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Abstract. The notions of consistent ideals, fully consistent F∇−ideals, and closed ideals in a pseudo-
complemented distributive lattice are introduced, and their characterization theorems are obtained. We
also derived a set of equivalent conditions for every ideal of a pseudo-complemented distributive lattice to
make it a consistent ideal. The concept of ornate primeF∇−ideal is introduced, and established equivalent
conditions for every maximalF∇−ideal of a pseudo-complemented distributive lattice to make it an ornate
prime F∇−ideal.
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1. Introduction

In 1937, Stone [16] established a theory of a topological duality for distributive lattice. Katrinák [10]
investigated the characterization of stone lattices. Many researchers [2–4,8, 9] studied the properties
of stone lattices extensively. In 1963, Varlet characterized pseudo-complemented lattice in terms of
principal ideals. Further he established a concept of quasicomplemented lattice in 1968. In 1969, T.P.
Speed [13] provided several ways to characterize A∗, and established some properties of congruences.
After that he [14, 15] developed important results on homeomorphism and isomorphism. In 1972,
Cornish [6] explored the properties of prime ideals and annihilator ideals and later he studied the
properties of minimal prime ideals [5]. In 1972, B.A. Davey [7] introduced the concept ofm−stone
lattices and investigated its properties. In 2018, Badawy [1] introduced and studied normal filters
in the class of stone lattices. Phaneedra Kumar et al. [11] introduced the concept of D−filters in a
distributive lattice and derived one-to-one correspondence between the class of all minimal prime
D−filters of a distributive lattice and the class of all minimal prime D−filters of the corresponding
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quotient algebra with respect to this congruence. Recently, in 2022, M.S.Rao [12] defined and studied
the concepts of coherent ideals and strongly coherent ideals in pseudo-complemented distributive
lattices. This paper introduces and defines the concepts of consistent ideals, fully consistent F∇−ideals
and ornate prime F∇−ideal with in pseudo-complemented distributive lattices. We establishes a
set of equivalent conditions that determine an ideal in a pseudo-complemented distributive lattices
to be consistent. It demonstrates that every fully consistent F∇−ideal and every closed ideal in a
pseudo complemented distributive lattices is a consistent ideal. Later, we introduces the concept
of quasi F−stone pseudo complemented distributive lattices, which is a generalization of F−stone
lattices and it characterizes in terms of fully consistent ideals. We presents a notion of ornate prime
F∇−ideal and study its characterizations. Our paper further establishes a set of equivalent conditions
for a maximal F∇−ideal in a pseudo complemented distributive lattices to be fully consistent prime
F∇−ideal. This characterization leads to better understanding of F∇−complemented lattices. Finally,
the paper provides a set of equivalent conditions for a prime F∇−ideal in a pseudo complemented
distributive lattice to be considered as ornate F∇−ideal.

2. Preliminaries

Definition 2.1. [3] An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice if for all β1, β2, β3 ∈ L,
it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5′)

(1) β1 ∧ β1 = β1, β1 ∨ β1 = β1,
(2) β1 ∧ β2 = β2 ∧ β1, β1 ∨ β2 = β2 ∨ β1,
(3) (β1 ∧ β2) ∧ β3 = β1 ∧ (β2 ∧ β3), (β1 ∨ β2) ∨ β3 = β1 ∨ (β2 ∨ β3),
(4) (β1 ∧ β2) ∨ β1 = β1, (β1 ∨ β2) ∧ β1 = β1,
(5) β1 ∧ (β2 ∨ β3) = (β1 ∧ β2) ∨ (β1 ∧ β3),
(5′) β1 ∨ (β2 ∧ β3) = (β1 ∨ β2) ∧ (β1 ∨ β3).

A non-empty subset A of a lattice L is called an ideal(filter) of L if γ1 ∨ γ2 ∈ A(γ1 ∧ γ2 ∈ A) and
γ1 ∧ β1 ∈ A(γ1 ∨ β1 ∈ A) whenever γ1, γ2 ∈ A and β1 ∈ L. The set I(L) of all ideals of (L,∨,∧, 0)
forms a complete distributive lattice as well as the set F(L) of all filters of (L,∨,∧, 1) forms a complete
distributive lattice. A proper ideal (filter)M of a lattice is called maximal if there exists no proper
ideal(filter) N such thatM⊂ N .

The set (γ1 ] = {β1 ∈ L | β1 ≤ γ1} is called a principal ideal generated by γ1 and the set of all principal
ideals is a sublattice of I(L). Dually the set [γ1) = {β1 ∈ L | γ1 ≤ β1} is called a principal filter generated
by γ1 and the set of all principal filters is a sublattice of F(L). A proper ideal (proper filter) P of a
lattice L is called prime if for all γ1, γ2 ∈ L, γ1 ∧ γ2 ∈ P (γ1 ∨ γ2 ∈ P) then γ1 ∈ P or γ2 ∈ P . Every
maximal ideal (filter) is prime.



Asia Pac. J. Math. 2024 11:47 3 of 20

Theorem 2.2. [6] A prime ideal P of a distributive lattice L is minimal if and only if to each β1 ∈ P, there

exists β2 /∈ P such that β1 ∧ β2 = 0.

The pseudo-complement γ∗2 of an element γ2 is the greatest element disjoint from γ2, if such an
element exists. The defining property of γ∗2 is:

γ1 ∧ γ2 = 0⇔ γ1 ∧ γ∗2 = γ1 ⇔ γ1 ≤ γ∗2

where ≤ is a partial ordering relation on the lattice L.
A distributive lattice L in which every element has a pseudo-complement is called a pseudo-

complemented distributive lattice. For any two elements γ1, γ2 of a pseudo-complemented lattice,
we have the following:

(1) γ1 ≤ γ2 ⇒ (γ2)
∗ ⊆ (γ1)

∗,
(2) γ1 ≤ γ∗∗1 ,
(3) γ∗∗∗1 = γ∗1 ,
(4) (γ1 ∨ γ2)∗ = γ∗1 ∧ γ∗2 ,
(5) (γ1 ∧ γ2)∗∗ = γ∗∗1 ∧ γ∗∗2 .
An element γ1 of a pseudo-complemented distributive lattice L is called a dense element if γ∗1 = 0

and the setD of all dense elements of L forms a filter in L. An element γ1 ∈ L is called a closed element
if γ∗∗1 = γ1.

Definition 2.3. [3] A pseudo-complemented distributive lattice L is called a stone lattice if β∗1 ∨β∗∗1 = 1

for all β1 ∈ L.

Theorem 2.4. [3] The following conditions are equivalent in a pseudo-complemented distributive lattice L:

(1) L is a stone lattice,

(2) for β1, β2 ∈ L, (β1 ∧ β2)∗ = β∗1 ∨ β∗2 ,

(3) for β1, β2 ∈ L, (β1 ∨ β2)∗∗ = β∗∗1 ∨ β∗∗2 .

