rightarrow (3): Assume (2). Then every maximal \mathcal{F}^{∇} -ideal of \mathcal{L} is a prime fully consistent ideal. By Proposition 4.20, every maximal \mathcal{F}^{∇} -ideal is a minimal prime \mathcal{F}^{∇} -ideal.

 $(3) \Rightarrow (1)$: Assume (3). Let $\gamma_1 \in \mathcal{L}$. Suppose $0^* \notin (\gamma_1] \lor (\gamma_1)^{\mathcal{F}}$. Then there exists $\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$ such that $(\gamma_1] \lor (\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. That implies $\gamma_1 \in \mathcal{N}$ and $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$. By our assumption, \mathcal{N} is a minimal prime \mathcal{F}^{∇} -ideal. Since \mathcal{N} is minimal, and $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$, we get that $\gamma_1 \notin \mathcal{N}$ which is a contradiction. That implies $0^* \in (\gamma_1] \lor (\gamma_1)^{\mathcal{F}}$. Then there exist $\mu_1 \in (\gamma_1)^{\mathcal{F}}$ such that $0^* = \gamma_1 \lor \mu_1$. Hence $\gamma_1 \land \mu_1 \in \mathcal{F}^{\nabla}$ and $\gamma_1 \lor \mu_1 = 0^*$. Thus μ_1 is the complement of γ_1 in \mathcal{L} . Therefore \mathcal{L} is an \mathcal{F}^{∇} -complemented lattice. \Box

Example 4.23. From Example-4.3, Consider a filter $\mathcal{F} = \{1, 2, 4, 5, 6, 7, 8\}$ and an ideal $\mathcal{F}^{\nabla} = \{0, 3\}$. Clearly, $\mathcal{P} = \{0, 2, 3, 4, 5, 6, 7, 8\}$ is a maximal \mathcal{F}^{∇} -ideal. Clearly, \mathcal{P} is not ornate, because for $2 \in \mathcal{P}$ there is no $\beta_1 \notin \mathcal{P}$ such that $2^* \lor \beta_1^* \in \mathcal{F}$.

From the Example-3.27, consider a filter $\mathcal{F} = \{1, 3, 4, 6, 7\}$, an ideal $\mathcal{F}^{\nabla} = \{0, 2\}$ and a maximal \mathcal{F}^{∇} -ideal $\mathcal{M} = \{0, 2, 3, 4, 6, 7, 8, 9\}$. Clearly \mathcal{M} is an ornate ideal of \mathcal{L} .

Theorem 4.24. In a pseudo-complemented lattice \mathcal{L} , the following are equivalent :

- (1) every maximal \mathcal{F}^{∇} -ideal is ornate,
- (2) every \mathcal{F}^{∇} -ideal is fully consistent,
- (3) every prime \mathcal{F}^{∇} -ideal is fully consistent,
- (4) every prime \mathcal{F}^{∇} -ideal is ornate.

Proof. (1) \Rightarrow (2): Assume that every maximal \mathcal{F}^{∇} -ideal is ornate. Let \mathcal{S} be an ideal of \mathcal{L} . Clearly $\chi(\mathcal{S}) \subseteq \mathcal{S}$. Let $\gamma_1 \in \mathcal{S}$. If $(\gamma_1)^{\mathcal{F}} \vee \mathcal{S} \neq \mathcal{L}$, then there exists $\mathcal{N} \in Max^{\mathcal{F}^{\nabla}}\mathcal{L}$ such that $(\gamma_1)^{\mathcal{F}} \vee \mathcal{S} \subseteq \mathcal{N}$. That implies $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$ and $\gamma_1 \in \mathcal{S} \subseteq \mathcal{N}$. By our assumption, \mathcal{N} is ornate. Since $(\gamma_1)^{\mathcal{F}} \subseteq \mathcal{N}$, we get $\gamma_1 \notin \mathcal{N}$, which is a contradiction. Hence $(\gamma_1)^{\mathcal{F}} \vee \mathcal{S} = \mathcal{L}$. Therefore \mathcal{S} is a fully consistent \mathcal{F}^{∇} -ideal.

 $(2) \Rightarrow (3)$: It is obvious.

