

$\Lambda_{(\tau_1,\tau_2)}$ -SETS AND RELATED TOPOLOGICAL SPACES

MONCHAYA CHIANGPRADIT¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Received Jan. 29, 2024

ABSTRACT. In this paper, we introduce the notions of $\Lambda_{(\tau_1,\tau_2)}$ -sets and $\Lambda_{(\tau_1,\tau_2)}^{\star}$ -sets. Furthermore, we investigate two topological spaces $(X, \Lambda_{(\tau_1,\tau_2)})$ and $(X, \Lambda_{(\tau_1,\tau_2)}^{\star})$ by utilizing $\Lambda_{(\tau_1,\tau_2)}$ -sets and $\Lambda_{(\tau_1,\tau_2)}^{\star}$ -sets, respectively.

2020 Mathematics Subject Classification. 54D10; 54E55.

Key words and phrases. $\tau_1 \tau_2$ -open set; $\Lambda_{(\tau_1,\tau_2)}$ -set; $\Lambda_{(\tau_1,\tau_2)}^*$ -set.

1. INTRODUCTION

The notions of closed sets and open sets are fundamental with respect to the investigation of general topology. Maki [16] called a subset A of a topological space (X, τ) a Λ -set if it is the intersection of open sets containing A. Arenas et al. [1] defined a subset A to be λ -closed if $A = L \cap F$, where L is a Λ -set and F is closed in (X, τ) . Ganster et al. [13] introduced and studied the notion of pre- Λ -sets in topological spaces. Levine [15] introduced the concept of generalized closed sets. Dunham and Levine [12] investigated the further properties of generalized closed sets. Moreover, Levine defined a separation axiom called $T_{\frac{1}{2}}$ between T_0 and T_1 . Dontchev and Ganster [10] introduced and investigated the notions of δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces. As a modification of generalized closed sets. As the further modification of regular generalized closed sets, Noiri and Popa [17] introduced and investigated the concept of regular generalized closed sets. Dungthaisong et al. [11] investigated the notion of generalized closed sets in bigeneralized as topological spaces and studied some characterizations of pairwise μ - $T_{\frac{1}{2}}$ spaces. Viriyapong and Boonpok [20] introduced and investigated

DOI: 10.28924/APJM/11-49

the notion of generalized (Λ, p) -closed sets. Furthermore, some properties of generalized (Λ, α) -closed sets, generalized $\delta p(\Lambda, s)$ -closed sets, generalized (Λ, s) -closed sets and generalized (Λ, sp) -closed sets were presented in [2], [3], [4] and [5], respectively. Caldas et al. [8] introduced two new classes of sets called Λ_g -closed sets and Λ_g -open sets in topological spaces. It turns out that Λ_g -closed sets and Λ_g -open sets are weaker forms of closed sets and open sets, respectively and stronger forms of generalized closed sets and generalized open sets. Cammaroto and Noiri [9] introduced and studied three topological spaces (X, Λ_m) , (X, Λ_{mc}^*) and $(X, \Lambda_{g\Lambda_m})$ by using Λ_m -sets, (Λ, m) -closed sets and generalized Λ_m -sets, respectively. In this paper, we introduce the concepts of $\Lambda_{(\tau_1, \tau_2)}$ -closed sets and $\Lambda_{(\tau_1, \tau_2)}^*$ -closed sets are investigated.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [7] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [7] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [7] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [7] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1\tau_2$ -*Cl*(*A*) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) *s-open* [6] (resp. (τ_1, τ_2) *p-open* [6], $(\tau_1, \tau_2)\beta$ -open [6], $\alpha(\tau_1, \tau_2)$ -open [19]) if $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)) (resp. $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)))). A subset A of a bitopological space (X, τ_1, τ_2) is called (τ_1, τ_2) *r-open* [20] (resp. (τ_1, τ_2) *r-closed*) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A = \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))).

Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . The set

$$\cap \{G \mid A \subseteq G \text{ and } G \text{ is } \tau_1 \tau_2 \text{-open} \}$$

is called the $\tau_1 \tau_2$ -kernel [7] of A and is denoted by $\tau_1 \tau_2$ -ker(A).