For any non-empty subset A of a distributive lattice L, the annihilator [13] of A is defined as
A = {β1 ∈ L | γ1 ∧ β1 = 0, for all γ1 ∈ A}. For any ∅ 6= A ⊆ L, A∗ is an ideal of L such that
A ∩ A∗ = {0}. In case of A = {γ1}, we simply denote {γ1}∗ by (γ1)

∗. Throughout the paper, L
represents a pseudo-complemented distributive lattice and F represents a filter of L.

3. Consistent ideals

This section presents the introduction of consistent ideals and fully consistent F∇-ideals within
pseudo-complemented distributive lattices. We establishes a set of equivalent conditions that determine
an ideal in a pseudo-complemented distributive lattice to be consistent. It demonstrates that every



Asia Pac. J. Math. 2024 11:47 4 of 20

fully consistent F∇−ideal and every closed ideal in a pseudo complemented distributive lattice is a
consistent ideal. We introduces the concept of F−stone lattices and establishes its characterization
results. We define the notion of quasi F−stone lattices and it characterizes in terms of fully consistent
F∇−ideals.

Definition 3.1. Let I be any ideal of distributive lattice L. An ideal G of L is said to be an I−ideal of L
if I ⊆ G.

Definition 3.2. Let S be a non empty subset of a pseudo-complemented lattice L. For any filter F of L,
define

SF = {γ1 ∈ L | µ∗1 ∨ γ∗1 ∈ F , for all µ1 ∈ S}
and

F∇ = {β1 | β∗1 ∈ F}.

Clearly, we have that F∇ is an ideal of L.

Proposition 3.3. Let S be a non empty subset of a pseudo-complemented lattice L. Then SF is an F∇−ideal of

L.

Proof. For any µ1 ∈ S,we have that µ∗1 ∨ 0∗ = 0∗ ∈ F and hence 0 ∈ SF . Therefore SF 6= ∅. Let γ1, γ2 ∈
SF . Then µ∗1 ∨ γ∗1 ∈ F and µ∗1 ∨ γ∗2 ∈ F , for all µ1 ∈ S. That implies (µ∗1 ∨ γ∗1)∧ (µ∗1 ∨ γ∗2) ∈ F and hence
µ∗1∨(γ1∨γ2)∗ ∈ F , for all µ1 ∈ S. Therefore γ1∨γ2 ∈ SF . Let γ1 ∈ SF . Then µ∗1∨γ∗1 ∈ F , for all µ1 ∈ S.
Let µ2 be any element of L. Since µ2 ∧ γ1 ≤ γ1, we get γ∗1 ≤ (µ2 ∧ γ1)∗. Then µ∗1 ∨ γ∗1 ≤ µ∗1 ∨ (γ1 ∧ µ2)∗.

Since µ∗1 ∨ γ∗1 ∈ F , we get µ∗1 ∨ (γ1 ∧ µ2)∗ ∈ F . Therefore γ1 ∧ µ2 ∈ SF . Thus SF is an ideal of L. Let
β1 ∈ F∇. Then β∗1 ∈ F and hence µ∗1 ∨ β∗1 ∈ F , for all µ1 ∈ S. Therefore β1 ∈ SF . Thus F∇ ⊆ SF . �

The following lemma comes directly from the above definition.

Lemma 3.4. Let S and T be two non-empty subsets of a pseudo-complemented lattice L. Then

(1) {0}F = L and LF = F∇,

(2) S ⊆ T implies T F ⊆ SF ,

(3) S ⊆ SFF ,

(4) SFFF = SF ,

(5) SF = L ⇔ S = F∇.

Proposition 3.5. Let S and T be any two ideals of a pseudo-complemented latticeL. Then (S∨T )F = SF ∩T F .

Proof. Let γ1 ∈ SF ∩ T F . Then µ∗1 ∨ γ∗1 ∈ F , for all µ1 ∈ S and µ∗3 ∨ γ∗1 ∈ F , for all µ3 ∈ T . That
implies (µ∗1 ∨ γ∗1) ∧ (µ∗3 ∨ γ∗1) ∈ F ,which gives (µ∗1 ∧ µ∗3) ∨ γ∗1 ∈ F . Therefore (µ1 ∨ µ3)∗ ∨ γ∗1 ∈ F , for
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all µ1 ∨ µ3 ∈ S ∨ T . Hence γ1 ∈ (S ∨ T )F . Thus SF ∩ T F ⊆ (S ∨ T )F . Since (S ∨ T )F ⊆ SF ∩ T F , we
get (S ∨ T )F = SF ∩ T F . �

For any µ1 ∈ L, we denote ({µ1})F by (µ1)
F .

From the above results we get the following result easily.

Corollary 3.6. For any elements β1, β2 in pseudo-complemented lattice L, we have the following:

(1) β1 ≤ β2 ⇒ (β2)
F ⊆ (β1)

F ,

(2) (β1 ∨ β2)F = (β1)
F ∩ (β2)

F ,

(3) β1 ∈ (β2)
F ⇒ β1 ∧ β2 ∈ F∇,

(4) β∗1 = β∗2 ⇒ (β1)
F = (β2)

F ,

(5) β1 ∈ F ⇒ (β1)
F = F∇.

It can be verified easily that S∗ ⊆ (S,F∇) and SF ⊆ (S,F∇),where (S,F∇) = {β1 ∈ L | β1 ∧ µ1 ∈
F∇, for all µ1 ∈ S}. Converse need not to be true in the following example.

Example 3.7. Let L = {0, 1, 2, 3, 4, 5} be a set with binary operations ∨,∧ and unary operation ∗ given
in the following tables

Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 2 0 2 2
3 0 3 0 3 3 3
4 0 4 2 3 4 4
5 0 5 2 3 4 5

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 1 1 1 1 1
2 2 1 2 4 4 5
3 3 1 4 3 4 5
4 4 1 4 4 4 5
5 5 1 5 5 5 5
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Table-3. Cayley table for the unary operation “ ∗ ”.
∗ 0 1 2 3 4 5

1 0 3 2 0 0
Then (L,∨,∧,∗ , 0, 1) is a pseudo-complemented distributive lattice. Consider a filter F1 = {1, 2, 4, 5}

and an ideal F∇1 = {0, 3} of L. Take S = {2, 3}. Clearly, we have that S∗ = {0}, SF1 = {0, 3}, and
Hence S∗ ( (S,F∇1 ). Consider a filters F2 = {1} and an ideal F∇2 = {0} of L. Take S = {2}. Clearly,
we have that SF2 = {0} and (S,F∇2 ) = {0, 3}. Hence SF2 ( (S,F∇2 ).

Definition 3.8. Apseudo-complemented latticeL is said to beF−stone if β∗1∨β∗∗1 ∈ F , for all β1 ∈ L(i.e.,
β∗1 ∈ (β1)

F , for all β1 ∈ L).

