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Abstract. In this paper, we introduce the notions of Λ(τ1,τ2)-sets and Λ?(τ1,τ2)-sets. Furthermore, we
investigate two topological spaces (X,Λ(τ1,τ2)) and (X,Λ?(τ1,τ2)) by utilizing Λ(τ1,τ2)-sets and Λ?(τ1,τ2)-sets,
respectively.
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1. Introduction

The notions of closed sets and open sets are fundamental with respect to the investigation of general
topology. Maki [16] called a subset A of a topological space (X, τ) a Λ-set if it is the intersection of
open sets containing A. Arenas et al. [1] defined a subset A to be λ-closed if A = L ∩ F , where L
is a Λ-set and F is closed in (X, τ). Ganster et al. [13] introduced and studied the notion of pre-Λ-
sets in topological spaces. Levine [15] introduced the concept of generalized closed sets. Dunham
and Levine [12] investigated the further properties of generalized closed sets. Moreover, Levine
defined a separation axiom called T 1

2
between T0 and T1. Dontchev and Ganster [10] introduced and

investigated the notions of δ-generalized closed sets and T 3
4
-spaces. As a modification of generalized

closed sets, Palaniappan and Rao [18] introduced and studied the notion of regular generalized
closed sets. As the further modification of regular generalized closed sets, Noiri and Popa [17]
introduced and investigated the concept of regular generalized α-closed sets. Dungthaisong et al. [11]
investigated the notion of generalized closed sets in bigeneralized topological spaces and studied some
characterizations of pairwise µ-T 1

2
spaces. Viriyapong and Boonpok [20] introduced and investigated
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the notion of generalized (Λ, p)-closed sets. Furthermore, some properties of generalized (Λ, α)-closed
sets, generalized δp(Λ, s)-closed sets, generalized (Λ, s)-closed sets and generalized (Λ, sp)-closed sets
were presented in [2], [3], [4] and [5], respectively. Caldas et al. [8] introduced two new classes of sets
calledΛg-closed sets andΛg-open sets in topological spaces. It turns out thatΛg-closed sets andΛg-open
sets are weaker forms of closed sets and open sets, respectively and stronger forms of generalized closed
sets and generalized open sets. Cammaroto and Noiri [9] introduced and studied three topological
spaces (X,Λm), (X,Λ∗mc) and (X,ΛgΛm) by using Λm-sets, (Λ,m)-closed sets and generalized Λm-sets,
respectively. In this paper, we introduce the concepts of Λ(τ1,τ2)-closed sets and Λ?(τ1,τ2)-closed sets.
Moreover, some properties of Λ(τ1,τ2)-closed sets and Λ?(τ1,τ2)-closed sets are investigated.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [7] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. The intersection of all τ1τ2-closed sets of X containing A is called the τ1τ2-closure [7] of
A and is denoted by τ1τ2-Cl(A). The union of all τ1τ2-open sets of X contained in A is called the
τ1τ2-interior [7] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [7] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)s-open [6] (resp. (τ1, τ2)p-open [6],
(τ1, τ2)β-open [6], α(τ1, τ2)-open [19]) if A ⊆ τ1τ2-Cl(τ1τ2-Int(A)) (resp. A ⊆ τ1τ2-Int(τ1τ2-Cl(A)),
A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))), A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))). A subset A of a bitopological
space (X, τ1, τ2) is called (τ1, τ2)r-open [20] (resp. (τ1, τ2)r-closed) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp.
A = τ1τ2-Cl(τ1τ2-Int(A))).

Let A be a subset of a bitopological space (X, τ1, τ2). The set

∩{G | A ⊆ G and G is τ1τ2-open}

is called the τ1τ2-kernel [7] of A and is denoted by τ1τ2-ker(A).
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Lemma 2. [7] For subsets A,B of a bitopological space (X, τ1, τ2), the following properties hold:

(1) A ⊆ τ1τ2-ker(A).

(2) If A ⊆ B, then τ1τ2-ker(A) ⊆ τ1τ2-ker(B).

(3) If A is τ1τ2-open, then τ1τ2-ker(A) = A.

(4) x ∈ τ1τ2-ker(A) if and only if A ∩H 6= ∅ for every τ1τ2-closed set H containing x.

3. Λ(τ1,τ2)-sets and related topological spaces

In this paper, we introduce the concepts of Λ(τ1,τ2)-closed sets and Λ?(τ1,τ2)-sets. Moreover, we
investigate two topological spaces (X,Λ(τ1,τ2)) and (X,Λ?(τ1,τ2)) by using Λ(τ1,τ2)-sets and Λ?(τ1,τ2)-sets,
respectively.

Lemma 3. Let (X, τ1, τ2) be a bitopological space and {Aγ : γ ∈ Γ} be a family of subsets of X . Then, the

following properties hold:

(1) τ1τ2-ker(∩γ∈ΓAγ) ⊆ ∩γ∈Γτ1τ2-ker(Aγ).