Lemma 2. [7] For subsets A, B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -ker(A).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -ker $(A) \subseteq \tau_1 \tau_2$ -ker(B).
- (3) If A is $\tau_1\tau_2$ -open, then $\tau_1\tau_2$ -ker(A) = A.
- (4) $x \in \tau_1 \tau_2$ -ker(A) if and only if $A \cap H \neq \emptyset$ for every $\tau_1 \tau_2$ -closed set H containing x.

3. $\Lambda_{(\tau_1,\tau_2)}\text{-sets}$ and related topological spaces

In this paper, we introduce the concepts of $\Lambda_{(\tau_1,\tau_2)}$ -closed sets and $\Lambda_{(\tau_1,\tau_2)}^{\star}$ -sets. Moreover, we investigate two topological spaces $(X, \Lambda_{(\tau_1,\tau_2)})$ and $(X, \Lambda_{(\tau_1,\tau_2)}^{\star})$ by using $\Lambda_{(\tau_1,\tau_2)}$ -sets and $\Lambda_{(\tau_1,\tau_2)}^{\star}$ -sets, respectively.

Lemma 3. Let (X, τ_1, τ_2) be a bitopological space and $\{A_\gamma : \gamma \in \Gamma\}$ be a family of subsets of X. Then, the following properties hold:

- (1) $\tau_1 \tau_2 \text{-} ker(\cap_{\gamma \in \Gamma} A_{\gamma}) \subseteq \cap_{\gamma \in \Gamma} \tau_1 \tau_2 \text{-} ker(A_{\gamma}).$
- (2) $\tau_1 \tau_2 \text{-} ker(\cup_{\gamma \in \Gamma} A_{\gamma}) = \cup_{\gamma \in \Gamma} \tau_1 \tau_2 \text{-} ker(A_{\gamma}).$

Proof. (1) Suppose that $x \notin \cap_{\gamma \in \Gamma} \tau_1 \tau_2$ - $ker(A_{\gamma})$. Then, there exists $\gamma_0 \in \Gamma$ such that $x \notin \tau_1 \tau_2$ - $ker(A_{\gamma_0})$ and there exists a $\tau_1 \tau_2$ -open set U such that $x \notin U$ and $A_{\gamma_0} \subseteq U$. Since $\cap_{\gamma \in \Gamma} A_{\gamma} \subseteq A_{\gamma_0}$, $x \notin \tau_1 \tau_2$ - $ker(\cap_{\gamma \in \Gamma} A_{\gamma})$ and hence $\tau_1 \tau_2$ - $ker(\cap_{\gamma \in \Gamma} A_{\gamma}) \subseteq \cap_{\gamma \in \Gamma} \tau_1 \tau_2$ - $ker(A_{\gamma})$.

(2) Since $A_{\gamma} \subseteq \bigcup_{\gamma \in \Gamma} A_{\gamma}$, by Lemma 2 (2), we have

$$\tau_1 \tau_2 \text{-} ker(A_\gamma) \subseteq \tau_1 \tau_2 \text{-} ker(\cup_{\gamma \in \Gamma} A_\gamma)$$

and $\cup_{\gamma\in\Gamma}\tau_1\tau_2$ - $ker(A_{\gamma}) \subseteq \tau_1\tau_2$ - $ker(\cup_{\gamma\in\Gamma}A_{\gamma})$. On the other hand, suppose that $x \notin \cup_{\gamma\in\Gamma}\tau_1\tau_2$ - $ker(A_{\gamma})$ for each $\gamma \in \Gamma$ and hence there exists a $\tau_1\tau_2$ -open set U_{γ} such that $A_{\gamma} \subseteq U_{\gamma}$ for each $\gamma \in \Gamma$. Therefore, $\cup_{\gamma\in\Gamma}A_{\gamma} \subseteq \cup_{\gamma\in\Gamma}U_{\gamma}$ and $\cup_{\gamma\in\Gamma}U_{\gamma}$ is a $\tau_1\tau_2$ -open set not containing x. Thus, $x \notin \tau_1\tau_2$ - $ker(\cup_{\gamma\in\Gamma}A_{\gamma})$ and hence

$$\cup_{\gamma \in \Gamma} \tau_1 \tau_2 \text{-} ker(A_\gamma) \supseteq \tau_1 \tau_2 \text{-} ker(\cup_{\gamma \in \Gamma} A_\gamma).$$

Definition 1. A subset A of a bitopological space (X, τ_1, τ_2) is called a $\Lambda_{(\tau_1, \tau_2)}$ -set if $A = \tau_1 \tau_2$ -ker(A).