Example 3.9. Let L = {0, 1, 2, 3, 4} be a set with binary operations ∨,∧ and unary operation ∗ given in
the following tables

Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 2 0 2
3 0 3 0 3 3
4 0 4 2 3 4

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 1 1 1
2 2 1 2 4 4
3 3 1 4 3 4
4 4 1 4 4 4

Table-3. Cayley table for the unary operation “ ∗ ”.
∗ 0 1 2 3 4

1 0 3 2 0
Then (L,∨,∧,∗ , 0, 1) is a pseudo-complemented distributive lattice. If F = {1, 4} then F is a filter
of L. Also β∗1 ∨ β∗∗1 ∈ F for all β1 ∈ L. Hence L is F−stone. But L is not a stone lattice since
2∗ ∨ (2∗)∗ = 3 ∨ 3∗ = 3 ∨ 2 = 4 6= 1.
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Example 3.10. Let L = {0, 1, 2, 3, 4, 5, 6} be a set with binary operations ∨,∧ and unary operation ∗
given in the following tables

Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
2 0 2 2 0 2 0 2
3 0 3 0 3 3 5 5
4 0 4 2 3 4 5 6
5 0 5 0 5 5 5 5
6 0 6 2 5 6 5 6

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1
2 2 1 2 4 4 6 6
3 3 1 4 3 4 3 4
4 4 1 4 4 4 4 4
5 5 1 6 3 4 5 6
6 6 1 6 4 4 6 6

Table-3. Cayley table for the unary operation “ ∗ ”.
∗ 0 1 2 3 4 5 6

1 0 3 2 0 2 0
Then (L,∨,∧,∗ , 0, 1) is a pseudo-complemented distributive lattice. If F = {1, 4} then F is a filter

of L. Also β∗1 ∨ β∗∗1 ∈ F for all β1 ∈ L. Hence L is F−stone. But L is not a stone lattice since
2∗ ∨ (2∗)∗ = 3 ∨ 3∗ = 3 ∨ 2 = 4 6= 1.

Theorem 3.11. In a pseudo-complemented lattice L, The following are equivalent:

(1) L is an F−stone lattice,

(2) for any ideal S of L, SF = (S,F∇),

(3) for any β1 ∈ L, (β1)F = (β1,F∇),

(4) for any two ideals S, T of L, S ∩ T ⊆ F∇ ⇔ S ⊆ T F ,
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(5) for β1, β2 ∈ L, β1 ∧ β2 ∈ F∇ ⇒ β∗1 ∨ β∗2 ∈ F .

Proof. (1) ⇒ (2): Assume L is an F−stone lattice. Then β1 ∈ (β∗1)
F for all β1 ∈ L. Let S be an ideal

of L and γ1 ∈ (S,F∇). Then γ1 ∧ γ2 ∈ F∇, for all γ2 ∈ S. That implies (γ1 ∧ γ2)∗ ∈ F , which gives
(γ1 ∧ γ2)∗∗∗ ∈ F . That implies (γ∗∗1 ∧ γ∗∗2 )∗ ∈ F . Therefore γ∗∗1 ∧ γ∗∗2 ∈ F∇ and hence (γ∗1 ∨ γ∗2)∗ ∈ F∇,
for all γ2 ∈ S. That implies γ∗1 ∨ γ∗2 ∈ F , for all γ2 ∈ S. Therefore γ1 ∈ SF and hence SF = (S,F∇).

(2)⇒ (3): It is obvious.
(3)⇒ (4): Assume (3). Let S, T be two ideals of L with S ∩ T ⊆ F∇. Let γ1 ∈ S . Clearly, we have that
γ1 ∧ γ2 ∈ S ∩ T , for all γ2 ∈ T . That implies γ1 ∧ γ2 ∈ F∇. Therefore γ1 ∈ (γ2,F∇) = (γ2)

F and hence
γ∗2 ∨ γ∗1 ∈ F . Thus γ1 ∈ T F . Conversely, assume that S ⊆ T F . Let γ1 ∈ S ∩ T . Then γ1 ∈ S ⊆ T F and
γ1 ∈ T . That implies γ1 ∈ T ∩ T F ⊆ F∇. Hence S ∩ T ⊆ F∇.
(4) ⇒ (5): Assume condition (4). Let β1 ∧ β2 ∈ F∇. Then (β1] ∩ (β2] ⊆ F∇. By our assumption, we
have that (β1] ⊆ (β2]

F and hence β1 ∈ (β2]
F . Therefore β∗2 ∨ β∗1 ∈ F .

(5)⇒ (1): Assume condition (5). We have that β1 ∧ β∗1 ∈ F∇, for all β1 ∈ L. By our assumption we get
that β∗1 ∨ β∗∗1 ∈ F .

�

Theorem 3.12. A pseudo-complemented lattice is F-stone if and only if (β1)FF = (β∗1)
F , for all β1 ∈ L.

Proof. Assume thatL isF−stone. Let β1 ∈ L.Clearly, we have that (β1)∗ ⊆ (β1,F∇) = (β1)
F and hence

(β1)
FF ⊆ (β∗1)

F . Let γ1 ∈ (β1)
F . Then γ∗1 ∨ β∗1 ∈ F and hence γ∗∗1 ∧ β∗∗1 ∈ F∇. Let γ2 ∈ (β∗1)

F . Then
γ∗2∨β∗∗1 ∈ F and hence γ∗∗2 ∧β∗1 ∈ F∇. Since γ∗∗1 ∧β∗∗1 ∈ F∇,weget that (γ∗∗1 ∧β∗∗1 )∨(β∗1∧γ∗∗2 ) ∈ F∇.That
implies (γ∗∗1 ∧γ∗∗2 )∧((γ∗∗1 ∧β∗∗1 )∨(β∗1∧γ∗∗2 )) ∈ F∇. That implies (γ1∗∗∧γ∗∗2 ∧β∗∗1 )∨(γ1∗∗∧γ∗∗2 ∧β∗1) ∈ F∇.

That implies (γ1∗∗∧γ∗∗2 )∧(β∗∗1 ∨β∗1) ∈ F∇. By our assumption, we get that (γ1∗∗∧γ∗∗2 )∗∨(β∗∗1 ∨β∗1)∗ ∈ F .

That implies (γ1∗∗ ∧ γ∗∗2 )∗ ∨ (β∗∗∗1 ∧ β∗∗1 ) ∈ F . That implies (γ1∗∗ ∧ γ∗∗2 )∗ ∈ F . That implies γ∗∗1 ∧ γ∗∗2 ∈
F∇. By our assumption, we get that γ∗∗∗1 ∨ γ∗∗∗2 ∈ F , which gives γ∗1 ∨ γ∗2 ∈ F , for all γ1 ∈ (β1)

F .

Therefore γ2 ∈ (β1)
FF and hence (β∗1)

F ⊆ (β1)
FF . Thus (β∗1)F = (β1)

FF . Conversely assume that
(β1)

FF = (β∗1)
F , for all β1 ∈ L. Since β1 ∈ (β1)

FF ,we get that β1 ∈ (β∗1)
F and hence β∗1 ∨ β∗∗1 ∈ F , for

all β1 ∈ L. Thus L is F−stone. �

The concept of consistent ideals is introduced in pseudo-complemented lattices.