(2) τ1τ2-ker(∪γ∈ΓAγ) = ∪γ∈Γτ1τ2-ker(Aγ).

Proof. (1) Suppose that x 6∈ ∩γ∈Γτ1τ2-ker(Aγ). Then, there exists γ0 ∈ Γ such that x 6∈ τ1τ2-ker(Aγ0) and
there exists a τ1τ2-open set U such that x 6∈ U andAγ0 ⊆ U . Since ∩γ∈ΓAγ ⊆ Aγ0 , x 6∈ τ1τ2-ker(∩γ∈ΓAγ)

and hence τ1τ2-ker(∩γ∈ΓAγ) ⊆ ∩γ∈Γτ1τ2-ker(Aγ).
(2) Since Aγ ⊆ ∪γ∈ΓAγ , by Lemma 2 (2), we have

τ1τ2-ker(Aγ) ⊆ τ1τ2-ker(∪γ∈ΓAγ)

and ∪γ∈Γτ1τ2-ker(Aγ) ⊆ τ1τ2-ker(∪γ∈ΓAγ). On the other hand, suppose that x 6∈ ∪γ∈Γτ1τ2-ker(Aγ)

for each γ ∈ Γ and hence there exists a τ1τ2-open set Uγ such that Aγ ⊆ Uγ for each γ ∈ Γ. Therefore,
∪γ∈ΓAγ ⊆ ∪γ∈ΓUγ and ∪γ∈ΓUγ is a τ1τ2-open set not containing x. Thus, x 6∈ τ1τ2-ker(∪γ∈ΓAγ) and
hence

∪γ∈Γτ1τ2-ker(Aγ) ⊇ τ1τ2-ker(∪γ∈ΓAγ).

�

Definition 1. A subset A of a bitopological space (X, τ1, τ2) is called a Λ(τ1,τ2)-set if A = τ1τ2-ker(A).

The family of all Λ(τ1,τ2)-sets of a bitopological space (X, τ1, τ2) is denoted by Λ(τ1,τ2)(X) (or simply
Λ(τ1,τ2)).

Lemma 4. For subsets A and Bγ(γ ∈ Γ) of a bitopological space (X, τ1, τ2), the following properties hold:

(1) τ1τ2-ker(A) is a Λ(τ1,τ2)-set.

(2) If A is a τ1τ2-open set, then A is a Λ(τ1,τ2)-set.
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(3) If Bγ is a Λ(τ1,τ2)-set for each γ ∈ Γ, then ∪γ∈ΓBγ is a Λ(τ1,τ2)-set.

(4) If Bγ is a Λ(τ1,τ2)-set for each γ ∈ Γ, then ∩γ∈ΓBγ is a Λ(τ1,τ2)-set.

Proof. (1) and (2) are obvious.
(3) Let Bγ ∈ Λ(τ1,τ2) for each γ ∈ Γ. Then by Lemma 3 (2), we have

∪γ∈ΓBγ = ∪γ∈Γτ1τ2-ker(Bγ) = τ1τ2-ker(∪γ∈ΓBγ) ⊇ ∪γ∈ΓBγ .

Thus, ∪γ∈ΓBγ = τ1τ2-ker(∪γ∈ΓBγ) and hence ∪γ∈ΓBγ ∈ Λ(τ1,τ2).
(4) Let Bγ ∈ Λ(τ1,τ2) for each γ ∈ Γ. Then by Lemma 3 (1), we have

∩γ∈ΓBγ = ∩γ∈Γτ1τ2-ker(Bγ) ⊇ τ1τ2-ker(∩γ∈ΓBγ) ⊇ ∩γ∈ΓBγ .

Thus, ∩γ∈ΓBγ = τ1τ2-ker(∩γ∈ΓBγ) and so ∩γ∈ΓBγ ∈ Λ(τ1,τ2). �

Theorem 1. For a bitopological space (X, τ1, τ2), the pair (X,Λ(τ1,τ2)) is an Alexandroff space.

Proof. (1) ∅, X ∈ Λ(τ1,τ2) since ∅ and X are τ1τ2-open sets.
(2) If Uγ ∈ Λ(τ1,τ2) for each γ ∈ Γ, then ∪γ∈ΓUγ ∈ Λ(τ1,τ2) by Lemma 4 (3).
(3) If Uγ ∈ Λ(τ1,τ2) for each γ ∈ Γ, then ∩γ∈ΓUγ ∈ Λ(τ1,τ2) by Lemma 4 (4). �

Definition 2. [14] A bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-R0 if for each τ1τ2-open set U and

each x ∈ U , τ1τ2-Cl({x}) ⊆ U .