(3) \Rightarrow (4): Assume (3). Let \mathcal{N} be a prime \mathcal{F}^{∇} -ideal of \mathcal{L} . By our assumption, we have that $\chi(\mathcal{N}) = \mathcal{N}$. Let $\gamma_1 \in \mathcal{N} = \chi(\mathcal{N})$. Then $(\gamma_1)^{\mathcal{F}} \vee \mathcal{N} = \mathcal{L}$. That implies $0^* \in (\gamma_1)^{\mathcal{F}} \vee \mathcal{N}$. There exist $\mu_1 \in (\gamma_1)^{\mathcal{F}}$ and $\mu_3 \in \mathcal{N}$ such that $0^* = \mu_1 \vee \mu_3$. Clearly, we have $\mu_1 \notin \mathcal{N}$, otherwise $0^* = \mu_1 \vee \mu_3 \in \mathcal{N}$. Therefore $\gamma_1^* \vee \mu_1^* \in \mathcal{F}$ for $\mu_1 \notin \mathcal{N}$. Hence \mathcal{N} is ornate.

(4) \Rightarrow (1): It is obvious.

5. CONCLUSION AND FUTURE WORK

In this paper, we have introduced and defined the concepts of consistent ideals, fully consistent \mathcal{F}^{∇} -ideals, and closed ideals within pseudo-complemented distributive lattices. We have provided characterization theorems for these ideals. Specifically, we have established a set of equivalent conditions that must be satisfied for an ideal in a pseudo-complemented distributive lattice to be considered as consistent. We have presented the notion of quasi \mathcal{F} -stone pseudo complemented distributive lattices and it characterizes in terms of fully consistent ideals. Moreover, we have introduced the concept of ornate prime \mathcal{F}^{∇} -ideals and defined them within this lattice framework. We have also derived a set of equivalent conditions for a maximal \mathcal{F}^{∇} -ideal in a pseudo-complemented distributive lattice to qualify as an ornate prime \mathcal{F}^{∇} -ideal. In future we may also introduce many concepts like ideal, filters, congruences etc. in an \mathcal{F} -stone and a quasi \mathcal{F} -stone lattice.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] A.E. Badawy, Extensions of the Glivenko-type congruences on a Stone lattice, Math. Meth. Appl. Sci. 41 (2017), 5719–5732. https://doi.org/10.1002/mma.4492.
- [2] R. Balbes, A. Horn, Stone lattices, Duke Math. J. 37 (1970), 537–545. https://doi.org/10.1215/ s0012-7094-70-03768-3.
- [3] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq., XXV, Providence, (1967).
- [4] C.C. Chen, G. Grätzer, Stone lattices. I: Construction theorems, Canad. J. Math. 21 (1969), 884–894. https://doi.org/ 10.4153/cjm-1969-096-5.
- [5] W.H. Cornish, Annulets and α-ideals in distributive lattices, J. Aust. Math. Soc. 15 (1973), 70–77. https://doi.org/10.
 1017/s1446788700012775.
- [6] W.H. Cornish, Normal lattices, J. Aust. Math. Soc. 14 (1972), 200–215.

- [7] B.A. Davey, *m*-Stone lattices, Canad. J. Math. 14 (1972), 1027–1032. https://doi.org/10.4153/cjm-1972-104-x.
- [8] O. Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505–514. https://doi.org/10.1215/ s0012-7094-62-02951-4.
- [9] G. Gratzer, General lattice theory, Academic Press, New York, (1978).
- [10] T. Katrinák, Remarks on stone lattices-I (Russian), Math. Fyz. Casopis. 16 (1966), 128–142.
- [11] A.P.P. Kumar, M.S. Rao, K.S. Babu, Generelized prime D-filters of distributive lattice, Arch. Math. 57 (2021), 157—174. https://dml.cz/handle/10338.dmlcz/149019.
- [12] M.S. Rao, Median prime ideals of pseudo-complemented distributive lattices, Arch. Math. 58 (2022), 213–226. https: //dml.cz/handle/10338.dmlcz/151148.
- [13] T.P. Speed, Some remarks on a class of distributive lattices, J. Aust. Math. Soc. 9 (1969), 289–296. https://doi.org/10. 1017/s1446788700007205.
- [14] T.P. Speed, Spaces of ideals of distributive lattices-I: Prime ideals, Bull. Soc. Roy. Sci. Liege, 38e (1969), 610–628.
- [15] T.P. Speed, Spaces of ideals of distributive lattices II. Minimal prime ideals, J. Aust. Math. Soc. 18 (1974), 54–72. https://doi.org/10.1017/s144678870001911x.
- [16] M.H. Stone, Topological representations of distributive lattices and Brouwerian logic, Casopis. Pest. Math. 67 (1938), 1–25. http://dml.cz/dmlcz/124080.
- [17] J. Varlet, Contribution à l'étude des treillis pseudocomplémentés et des treillis de Stone, Siège de la Société: Université, (1963).
- [18] J. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liege, 37 (1968), 149–158.