Definition 3.13. An ideal S of a pseudo-complemented lattice L is called a consistent ideal if for all
γ1, γ2 ∈ L, (γ1)F = (γ2)

F and γ1 ∈ S imply that γ2 ∈ S.

Example 3.14. From the Example-3.7, consider a filter F = {1, 3, 4, 5} and an ideal I = {0, 2}. It is easy
to verify that I is a consistent ideal.

Lemma 3.15. In a pseudo-complemented lattice L, we have the following:
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(1) for any γ1 ∈ L, (γ1)F is a consistent ideal,

(2) for any element γ1 of an ideal S, with (γ1)
FF ⊆ S, S is a consistent ideal of L.

Theorem 3.16. In a pseudo-complemented lattice L, the following are equivalent:

(1) for any γ1 ∈ L, (γ1] is a consistent ideal,

(2) every ideal is a consistent ideal,

(3) every prime ideal is a consistent ideal,

(4) for β1, β2 ∈ L, (β1)F = (β2)
F implies β1 = β2.

Proof. (1)⇒ (2): Assume condition (1). Let S be an ideal of L. Choose β1, β2 ∈ L. Suppose (β1)F =

(β2)
F and β1 ∈ S. Then clearly (β1] ⊆ S. Since β1 ∈ (β1] and (β1] is a consistent ideal, we have

β2 ∈ (β1] ⊆ S. Therefore S is a consistent ideal.
(2)⇒ (3): It’s obvious.
(3) ⇒ (4): Assume (4). Let β1, β2 ∈ L such that (β1)F = (β2)

F . Suppose β1 6= β2. Then there exists
a prime ideal N of L such that β1 ⊆ N and β2 /∈ N . By our assumption, N is a consistent ideal of L.
Since (β1)F = (β2)

F and β1 ∈ N , we get β2 ∈ N , which is a contradiction. Hence β1 = β2.

(4)⇒ (1): Assume (4). Let (β1] be a principal ideal ideal of L. Let γ1, γ2 ∈ L such that (γ1)F = (γ2)
F

and γ1 ∈ (β1]. By our assumption, we get that γ1 = γ2 and hence γ2 ∈ (β1]. Thus (β1] is a consistent
ideal of L. �

Definition 3.17. Let S be an F∇−ideal of a pseudo-complemented lattice L. Define χ(S) as follows:
χ(S) = {γ1 ∈ L | (γ1)F ∨ S = L}

Lemma 3.18. Let S, T be two F∇−ideals of a pseudo-complemented lattice L.We have the following:

(1) S ⊆ T ⇒ χ(S) ⊆ χ(T ),

(2) χ(S ∩ T ) = χ(S) ∩ χ(T ),

(3) χ(S) ⊆ S.

Proof. (1) and (2) are verified easily.
(3) Let γ1 ∈ χ(S). Then (γ1)

F ∨ S = L. Since γ1 ∈ L, there exist elements β2 ∈ (γ1)
F and µ1 ∈ S

such that γ1 = β2 ∨ µ1. Since β2 ∈ (γ1)
F ,we have that β∗2 ∨ γ∗1 ∈ F and hence γ1 ∧ β2 ∈ F∇ ⊆ S. That

implies γ1 ∧µ1 ∈ S . Therefore γ1 = γ1 ∧ γ1 = γ1 ∧ (β2 ∨µ1) = (γ1 ∧β2)∨ (γ1 ∧µ1) = γ1 ∧µ1 ∈ S . Thus
χ(S) ⊆ S. �

Proposition 3.19. Let S be an F∇−ideal of a pseudo-complemented lattice L. Then χ(S) is an ideal L.

Proof. Since (0)F = L,we have that (0)F ∨S = L. Then 0 ∈ χ(S) and hence χ(S) 6= ∅. Let γ1, γ2 ∈ χ(S).
Then (γ1)F∨S = (γ2)

F∨S = L. Now, (γ1∨γ2)F∨S = {(γ1)F∩(γ2)F}∨S = {(γ1)F∨S}∩{(γ2)F∨S} = L.
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Therefore γ1 ∨ γ2 ∈ χ(S). Let γ1 ∈ χ(S). Then L = (γ1)
F ∨ S. Let µ2 be any element of L. Since

(γ1)
F ⊆ (γ1∧µ2)F ,we get that L = (γ1)

F ∨S ⊆ (γ1∧µ2)F ∨S and hence (γ1∧µ2)F ∨S = L. Therefore
γ1 ∧ µ2 ∈ χ(S). Hence χ(S) is an ideal of L. �

Definition 3.20. An F∇−ideal S of a pseudo-complemented lattice L is said to be fully consistent if
S = χ(S).

Proposition 3.21. Every fully consistent F∇−ideal of a pseudo-complemented lattice is a consistent ideal.

Proof. Let S be a fully consistent ideal of a pseudo-complemented lattice L. Then S = χ(S). Let
γ1, γ2 ∈ Lwith (γ1)

F = (γ2)
F and γ1 ∈ S = χ(S). That implies (γ1)F ∨S = L. Therefore (γ2)F ∨S = L

and hence γ2 ∈ χ(S) = S. Thus S is a consistent ideal of L. �

Definition 3.22. An ideal S of a pseudo-complemented lattice L is said to be closed if S = SFF .

Example 3.23. From the Example-3.7, consider a filterF = {1, 4, 5} and an ideal S = {0, 3} ofL. Clearly,
we have that SFF = S. Therefore S is closed.

Clearly F∇ is the smallest closed ideal and L is the largest closed ideal.

Proposition 3.24. Every closed ideal of a pseudo-complemented lattice L is a consistent ideal.

Proof. Let S be a closed ideal of a pseudo-complemented lattice L. Then S = SFF . Let γ1, γ2 ∈ L with
(γ1)

F = (γ2)
F and γ1 ∈ S. Then γ2 ∈ (γ2)

FF = (γ1)
FF ⊆ SFF = S. Hence S is a consistent ideal of

L. �

Definition 3.25. A pseudo-complemented lattice L is said to be quasi F-stone if (γ1)F ∨ (γ1)
FF = L,

for all γ1 ∈ L.

Theorem 3.26. Every F−stone lattice is a quasi F−stone lattice.

Proof. Assume that L is a F−stone lattice. Then γ∗1 ∨γ∗∗1 ∈ F , for all γ1 ∈ L. Therefore (γ∗1 ∨γ1∗∗] ⊆ (F ]

and hence (γ∗1 ]∨ (γ∗∗1 ] = L. By our assumption, we have that (γ1)∗ = (γ1)
F . Therefore (γ1)F ∨ (γ1)FF =

L. Thus L is quasi F−stone. �

Generally, the converse of the above result doesn’t hold. We can illustrate this with the subsequent
example.