Theorem 2. A bitopological space (X, τ1, τ2) is (τ1, τ2)-R0 if and only if the topological space (X,Λ(τ1,τ2)) is

R0.

Proof. Let V ∈ Λ(τ1,τ2) and x ∈ V . Then, we have

x ∈ τ1τ2-ker(V ) = ∩{U | V ⊆ U,U is τ1τ2-open}

and x ∈ U for every τ1τ2-open set U containing V . Since (X, τ1, τ2) is (τ1, τ2)-R0, τ1τ2-Cl({x}) ⊆ U for
every τ1τ2-open set U containing V . Thus,

τ1τ2-Cl({x}) ⊆ ∩{U | V ⊆ U,U is τ1τ2-open} = τ1τ2-ker(V ) = V.

Since every τ1τ2-open set is a Λ(τ1,τ2)-set, we have

Λ(τ1,τ2)-Cl({x}) ⊆ τ1τ2-Cl({x}) ⊆ V.

This shows that (X,Λ(τ1,τ2)) is R0.
Conversely, suppose that (X,Λ(τ1,τ2)) isR0. Let V be a τ1τ2-open set and x ∈ V . Since every τ1τ2-open

set is a Λ(τ1,τ2)-set, we have Λ(τ1,τ2)-Cl({x}) ⊆ V . Since X − Λ(τ1,τ2)-Cl({x}) ∈ Λ(τ1,τ2),

X − Λ(τ1,τ2)-Cl({x}) = ∩{U | X − Λ(τ1,τ2)-Cl({x}) ⊆ U,U is τ1τ2-open}.
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Then, there exists a τ1τ2-open set U such thatX − Λ(τ1,τ2)-Cl({x}) ⊆ U and x 6∈ U . Thus, x ∈ X − U ⊆
Λ(τ1,τ2)-Cl({x}) ⊆ V . SinceX−U is τ1τ2-closed, τ1τ2-Cl({x}) ⊆ X−U ⊆ V . This shows that (X, τ1, τ2)

is (τ1, τ2)-R0. �

Definition 3. A bitopological space (X, τ1, τ2) is said to be:

(1) (τ1, τ2)-T0 if for any pair of distinct points inX , there exists a τ1τ2-open set containing one of the points

but not the other.

(2) (τ1, τ2)-T1 if for any pair of distinct points x, y in X , there exist τ1τ2-open sets U and V such that

x ∈ U , y 6∈ U and y ∈ V , x 6∈ V .

Theorem 3. A bitopological space (X, τ1, τ2) is (τ1, τ2)-T0 if and only if the topological space (X,Λ(τ1,τ2)) is

T0.

Proof. This is obvious since every τ1τ2-open set is a Λ(τ1,τ2)-set.
Conversely, let x and y be any pair of distinct points of X . Since (X, τ1, τ2) is (τ1, τ2)-T0, there exists

V ∈ Λ(τ1,τ2) such that either x ∈ V and y 6∈ V or x 6∈ V and y ∈ V . In case x ∈ V and y 6∈ V , there exists
a τ1τ2-open set U such that V ⊆ U and y 6∈ U . However, since x ∈ V , x ∈ U . In case x 6∈ V and y ∈ V ,
similarly there exists a τ1τ2-open set U such that x 6∈ U and y ∈ U . Thus, (X, τ1, τ2) is (τ1, τ2)-T0. �

Lemma 5. For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-T1;

(2) for each x ∈ X , the singleton {x} is τ1τ2-closed in X ;

(3) for each x ∈ X , the singleton {x} is a Λ(τ1,τ2)-set.

Proof. (1) ⇒ (2): Let y be any point of X and x ∈ X − {y}. There exists a τ1τ2-open set Vx such that
x ∈ Vx and y 6∈ Vx. Thus, X − {y} = ∪x∈X−{y}Vx. Therefore, the singleton {y} is τ1τ2-closed in X .

(2)⇒ (3): Let x be any point of X and y ∈ X − {x}. Then, x ∈ X − {y} and X − {y} is τ1τ2-open.
By Lemma 2, τ1τ2-ker({x}) ⊆ X − {y}. Therefore, y 6∈ τ1τ2-ker({x}) and τ1τ2-ker({x}) ⊆ {x}. This
shows that τ1τ2-ker({x}) = {x}. Thus, the singleton {x} is a Λ(τ1,τ2)-set.

(3)⇒ (1): Suppose that the singleton {x} is a Λ(τ1,τ2)-set for each x ∈ X . Let x and y be any distinct
points of X . Then, y 6∈ τ1τ2-ker({x}) and there exists a τ1τ2-open set Ux such that x ∈ Ux and y 6∈ Ux.
Similarly, x 6∈ τ1τ2-ker({y}) and there exists a τ1τ2-open set Uy such that y ∈ Uy and x 6∈ Uy. This shows
that (X, τ1, τ2) is (τ1, τ2)-T1. �

Theorem 4. A bitopological space (X, τ1, τ2) is (τ1, τ2)-T1 if and only if the topological space (X,Λ(τ1,τ2)) is

discrete.