The family of all $\Lambda_{(\tau_1,\tau_2)}$ -sets of a bitopological space (X, τ_1, τ_2) is denoted by $\Lambda_{(\tau_1,\tau_2)}(X)$ (or simply $\Lambda_{(\tau_1,\tau_2)}$).

Lemma 4. For subsets A and $B_{\gamma}(\gamma \in \Gamma)$ of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $\tau_1 \tau_2$ -ker(A) is a $\Lambda_{(\tau_1,\tau_2)}$ -set.
- (2) If A is a $\tau_1 \tau_2$ -open set, then A is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

- (3) If B_{γ} is a $\Lambda_{(\tau_1,\tau_2)}$ -set for each $\gamma \in \Gamma$, then $\cup_{\gamma \in \Gamma} B_{\gamma}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.
- (4) If B_{γ} is a $\Lambda_{(\tau_1,\tau_2)}$ -set for each $\gamma \in \Gamma$, then $\cap_{\gamma \in \Gamma} B_{\gamma}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

Proof. (1) and (2) are obvious.

(3) Let $B_{\gamma} \in \Lambda_{(\tau_1,\tau_2)}$ for each $\gamma \in \Gamma$. Then by Lemma 3 (2), we have

$$\cup_{\gamma \in \Gamma} B_{\gamma} = \cup_{\gamma \in \Gamma} \tau_1 \tau_2 \text{-} ker(B_{\gamma}) = \tau_1 \tau_2 \text{-} ker(\cup_{\gamma \in \Gamma} B_{\gamma}) \supseteq \cup_{\gamma \in \Gamma} B_{\gamma}.$$

Thus, $\cup_{\gamma \in \Gamma} B_{\gamma} = \tau_1 \tau_2 \text{-} ker(\cup_{\gamma \in \Gamma} B_{\gamma})$ and hence $\cup_{\gamma \in \Gamma} B_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$.

(4) Let $B_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$ for each $\gamma \in \Gamma$. Then by Lemma 3 (1), we have

$$\bigcap_{\gamma \in \Gamma} B_{\gamma} = \bigcap_{\gamma \in \Gamma} \tau_1 \tau_2 \cdot ker(B_{\gamma}) \supseteq \tau_1 \tau_2 \cdot ker(\bigcap_{\gamma \in \Gamma} B_{\gamma}) \supseteq \bigcap_{\gamma \in \Gamma} B_{\gamma}$$

Thus, $\cap_{\gamma \in \Gamma} B_{\gamma} = \tau_1 \tau_2 \text{-} ker(\cap_{\gamma \in \Gamma} B_{\gamma}) \text{ and so } \cap_{\gamma \in \Gamma} B_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}.$

Theorem 1. For a bitopological space (X, τ_1, τ_2) , the pair $(X, \Lambda_{(\tau_1, \tau_2)})$ is an Alexandroff space.

Proof. (1) \emptyset , $X \in \Lambda_{(\tau_1, \tau_2)}$ since \emptyset and X are $\tau_1 \tau_2$ -open sets.

- (2) If $U_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$ for each $\gamma \in \Gamma$, then $\cup_{\gamma \in \Gamma} U_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$ by Lemma 4 (3).
- (3) If $U_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$ for each $\gamma \in \Gamma$, then $\bigcap_{\gamma \in \Gamma} U_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}$ by Lemma 4 (4).

Definition 2. [14] A bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) - R_0 if for each $\tau_1\tau_2$ -open set U and each $x \in U$, $\tau_1\tau_2$ - $Cl(\{x\}) \subseteq U$.