Example 3.27. LetL = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} be a set with binary operations ∨,∧ and unary operation
∗ given in the following tables
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Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 2 0 2 2 0 2 0 2
3 0 3 0 3 3 8 6 6 8 8
4 0 4 2 3 4 9 6 7 8 9
5 0 5 2 8 9 5 0 2 8 9
6 0 6 0 6 6 0 6 6 0 0
7 0 7 2 6 7 2 6 7 0 2
8 0 8 0 8 8 8 0 0 8 8
9 0 9 2 8 9 9 0 2 8 9

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1 1
2 2 1 2 4 4 5 7 7 9 9
3 3 1 4 3 4 1 3 4 3 4
4 4 1 4 4 4 1 4 4 4 4
5 5 1 5 1 1 5 1 1 5 5
6 6 1 7 3 4 1 6 7 3 4
7 7 1 7 4 4 1 7 7 4 4
8 8 1 9 3 4 5 3 4 8 9
9 9 1 9 4 4 5 4 4 9 9

Table-3. Cayley table for the unary operation “ ∗ ”.
∗ 0 1 2 3 4 5 6 7 8 9

1 0 3 2 0 6 5 8 7 6
Then (L,∨,∧,∗ , 0, 1) is a pseudo-complemented distributive lattice. If F = {1, 5} then F is a filter of

L. Clearly, we have that (γ1)F ∨ (γ1)
FF = L, for all γ1 ∈ L.Hence L is a quasi F−stone. But L is not

F−stone, since 2∗ ∨ (2∗)∗ = 3 ∨ 3∗ = 3 ∨ 2 = 4 /∈ F .

Theorem 3.28. In a pseudo-complemented lattice L, the following are equivalent:

(1) L is a quasi F−stone lattice,
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(2) every closed F∇−ideal is fully consistent,

(3) for each γ1 ∈ L, (γ1)FF is fully consistent.

Proof. (1) ⇒ (2): Assume (1). Let S be a closed F∇−ideal of L. Then SFF = S. Let γ1 ∈ S. Then
(γ1)

FF ⊆ SFF . That implies L = (γ1)
F ∨ (γ1)FF ⊆ (γ1)

F ∨SFF = (γ1)
F ∨S and hence (γ1)F ∨S = L.

Therefore γ1 ∈ χ(S). Thus S ⊆ χ(S). Since χ(S) ⊆ S, we have that χ(S) = S. Hence S is fully
consistent.
(2)⇒ (3): Assume (2). Clearly, we have that for any γ1 ∈ L, (γ1)FF is closed. By our assumption, we
get that, (γ1)FF is fully consistent.
(3) ⇒ (1): Assume (3). Let γ1 ∈ L. Then χ((γ1)FF ) = (γ1)

FF . Since γ1 ∈ (γ1)
FF , we have that

(γ1)
F ∨ (γ1)

FF = L. Hence L is a quasi F−stone lattice. �

Example 3.29. In Example-3.27, if F = {1, 5} then F is a filter of L and F∇ = {0, 6} is an ideal of L.
Also, (0)F = (6)F = L, (0)FF = (6)FF = LF = {0, 6} = F∇ and (1)F = (2)F = (3)F = (4)F = (5)F =

(7)F = (8)F = (9)F = {0, 6}. Hence (1)FF = (2)FF = (3)FF = (4)FF = (5)FF = (7)FF = (8)FF =

(9)FF = {0, 6}F = L.

Now, χ((0)FF ) = {0, 6} = (0)FF ,

χ((1)FF ) = L = (1)FF ,

χ((2)FF ) = L = (2)FF ,

χ((3)FF ) = L = (3)FF ,

χ((4)FF ) = L = (4)FF ,

χ((5)FF ) = L = (5)FF ,

χ((6)FF ) = {0, 6} = (6)FF ,

χ((7)FF ) = L = (7)FF ,

χ((8)FF ) = L = (8)FF ,

χ((9)FF ) = L = (9)FF .

Therefore, χ((β1)FF ) = (β1)
FF , for all β1 ∈ L and (γ1)

F ∨ (γ1)
FF = L for all γ1 ∈ L. Hence, for any

x ∈ L, (β1)FF is a fully consistent ideal of L and every closed F∇−ideal is fully consistent ideal of L.

4. Ornate prime F∇−ideals

In this section, the notion of ornate prime F∇−ideals is introduced in pseudo-complemented
distributive lattices. Characterization theorems of ornate prime F∇−ideals are derived for every
prime F∇−ideal turn into an ornate prime and every maximal F∇−ideal come to be an ornate prime
F∇−ideal. The concept of I−complemented lattice is introduced and F∇−complemented lattices are
characterized. Finally, a set of equivalent conditions is derived for every maximal F∇−ideal to qualify
as ornate.
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Lemma 4.1. For any prime F∇−idealN of a pseudo-complemented lattice L and γ1 /∈ N , we have (γ1)F ⊆ N .

Proof. Let N be a prime ideal of Lwith γ1 /∈ N . Also, let γ2 ∈ (γ1)
F . Then γ∗2 ∨ γ∗1 ∈ F . That implies

γ∗∗2 ∧γ∗∗1 ∈ F∇. Therefore γ2∧γ1 ∈ F∇ ⊆ N . Since γ1 /∈ N , we get that γ2 ∈ N . Hence (γ1)F ⊆ N . �

Definition 4.2. A prime F∇−ideal N of a pseudo-complemented lattice L is said to be ornate if to each
γ1 ∈ N , there exists γ2 /∈ N such that γ∗1 ∨ γ∗2 ∈ F .

Example 4.3. Let L = {0, 1, 2, 3, 4, 5, 6, 7, 8} be a set with binary operations ∨,∧ and unary operation ∗
given in the following tables

Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 9
2 0 2 2 0 2 2 2 2 2
3 0 3 0 3 3 3 3 3 3
4 0 4 2 3 4 4 4 4 4
5 0 5 2 3 4 5 6 7 8
6 0 6 2 3 4 6 6 6 6
7 0 7 2 3 4 7 6 7 7
8 0 8 2 3 4 8 6 7 8

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1 1
2 2 1 2 4 4 5 6 7 8
3 3 1 4 3 4 5 6 7 8
4 4 1 4 4 4 5 6 7 8
5 5 1 5 5 5 5 5 5 5
6 6 1 6 6 6 5 6 7 8
7 7 1 7 7 7 5 7 7 8
8 8 1 8 8 8 5 8 8 8

Table-3. Cayley table for the unary operation “ ∗ ”.
∗ 0 1 2 3 4 5 6 7 8

1 0 3 2 0 0 0 0 0
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Then (L,∨,∧,∗ , 0, 1) is a pseudo-complementeddistributive lattice. Consider a filterF = {1, 2, 4, 5, 6, 7, 8}

and an ideal F∇ = {0, 3} of L. Clearly P = {0, 2, 3, 4, 6} is a prime F∇−ideal, but not ornate, because
for the element 2 ∈ P there is no element β1 /∈ P such that 2∗ ∨ β∗1 ∈ F .