Proof. Suppose that (X, τ1, τ2) is (τ1, τ2)-T1. Let x ∈ X . Then by Lemma 5, {x} is a Λ(τ1,τ2)-set and
{x} is open in (X,Λ(τ1,τ2)). Thus, every subset of X is open in (X,Λ(τ1,τ2)) and hence (X,Λ(τ1,τ2)) is
discrete.
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Conversely, suppose that a topological space (X,Λ(τ1,τ2)) is discrete. For any point x ∈ X , {x} is
open in (X,Λ(τ1,τ2)) and hence {x} is a Λ(τ1,τ2)-set. By Lemma 5, (X, τ1, τ2) is (τ1, τ2)-T1. �

Corollary 1. For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-T1;

(2) (X, τ1, τ2) is (τ1, τ2)-R0 and (τ1, τ2)-T0;

(3) (X,Λ(τ1,τ2)) is R0 and T0;

(4) (X,Λ(τ1,τ2)) is T1;

(5) (X,Λ(τ1,τ2)) is discrete.

Proof. (1)⇒ (2): By Lemma 5, every (τ1, τ2)-T1 space is (τ1, τ2)-R0 and (τ1, τ2)-T0.
(2) ⇒ (1): Since (X, τ1, τ2) is (τ1, τ2)-T0, for any distinct points x, y of X , there exists a τ1τ2-open

set U such that, say, x ∈ U and y 6∈ U . Thus, τ1τ2-Cl({x}) ⊆ U since (X, τ1, τ2) is (τ1, τ2)-R0. Then,
X − τ1τ2-Cl({x}) is a τ1τ2-open set such that x 6∈ X − τ1τ2-Cl({x}) and y ∈ X −U ⊆ X − τ1τ2-Cl({x}).
Thus, (X, τ1, τ2) is (τ1, τ2)-T1.

(2)⇔ (3): This is an immediate consequence of Theorem 2 and 3. �

(3)⇔ (4): This is obvious.
(5)⇔ (1): This is an immediate consequence of Theorem 4.

Definition 4. A subset A of a bitopological space (X, τ1, τ2) is said to be Λ?(τ1,τ2)-set if τ1τ2-ker(A) ⊆ F

whenever A ⊆ F and F is τ1τ2-closed.

The family of all Λ?(τ1,τ2)-sets of a bitopological space (X, τ1, τ2) is denoted by Λ?(τ1,τ2)(X) (or simply
Λ?(τ1,τ2)).

Lemma 6. For a bitopological space (X, τ1, τ2), the following properties hold:

(1) Λ(τ1,τ2) ⊆ Λ?(τ1,τ2).

(2) If Aγ ∈ Λ?(τ1,τ2) for each γ ∈ Γ, then ∪γ∈ΓAγ ∈ Λ?(τ1,τ2).

Proof. (1) Let A ∈ Λ(τ1,τ2). If A ⊆ F and F is τ1τ2-closed, then τ1τ2-ker(A) = A ⊆ F . Thus, A ∈ Λ?(τ1,τ2)

and hence Λ(τ1,τ2) ⊆ Λ?(τ1,τ2).
(2) Let ∪γ∈ΓAγ ⊆ F and F be any τ1τ2-closed set. Then, Aγ ⊆ F and τ1τ2-ker(Aγ) ⊆ F for each

γ ∈ Γ since Aγ ∈ Λ?(τ1,τ2). By Lemma 3, we have τ1τ2-ker(∪γ∈ΓAγ) = ∪γ∈ΓAγτ1τ2-ker(Aγ) ⊆ F and
hence ∪γ∈ΓAγ ∈ Λ?(τ1,τ2). �

Theorem 5. For a bitopological space (X, τ1, τ2), the pair (X,Λ?(τ1,τ2)) is an Alexandroff space.

Proof. By Lemma 6, Λ(τ1,τ2) ⊆ Λ?(τ1,τ2). Since ∅, X ∈ Λ(τ1,τ2), we have ∅, X ∈ Λ?(τ1,τ2). By Lemma 6, if
Aγ ∈ Λ?(τ1,τ2) for each γ ∈ Γ, then ∪γ∈ΓAγ ∈ Λ?(τ1,τ2). Thus, by Theorem 1 (X,Λ?(τ1,τ2)) is an Alexandroff
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space, where A ∈ Λ?(τ1,τ2) iff A = τ1τ2-ker?(A) and

τ1τ2-ker?(A) = ∩{U | A ⊆ U,U ∈ Λ?(τ1,τ2)}.

�
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