Theorem 2. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 if and only if the topological space $(X, \Lambda_{(\tau_1, \tau_2)})$ is R_0 .

Proof. Let $V \in \Lambda_{(\tau_1,\tau_2)}$ and $x \in V$. Then, we have

$$x \in \tau_1 \tau_2 \text{-} ker(V) = \cap \{ U \mid V \subseteq U, U \text{ is } \tau_1 \tau_2 \text{-} \text{open} \}$$

and $x \in U$ for every $\tau_1 \tau_2$ -open set U containing V. Since (X, τ_1, τ_2) is (τ_1, τ_2) - $R_0, \tau_1 \tau_2$ - $Cl(\{x\}) \subseteq U$ for every $\tau_1 \tau_2$ -open set U containing V. Thus,

$$\tau_1\tau_2\operatorname{-Cl}(\{x\}) \subseteq \cap \{U \mid V \subseteq U, U \text{ is } \tau_1\tau_2\operatorname{-open}\} = \tau_1\tau_2\operatorname{-ker}(V) = V.$$

Since every $\tau_1 \tau_2$ -open set is a $\Lambda_{(\tau_1, \tau_2)}$ -set, we have

$$\Lambda_{(\tau_1,\tau_2)}\text{-}\operatorname{Cl}(\{x\}) \subseteq \tau_1\tau_2\text{-}\operatorname{Cl}(\{x\}) \subseteq V.$$

This shows that $(X, \Lambda_{(\tau_1, \tau_2)})$ is R_0 .

Conversely, suppose that $(X, \Lambda_{(\tau_1, \tau_2)})$ is R_0 . Let V be a $\tau_1 \tau_2$ -open set and $x \in V$. Since every $\tau_1 \tau_2$ -open set is a $\Lambda_{(\tau_1, \tau_2)}$ -set, we have $\Lambda_{(\tau_1, \tau_2)}$ -Cl $(\{x\}) \subseteq V$. Since $X - \Lambda_{(\tau_1, \tau_2)}$ -Cl $(\{x\}) \in \Lambda_{(\tau_1, \tau_2)}$,

$$X - \Lambda_{(\tau_1, \tau_2)} - \operatorname{Cl}(\{x\}) = \bigcap \{ U \mid X - \Lambda_{(\tau_1, \tau_2)} - \operatorname{Cl}(\{x\}) \subseteq U, U \text{ is } \tau_1 \tau_2 \text{-open} \}.$$

Then, there exists a $\tau_1\tau_2$ -open set U such that $X - \Lambda_{(\tau_1,\tau_2)}$ -Cl $(\{x\}) \subseteq U$ and $x \notin U$. Thus, $x \in X - U \subseteq \Lambda_{(\tau_1,\tau_2)}$ -Cl $(\{x\}) \subseteq V$. Since X - U is $\tau_1\tau_2$ -closed, $\tau_1\tau_2$ -Cl $(\{x\}) \subseteq X - U \subseteq V$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 .

Definition 3. A bitopological space (X, τ_1, τ_2) is said to be:

- (1) (τ_1, τ_2) - T_0 if for any pair of distinct points in X, there exists a $\tau_1 \tau_2$ -open set containing one of the points but not the other.
- (2) (τ_1, τ_2) - T_1 if for any pair of distinct points x, y in X, there exist $\tau_1 \tau_2$ -open sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$.

Theorem 3. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 if and only if the topological space $(X, \Lambda_{(\tau_1, \tau_2)})$ is T_0 .

Proof. This is obvious since every $\tau_1 \tau_2$ -open set is a $\Lambda_{(\tau_1, \tau_2)}$ -set.