Lemma 4.4. For any ornate prime F∇−ideal N of a pseudo-complemented lattice L and γ1 ∈ L, we have

γ1 ∈ N if and only if (γ1)FF ⊆ N .

Proof. Assume that γ1 ∈ N . Let µ1 ∈ (γ1)
FF . Then (γ1)

F ⊆ (µ1)
F . Since γ1 ∈ N and N is ornate,

γ∗1 ∨ γ∗2 ∈ F , for some γ2 /∈ N . Then γ2 ∈ (γ1)
F ⊆ (µ1)

F . Since γ2 /∈ N , we have that (γ2)F ⊆ N .
Therefore µ1 ∈ (µ1)

FF ⊆ (γ2)
F ⊆ N . Hence (γ1)FF ⊆ N . �

Theorem 4.5. A prime F∇−ideal N of a pseudo-complemented lattice L is ornate if and only if it satisfies

γ1 /∈ N ⇔ (γ1)
F ⊆ N

Proof. Let N be a prime F∇−ideal of L. Assume that N is ornate and γ1 ∈ L. Suppose γ1 /∈ N . By
Lemma 4.1, we get (γ1)F ⊆ N . Conversely, assume that (γ1)F ⊆ N . Suppose γ1 ∈ N . Since N is
ornate, there exists γ2 /∈ N such that γ∗1 ∨ γ∗2 ∈ F . Hence γ2 ∈ (γ1)

F ⊆ N , which is a contradiction.
Therefore γ1 /∈ N .

Conversely, assume that γ1 /∈ N ⇔ (γ1)
F ⊆ N . Suppose γ1 ∈ N . By our assumption, we have

(γ1)
F * N . Then γ2 /∈ N , for some γ2 ∈ (γ1)

F . Therefore γ∗1 ∨ γ∗2 ∈ F and hence N is ornate. �

Theorem 4.6. Every ornate prime F∇−ideal of a pseudo-complemented lattice is a consistent ideal.

Proof. Let N be an ornate prime F∇−ideal of L. Suppose γ1, γ2 ∈ L with (γ1)
F = (γ2)

F and γ1 ∈ N .
Then γ∗1 ∨ µ∗1 ∈ F , for some µ1 /∈ N . That implies µ1 ∈ (γ1)

F = (γ2)
F . Since µ1 ∈ (γ2)

F , we have
that γ2 ∧ µ1 ∈ F∇ ⊆ N . Since N is prime and µ1 /∈ N , it gives that γ2 ∈ N . Hence N is a consistent
ideal. �

Definition 4.7. LetN be a prime F∇−ideal of a pseudo-complemented lattice L. Define λ(N ) = {γ1 ∈

L | (γ1)F * N}.

Lemma 4.8. Let N be a prime F∇−ideal of a pseudo-complemented lattice L. Then λ(N ) is an ideal contained

in N .

Proof. Let N be a prime ideal of a pseudo-complemented lattice L. Then (0)F = L * N and hence
0 ∈ λ(N ). Therefore λ(N ) 6= ∅. Let γ1, γ2 ∈ λ(N ). Then (γ1)

F * N and (γ2)
F * N . Since N is prime,

we get (γ1 ∨ γ2)F = (γ1)
F ∩ (γ2)

F * N . Therefore γ1 ∨ γ2 ∈ λ(N ). Let γ1 ∈ λ(N ) and γ2 ≤ γ1. Then
(γ1)

F * N and (γ1)
F ⊆ (γ2)

F . Since (γ1)
F * N , we get (γ2)F * N . Therefore γ2 ∈ λ(N ) and hence

λ(N ) is an ideal of L. Now, let γ1 ∈ λ(N ). Then, we get (γ1)F * N . Hence there exists µ1 ∈ (γ1)
F

such that µ1 /∈ N . Since µ1 ∈ (γ1)
F , we get µ1 ∧ γ1 ∈ F∇ ⊆ N . Since µ1 /∈ N , we must have γ1 ∈ N .

Therefore λ(N ) ⊆ N . �
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The set of all prime F∇−ideals of a pseudo-complemented lattice L is denoted by SpecF∇L. For any
β1 ∈ L, we define <(β1) = {N ∈ SpecF∇L | β1 /∈ N}.

Theorem 4.9. For any β1 ∈ L, we have (β1)F ⊆
⋂

N∈<(β1)
λ(N ).

Proof. Let β2 ∈ (β1)
F and N ∈ <(β1). Then β∗1 ∨ β∗2 ∈ F and β1 /∈ N . That implies β1 ∈ (β2)

F and
β1 /∈ N . It gives that (β2)F * N . Therefore β2 ∈ λ(N ) and hence (β1)

F ⊆ λ(N ), for all N ∈ <(β1).
Thus (β1)F ⊆

⋂
N∈<(β1)

λ(N ). �

Corollary 4.10. For any β1 ∈ L, we have β1 /∈ P implies (β1)F ⊆ λ(N ).

Proposition 4.11. Every ornate prime F∇−ideal of a pseudo-complemented lattice L is minimal.

Proof. Let N be an ornate prime F∇−ideal of a pseudo-complemented lattice L and γ1 ∈ L. Suppose
γ1 ∈ N . Since N is ornate, γ∗1 ∨ γ∗2 ∈ F , for some γ2 /∈ N . Then γ1 ∧ γ2 ∈ F∇. That is for any γ1 ∈ N ,
there is γ2 /∈ N such that γ1 ∧ γ2 ∈ F∇. Hence N is minimal. �

Example 4.12. From Example-4.3, Consider a filter F = {1, 2, 4, 5, 6, 7, 8, } and an ideal F∇ = {0, 3}.

Clearly, P = {0, 2, 3, 4} is a minimal prime F∇−ideal Clearly, P is not ornate, because for the element
2 ∈ P, there is no element β1 /∈ P such that 2∗ ∨ β∗1 ∈ F .

Theorem 4.13. For any prime F∇−idealN of an F−stone lattice L, we haveN contains a unique ornate prime

F∇−ideal λ(N ).

Proof. Clearly, N contains a minimal prime F∇−ideal, sayM. Let γ1 ∈ M. SinceM is minimal,
γ1 ∧ γ2 ∈ F∇, for some γ2 /∈ M. Since L is F−stone, γ∗1 ∨ γ∗2 ∈ F . ThereforeM is ornate and hence
N contains an ornate prime F∇−idealM. LetM1 andM2 be two ornate prime F∇−ideals with
M1 ⊆ N andM2 ⊆ N . SupposeM1 6= M2. Choose µ1 ∈ M1 \ M2. Since µ1 ∧ µ∗1 = 0 ∈ M2 and
µ1 /∈ M2, we must have µ∗1 ∈ M2. SinceM1 is minimal, we get that L \M1 is a maximal filter such
that µ1 /∈ L \M1. Since L \M1 is maximal, we get (L \M1) ∨ [µ1) = L. Then 0 = µ3 ∧ µ1, for some
µ3 /∈M1. That implies µ∗1 ∧ µ3 = µ3. Since µ3 ∈ L \M1,we get that µ∗1 ∈ L \M1. Since µ∗1 ∧ µ∗∗1 = 0,

we get that µ∗∗1 ∈M1. That implies 0∗ = µ∗1 ∨ µ∗∗1 ∈M2 ∨M1 ⊆ N , which is a contradiction. HenceN
contains a unique ornate prime F∇−ideal. Since L is F−stone and λ(N ) ⊆ N , we get that N contains
the unique ornate prime F∇−ideal, precisely λ(N ). �

Theorem 4.14. In a pseudo-complemented lattice L, the following are equivalent:

(1) L is an F−stone lattice,

(2) for any N ∈ SpecF∇L, λ(N ) is prime,

(3) for any β1, β2 ∈ L, β1 ∧ β2 ∈ F∇ ⇒ (β1)
F ∨ (β2)

F = L.
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Proof. (1) ⇒ (2): Assume (1). Let N be a prime F∇−ideal of L. By Theorem 4.13, we have that
λ(N ) = N is prime.
(2) ⇒ (3): Assume (2). Let β1, β2 ∈ L with β1 ∧ β2 ∈ F∇. Suppose (β1)

F ∨ (β2)
F 6= L. Then

(β1)
F ∨ (β2)

F ⊆ N , for some N ∈ SpecF
∇L. That implies (β1)

F ⊆ N and (β2)
F ⊆ N . Therefore

β1 /∈ λ(N ) and β2 /∈ λ(N ). Since λ(N ) is prime, we get that 0 = β1∧β2 /∈ λ(N ),which is a contradiction.
Therefore (β1)F ∨ (β2)

F = L.
(3) ⇒ (1): Assume for any β1, β2 ∈ L, β1 ∧ β2 ∈ F∇ ⇒ (β1)

F ∨ (β2)
F = L. Then 1 ∈ (β1)

F ∨ (β2)
F .

That implies there exist γ1 ∈ (β1)
F and γ2 ∈ (β2)

F such that γ1 ∨ γ2 = 1. That implies γ∗1 ∧ γ∗2 = 0. Since
γ1 ∈ (β1)

F and γ2 ∈ (β2)
F ,we get γ∗1 ∨β∗1 ∈ F and γ∗2 ∨β∗2 ∈ F .Now, β∗1 ∨β∗2 = (β∗1 ∨β∗2)∨ (γ∗1 ∧ γ∗2) =

(β∗1∨β∗2∨γ∗1)∧(β∗1∨β∗2∨γ∗2) ∈ F . Therefore β∗1∨β∗2 ∈ F . By Theorem-3.11, we get thatL isF−stone. �

Theorem 4.15. Let F be a filter of L. Then L is F−stone if and only if (β1)F ∨ (β∗1)
F = L, for all β1 ∈ L.

Proof. Assume that (β1)F ∨ (β∗1)
F = L, for all β1 ∈ L. Since (β∗1)F ⊆ (β∗1 ,F∇),we get that (β1,F∇) ∨

((β∗1 ],F∇) = L. Since (β1)∗ ⊆ (β1,F∇),we get that (β∗1 ]∨ (β∗∗1 ] = L. Then 1 ∈ (β∗1 ]∨ (β∗∗1 ]. That implies
there exist γ1 ∈ (β∗1 ] and γ2 ∈ (β∗∗1 ] such that γ1 ∨ γ2 = 1. Since γ1 ∈ (β∗1 ] and γ2 ∈ (β∗∗1 ], we get that
γ1 ≤ β∗1 and γ2 ≤ β∗∗1 . That implies 1 = γ1 ∨ γ2 ≤ β∗1 ∨ β∗∗1 , which gives β∗1 ∨ β∗∗1 ∈ F . Hence L is
F−stone. Converse part is clear. �

The set of all maximal F∇−ideals of a pseudo-complemented lattice L by MaxF
∇L. For any

F∇−ideal S of a pseudo-complemented lattice L, defineMS = {N ∈MaxF
∇L | S ⊆ N}.

Theorem 4.16. Let S be an F∇−ideal of a pseudo-complemented lattice L. Then χ(S) =
⋂

N∈MS
λ(N ).

Proof. Let γ1 ∈ χ(S) and S ⊆ N where N ∈ MaxF
∇L. Then L = (γ1)

F ∨ S ⊆ (γ1)
F ∨ N . Suppose

(γ1)
F ⊆ N , then N = L, which is a contradiction. That implies (γ1)F * N . Therefore γ1 ∈ λ(N ), for

all N ∈MS . Hence χ(S) ⊆ ⋂
N∈MS

λ(N ).

Conversely, let γ1 ∈
⋂

N∈MS
λ(N ). Then, we get γ1 ∈ λ(N ) for all N ∈MS . Suppose (γ1)F ∨ S 6= L.

Then there exists N0 ∈ MaxF
∇L such that (γ1)F ∨ S ⊆ N0. That implies (γ1)F ⊆ N0 and S ⊆ N0.

Since S ⊆ N0, by hypothesis, we get γ1 ∈ λ(N0). That implies (γ1)F * N0, which is a contradiction.
Therefore (γ1)F ∨ S = L and hence γ1 ∈ χ(S). Thus

⋂
N∈MS

λ(N ) ⊆ χ(S). �

Definition 4.17. Let I be an ideal of L. A distributive lattice L is said to be I−complemented if for any
γ1 ∈ L there exists an element γ2 ∈ L such that γ1 ∧ γ2 ∈ I and γ1 ∨ γ2 = 1.

Clearly, we have that every Boolean algebra is an I−complemented, but converse need not to be true.

Example 4.18. Let L = {0, 1, 2, 3, 4} be a set with binary operations ∨,∧ given in the following tables
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Table-1. Cayley table for the binary operation “ ∧ ”.

∧ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 2 2 2
3 0 3 2 3 2
4 0 4 2 2 4

Table-2. Cayley table for the binary operation “ ∨ ”.

∨ 0 1 2 3 4
0 0 1 2 3 4
1 1 1 1 1 1
2 2 1 2 3 4
3 3 1 3 3 1
4 4 1 4 1 4

Then (L,∨,∧, 0, 1) is a distributive lattice. If I = {0, 2} then I is an ideal of L. Clearly, L is an
I−complemented lattice.

As there are no hidden difficulties to prove the following theorem we omit its proof.