Conversely, let x and y be any pair of distinct points of X. Since (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 , there exists $V \in \Lambda_{(\tau_1, \tau_2)}$ such that either $x \in V$ and $y \notin V$ or $x \notin V$ and $y \in V$. In case $x \in V$ and $y \notin V$, there exists a $\tau_1 \tau_2$ -open set U such that $V \subseteq U$ and $y \notin U$. However, since $x \in V$, $x \in U$. In case $x \notin V$ and $y \in V$, similarly there exists a $\tau_1 \tau_2$ -open set U such that $x \notin U$ and $y \notin U$. However, since $x \in V$, $x \in U$. In case $x \notin V$ and $y \in V$, similarly there exists a $\tau_1 \tau_2$ -open set U such that $x \notin U$ and $y \in U$. Thus, (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 . \Box

Lemma 5. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁;
- (2) for each $x \in X$, the singleton $\{x\}$ is $\tau_1 \tau_2$ -closed in X;
- (3) for each $x \in X$, the singleton $\{x\}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

Proof. (1) \Rightarrow (2): Let y be any point of X and $x \in X - \{y\}$. There exists a $\tau_1 \tau_2$ -open set V_x such that $x \in V_x$ and $y \notin V_x$. Thus, $X - \{y\} = \bigcup_{x \in X - \{y\}} V_x$. Therefore, the singleton $\{y\}$ is $\tau_1 \tau_2$ -closed in X.

(2) \Rightarrow (3): Let x be any point of X and $y \in X - \{x\}$. Then, $x \in X - \{y\}$ and $X - \{y\}$ is $\tau_1\tau_2$ -open. By Lemma 2, $\tau_1\tau_2$ -ker $(\{x\}) \subseteq X - \{y\}$. Therefore, $y \notin \tau_1\tau_2$ -ker $(\{x\})$ and $\tau_1\tau_2$ -ker $(\{x\}) \subseteq \{x\}$. This shows that $\tau_1\tau_2$ -ker $(\{x\}) = \{x\}$. Thus, the singleton $\{x\}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set.

(3) \Rightarrow (1): Suppose that the singleton $\{x\}$ is a $\Lambda_{(\tau_1,\tau_2)}$ -set for each $x \in X$. Let x and y be any distinct points of X. Then, $y \notin \tau_1 \tau_2$ -ker($\{x\}$) and there exists a $\tau_1 \tau_2$ -open set U_x such that $x \in U_x$ and $y \notin U_x$. Similarly, $x \notin \tau_1 \tau_2$ -ker($\{y\}$) and there exists a $\tau_1 \tau_2$ -open set U_y such that $y \in U_y$ and $x \notin U_y$. This shows that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 .

Theorem 4. A bitopological space (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 if and only if the topological space $(X, \Lambda_{(\tau_1, \tau_2)})$ is discrete.

Proof. Suppose that (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 . Let $x \in X$. Then by Lemma 5, $\{x\}$ is a $\Lambda_{(\tau_1, \tau_2)}$ -set and $\{x\}$ is open in $(X, \Lambda_{(\tau_1, \tau_2)})$. Thus, every subset of X is open in $(X, \Lambda_{(\tau_1, \tau_2)})$ and hence $(X, \Lambda_{(\tau_1, \tau_2)})$ is discrete.

Conversely, suppose that a topological space $(X, \Lambda_{(\tau_1, \tau_2)})$ is discrete. For any point $x \in X$, $\{x\}$ is open in $(X, \Lambda_{(\tau_1, \tau_2)})$ and hence $\{x\}$ is a $\Lambda_{(\tau_1, \tau_2)}$ -set. By Lemma 5, (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 .

Corollary 1. For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -T₁;
- (2) (X, τ_1, τ_2) is (τ_1, τ_2) -R₀ and (τ_1, τ_2) -T₀;
- (3) $(X, \Lambda_{(\tau_1, \tau_2)})$ is R_0 and T_0 ;
- (4) $(X, \Lambda_{(\tau_1, \tau_2)})$ is T_1 ;
- (5) $(X, \Lambda_{(\tau_1, \tau_2)})$ is discrete.

Proof. (1) \Rightarrow (2): By Lemma 5, every (τ_1, τ_2) - T_1 space is (τ_1, τ_2) - R_0 and (τ_1, τ_2) - T_0 .