Theorem 4.19. In a pseudo-complemented lattice L, the following are equivalent:

(1) L is a F∇−complemented lattice,

(2) every maximal F∇−ideal is ornate,

(3) for any N ∈MaxF
∇L, λ(N ) is maximal,

(4) for any S, T ∈ I(L), S ∨ T = L ⇒ χ(S) ∨ χ(T ) = L,

(5) for any S, T ∈ I(L), χ(S) ∨ χ(T ) = χ(S ∨ T ),

(6) for anyM,N ∈MaxF
∇L withM 6= N , λ(M) ∨ λ(N ) = L,

(7) for any N ∈MaxF
∇L, N is the unique member ofMaxF

∇L such that λ(N ) ⊆ N .

Proposition 4.20. Every prime fully consistent F∇−ideal of a pseudo-complemented lattice L is minimal.

Proof. Let N be a prime fully consistent F∇−ideal of a pseudo-complemented lattice L and γ1 ∈ N .
Then γ1 ∈ χ(N ). That implies (γ1)F ∨N = L. There exist µ1 ∈ (γ1)

F and µ3 ∈ N such that µ1 ∨µ3 = 1.
Since µ1 ∈ (γ1)

F , we get µ1 ∧ γ1 ∈ F∇. Suppose µ1 ∈ N . Since µ3 ∈ N , we get 1 = µ1 ∨ µ3 ∈ N

which is a contradiction. Therefore µ1 /∈ N . That is, for any γ1 ∈ N , there exists µ1 /∈ N such that
µ1 ∧ γ1 ∈ F∇. Hence N is minimal. �
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Example 4.21. From Example-4.3, consider a filter F = {1, 2, 4, 5, 6, 7, 8} and an ideal F∇ = {0, 3}.

Clearly, P = {0, 2, 3, 4, 5, 6, 7, 8} is a maximal F∇−ideal. Clearly, P is not a fully consistent ideal,
because (2)F ∨ P = F∇ ∨ P 6= L.

For every maximalF∇−ideal in a pseudo-complemented lattice, a collection of equivalent conditions
is established to transform it into a fully consistent F∇−ideal.

Theorem 4.22. In a pseudo-complemented lattice L, the following are equivalent:

(1) L is a F∇−complemented lattice,

(2) every maximal F∇−ideal is a fully consistent,

(3) every maximal F∇−ideal is minimal.

Proof. (1) ⇒ (2): Assume (1). Let N be a maximal F∇−ideal of L. By the above Theorem-4.19, we
have that λ(N ) = N . Let γ1 ∈ χ(N ). Then (γ1)

F ∨ N = L. If (γ1)F ⊆ N , we get N = L, which is
a contradiction. Therefore (γ1)

F * N and hence γ1 ∈ λ(N ). Thus χ(N ) ⊆ λ(N ). Let γ1 ∈ λ(N ).
Then (γ1)

F * N . Since N is maximal, we have that (γ1)F ∨ N = L. Therefore γ1 ∈ χ(N ) and hence
λ(N ) = χ(N ) = N . Thus N is fully consistent.
(2) ⇒ (3): Assume (2). Then every maximal F∇−ideal of L is a prime fully consistent ideal. By
Proposition 4.20, every maximal F∇−ideal is a minimal prime F∇−ideal.
(3)⇒ (1): Assume (3). Let γ1 ∈ L. Suppose 0∗ /∈ (γ1] ∨ (γ1)

F . Then there exists N ∈MaxF
∇L such

that (γ1] ∨ (γ1)
F ⊆ N . That implies γ1 ∈ N and (γ1)

F ⊆ N . By our assumption, N is a minimal prime
F∇−ideal. Since N is minimal, and (γ1)

F ⊆ N , we get that γ1 /∈ N which is a contradiction. That
implies 0∗ ∈ (γ1] ∨ (γ1)

F . Then there exist µ1 ∈ (γ1)
F such that 0∗ = γ1 ∨ µ1. Hence γ1 ∧ µ1 ∈ F∇ and

γ1 ∨ µ1 = 0∗. Thus µ1 is the complement of γ1 in L. Therefore L is an F∇−complemented lattice. �

Example 4.23. From Example-4.3, Consider a filter F = {1, 2, 4, 5, 6, 7, 8} and an ideal F∇ = {0, 3}.

Clearly, P = {0, 2, 3, 4, 5, 6, 7, 8} is a maximal F∇−ideal. Clearly, P is not ornate, because for 2 ∈ P
there is no β1 /∈ P such that 2∗ ∨ β∗1 ∈ F .

From the Example-3.27, consider a filter F = {1, 3, 4, 6, 7}, an ideal F∇ = {0, 2} and a maximal
F∇−idealM = {0, 2, 3, 4, 6, 7, 8, 9}. ClearlyM is an ornate ideal of L.

Theorem 4.24. In a pseudo-complemented lattice L, the following are equivalent :

(1) every maximal F∇−ideal is ornate,

(2) every F∇−ideal is fully consistent,

(3) every prime F∇−ideal is fully consistent,

(4) every prime F∇−ideal is ornate.
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Proof. (1) ⇒ (2): Assume that every maximal F∇−ideal is ornate. Let S be an ideal of L. Clearly
χ(S) ⊆ S . Let γ1 ∈ S . If (γ1)F ∨ S 6= L, then there existsN ∈MaxF

∇L such that (γ1)F ∨ S ⊆ N . That
implies (γ1)F ⊆ N and γ1 ∈ S ⊆ N . By our assumption, N is ornate. Since (γ1)F ⊆ N , we get γ1 /∈ N ,
which is a contradiction. Hence (γ1)F ∨ S = L. Therefore S is a fully consistent F∇−ideal.
(2)⇒ (3): It is obvious.
(3)⇒ (4): Assume (3). Let N be a prime F∇−ideal of L. By our assumption, we have that χ(N ) = N .
Let γ1 ∈ N = χ(N ). Then (γ1)

F ∨ N = L. That implies 0∗ ∈ (γ1)
F ∨ N . There exist µ1 ∈ (γ1)

F and
µ3 ∈ N such that 0∗ = µ1 ∨ µ3. Clearly, we have µ1 /∈ N , otherwise 0∗ = µ1 ∨ µ3 ∈ N . Therefore
γ∗1 ∨ µ∗1 ∈ F for µ1 /∈ N . Hence N is ornate.
(4)⇒ (1): It is obvious. �

5. Conclusion and Future Work

In this paper, we have introduced and defined the concepts of consistent ideals, fully consistent
F∇−ideals, and closed ideals within pseudo-complemented distributive lattices. We have provided
characterization theorems for these ideals. Specifically, we have established a set of equivalent conditions
that must be satisfied for an ideal in a pseudo-complemented distributive lattice to be considered as
consistent. We have presented the notion of quasi F−stone pseudo complemented distributive lattices
and it characterizes in terms of fully consistent ideals. Moreover, we have introduced the concept of
ornate prime F∇−ideals and defined them within this lattice framework. We have also derived a set
of equivalent conditions for a maximal F∇−ideal in a pseudo-complemented distributive lattice to
qualify as an ornate prime F∇−ideal. In future we may also introduce many concepts like ideal, filters,
congruences etc. in an F−stone and a quasi F−stone lattice.
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