(2) \Rightarrow (1): Since (X, τ_1, τ_2) is (τ_1, τ_2) - T_0 , for any distinct points x, y of X, there exists a $\tau_1\tau_2$ -open set U such that, say, $x \in U$ and $y \notin U$. Thus, $\tau_1\tau_2$ - $\operatorname{Cl}(\{x\}) \subseteq U$ since (X, τ_1, τ_2) is (τ_1, τ_2) - R_0 . Then, $X - \tau_1\tau_2$ - $\operatorname{Cl}(\{x\})$ is a $\tau_1\tau_2$ -open set such that $x \notin X - \tau_1\tau_2$ - $\operatorname{Cl}(\{x\})$ and $y \in X - U \subseteq X - \tau_1\tau_2$ - $\operatorname{Cl}(\{x\})$. Thus, (X, τ_1, τ_2) is (τ_1, τ_2) - T_1 .

(2) \Leftrightarrow (3): This is an immediate consequence of Theorem 2 and 3.

- $(3) \Leftrightarrow (4)$: This is obvious.
- $(5) \Leftrightarrow (1)$: This is an immediate consequence of Theorem 4.

Definition 4. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\Lambda^*_{(\tau_1, \tau_2)}$ -set if $\tau_1 \tau_2$ -ker $(A) \subseteq F$ whenever $A \subseteq F$ and F is $\tau_1 \tau_2$ -closed.

The family of all $\Lambda^*_{(\tau_1,\tau_2)}$ -sets of a bitopological space (X, τ_1, τ_2) is denoted by $\Lambda^*_{(\tau_1,\tau_2)}(X)$ (or simply $\Lambda^*_{(\tau_1,\tau_2)}$).

Lemma 6. For a bitopological space (X, τ_1, τ_2) , the following properties hold:

(1) $\Lambda_{(\tau_1,\tau_2)} \subseteq \Lambda^{\star}_{(\tau_1,\tau_2)}$. (2) If $A_{\gamma} \in \Lambda^{\star}_{(\tau_1,\tau_2)}$ for each $\gamma \in \Gamma$, then $\cup_{\gamma \in \Gamma} A_{\gamma} \in \Lambda^{\star}_{(\tau_1,\tau_2)}$.

Proof. (1) Let $A \in \Lambda_{(\tau_1,\tau_2)}$. If $A \subseteq F$ and F is $\tau_1\tau_2$ -closed, then $\tau_1\tau_2$ - $ker(A) = A \subseteq F$. Thus, $A \in \Lambda_{(\tau_1,\tau_2)}^*$ and hence $\Lambda_{(\tau_1,\tau_2)} \subseteq \Lambda_{(\tau_1,\tau_2)}^*$.

(2) Let $\bigcup_{\gamma \in \Gamma} A_{\gamma} \subseteq F$ and F be any $\tau_1 \tau_2$ -closed set. Then, $A_{\gamma} \subseteq F$ and $\tau_1 \tau_2$ - $ker(A_{\gamma}) \subseteq F$ for each $\gamma \in \Gamma$ since $A_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}^*$. By Lemma 3, we have $\tau_1 \tau_2$ - $ker(\bigcup_{\gamma \in \Gamma} A_{\gamma}) = \bigcup_{\gamma \in \Gamma} A_{\gamma} \tau_1 \tau_2$ - $ker(A_{\gamma}) \subseteq F$ and hence $\bigcup_{\gamma \in \Gamma} A_{\gamma} \in \Lambda_{(\tau_1, \tau_2)}^*$.

Theorem 5. For a bitopological space (X, τ_1, τ_2) , the pair $(X, \Lambda^{\star}_{(\tau_1, \tau_2)})$ is an Alexandroff space.

Proof. By Lemma 6, $\Lambda_{(\tau_1,\tau_2)} \subseteq \Lambda_{(\tau_1,\tau_2)}^*$. Since $\emptyset, X \in \Lambda_{(\tau_1,\tau_2)}$, we have $\emptyset, X \in \Lambda_{(\tau_1,\tau_2)}^*$. By Lemma 6, if $A_{\gamma} \in \Lambda_{(\tau_1,\tau_2)}^*$ for each $\gamma \in \Gamma$, then $\cup_{\gamma \in \Gamma} A_{\gamma} \in \Lambda_{(\tau_1,\tau_2)}^*$. Thus, by Theorem 1 $(X, \Lambda_{(\tau_1,\tau_2)}^*)$ is an Alexandroff

space, where $A \in \Lambda^{\star}_{(\tau_1,\tau_2)}$ iff $A = \tau_1 \tau_2$ - $ker^{\star}(A)$ and

$$\tau_1 \tau_2 \text{-} ker^{\star}(A) = \cap \{ U \mid A \subseteq U, U \in \Lambda^{\star}_{(\tau_1, \tau_2)} \}.$$

Acknowledgements

This research project was financially supported by Mahasarakham University.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- F.G. Arenas, J. Dontchev, M. Ganster, On λ-sets and dual of generalized continuity, Quest. Answers Gen. Topol. 15 (1997), 3–13.
- [2] C. Boonpok, M. Thongmoon, Some properties of generalized (Λ, α)-closed sets, Int. J. Anal. Appl. 21 (2023), 88.
 https://doi.org/10.28924/2291-8639-21-2023-88.
- [3] C. Boonpok, N. Srisarakham, Properties of generalized $\delta p(\Lambda, s)$ -closed sets, Eur. J. Pure Appl. Math. 16 (2023), 2581–2596. https://doi.org/10.29020/nybg.ejpam.v16i4.4736.
- [4] C. Boonpok, C. Viriyapong, On some forms of closed sets and related topics, Eur. J. Pure Appl. Math. 16 (2023), 336–362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- [5] C. Boonpok, C. Viriyapong, On generalized (Λ, sp)-closed sets, Eur. J. Pure Appl. Math. 15 (2022), 2127–2140. https: //doi.org/10.29020/nybg.ejpam.v15i4.4302.
- [6] C. Boonpok, (τ₁, τ₂)δ-semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [7] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ₁, τ₂)-precontinuous multifunctions, J. Math. Comp. Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [8] M. Caldas, S. Jafari, T. Noiri, On Λ-generalized closed sets in topological spaces, Acta Math. Hung. 118 (2008), 337–343. https://doi.org/10.1007/s10474-007-6224-1.
- [9] F. Cammaroto, T. Noiri, On Λ_m -sets and related topological spaces, Acta Math. Hung. 109 (2005), 261–279. https: //doi.org/10.1007/s10474-005-0245-4.
- [10] J. Dontchev and M. Ganster, On δ -generalized closed sets and $T_{\frac{3}{4}}$ -spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 17 (1996), 15–31.
- [11] W. Dungthaisong, C. Boonpok, C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. Math. Anal. 5 (2011), 1175–1184.
- [12] W. Dunham, N. Levine, Further results on generalized closed sets in topology, Kyungpook Math. J. 20 (1980), 169–175.
- [13] M. Ganster, S. Jafari, T. Noiri, On pre-Λ-sets and pre-V-sets, Acta Math. Hung. 95 (2002), 337–343. https://doi.org/ 10.1023/a:1015605426358.
- [14] B. Kong-ied, S. Sompong, C. Boonpok, On (τ_1, τ_2) - R_0 bitopological spaces, Asia Pac. J. Math. 11 (2024), 43. https: //doi.org/10.28924/APJM/11-43.
- [15] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.

- [16] H. Maki, Generalized Λ-sets and the associated closure operator, Special Issue in Commemoration of Prof. Kazusada IKEDA's Retirement, (1986), pp. 139–146. https://cir.nii.ac.jp/crid/1572543024674341120.
- [17] T. Noiri, V. Popa, A note on modifications of *rg*-closed sets in topological spaces, Cubo. 15 (2013), 65–70. https: //doi.org/10.4067/s0719-06462013000200006.
- [18] N. Palaniappan, K.C. Rao, Regular generalized closed sets, Kyungpook Math. J. 33 (1993), 211–219.
- [19] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -extremal disconnectedness in bitopological spaces, Int. J. Math. Comp. Sci. 19 (2024), 855–860.
- [20] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.