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1. Introduction

The concept of fuzzy sets was proposed by Zadeh [12]. The theory of fuzzy sets has several applica-
tions in real-life situations, and many scholars have researched fuzzy set theory. After the introduction
of the concept of fuzzy sets, several research studies were conducted on the generalizations of fuzzy
sets. The idea of intuitionistic fuzzy sets suggested by Atanassov [1] is one of the extensions of fuzzy
sets with better applicability. Applications of intuitionistic fuzzy sets appear in various fields, including
medical diagnosis, optimization problems, and multicriteria decision making [8–10]. The concept of
Hilbert algebra was introduced in early 50-ties by L. Henkin and T. Skolem for some investigations
of implication in intuicionistic and other non-classical logics. In 60-ties, these algebras were studied
especially by A. Horn and A. Diego from algebraic point of view. A. Diego proved (cf. [6] that Hilbert
algebras form a variety which is locally finite. Hilbert algebras were treated by D. Busneag (cf. [2], [3])
and Y. B. Jun (cf. [11]) and some of their filters forming deductive systems were recognized. In this
paper, we introduce and study the concept of lattice valued fuzzy subgroups / ideals of Hilbert algebras.
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2. Preliminaries

Definition 2.1. [6] A Hilbert algebra is a tripletH = (H, ∗, 1), whereH is a nonempty set, ∗ is a binary
operation and 1 is fixed element of H such that the following axioms hold for each x, y, z ∈ H.

(1) x ∗ (y ∗ x) = 1,
(2) (x ∗ (y ∗ z)) ∗ ((x ∗ y) ∗ (x ∗ z)) = 1,
(3) x ∗ y = 1 and y ∗ x = 1 imply x = y.

Lemma 2.2. [7] Let H = (H, ∗, 1) be a Hilbert algebra and x, y, z ∈ H. Then

(1) x ∗ x = 1,

(2) 1 ∗ x = x,

(3) x ∗ 1 = 1,

(4) x ∗ (y ∗ z) = y ∗ (x ∗ z).

It is easily checked that in a Hilbert algebra H the relation ≤ y defined by x ≤ y ⇔ x ∗ y = 1 is a
partial order on H with 1 as the largest element.

Definition 2.3. [4] A nonempty subset I of a Hilbert algebra H = (H, ∗, 1) is called an ideal of H if

(1) 1 ∈ I ,
(2) x ∗ y ∈ I for all x ∈ H, y ∈ I ,
(3) (y1 ∗ (y2 ∗ x)) ∗ x ∈ I for all x ∈ H, y1, y2 ∈ I .

Lemma 2.4. [5] Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. Then the following properties hold:

(1) (∀u, v ∈ L )((u ∨ v)′ = u′ ∧ v′),

(2) (∀u, v ∈ L )((u ∧ v)′ = u′ ∨ v′),

(3) (∀u, v ∈ L )(u ≤ v ⇔ u′ ≥ v′),

(4) (∀u, v ∈ L )(u = v ⇔ u′ = v′),

(5) (∀u, v ∈ L )(u < v ⇔ u′ > v′).

3. Lattice Valued Fuzzy Hilbert Algebras

Definition 3.1. Let L = (L,≤,∧,∨) be a lattice. Then an LFS L inH is called an L-fuzzy subalgebra
ofH if it satisfies

(∀x, y ∈ H)
(

Lµ(x ∗ y) ≥ Lµ(x) ∧Lµ(y)
)
. (1)

Proposition 3.2. Every L-fuzzy subalgebra ofH satisfies Lµ(1) ≥ Lµ(x) for all x ∈ H.

Proof. For any x ∈ H, Lµ(1) = Lµ(x ∗ x) ≥ Lµ(x) ∧Lµ(x) = Lµ(x). �
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Definition 3.3. Let L = (L,≤,∧,∨) be a lattice. Then an LFS L in H is called an L-fuzzy ideal of H if
it satisfies

(∀x ∈ H)
(

Lµ(1) ≥ Lµ(x)
)
, (2)

(∀ x, y ∈ H)
(

Lµ(x ∗ y) ≥ Lµ(y)
)
, (3)

(∀ x, y1, y2 ∈ H)
(

Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≥ Lµ(y1) ∧Lµ(y2)
)
. (4)

Proposition 3.4. If an LFS L is an L-fuzzy ideal ofH, then

(∀x, y ∈ H)
(

Lµ((y ∗ x) ∗ x) ≥ Lµ(y)
)
. (5)

Proof. Putting y1 = y and y2 = 1 in (4), we have Lµ((y ∗ x) ∗ x) ≥ Lµ(y) ∧Lµ(1) = Lµ(y). �

Lemma 3.5. If an LFS L is an L-fuzzy ideal ofH, then we have the following

(∀ x, y ∈ H)
(

x ≤ y ⇒ Lµ(x) ≤ Lµ(y)
)
. (6)

Proof. Let x, y ∈ H be such that x ≤ y. Then x ∗ y = 1 and so

Lµ(y) = Lµ(1 ∗ y)

= Lµ(((x ∗ y) ∗ (x ∗ y)) ∗ y)

≥ Lµ(x ∗ y) ∧Lµ(x)

≥ Lµ(1) ∧Lµ(x)

= Lµ(x).

�

Theorem 3.6. Every L-fuzzy ideal ofH is an L-fuzzy subalgebra ofH.

Proof. Let L be an L-fuzzy ideal of H. Since y ≤ x ∗ y for all x, y ∈ H. Then from Lemma 3.5 that
Lµ(y) ≥ Lµ(x ∗ y). It follows from (3) that Lµ(x ∗ y) ≥ Lµ(y) ≥ Lµ(x ∗ y) ∧Lµ(x) ≥ Lµ(x) ∧Lµ(y).
Hence L is an L-fuzzy subalgebra ofH. �

Example 3.7. Let A = {1, a, b, c} be a Hilbert algebra with a fixed element 1 and a binary operation ·
defined by the following Cayley table, as the following table.

· 1 a b c

1 1 a b c

a 1 1 b b

b 1 a 1 a

c 1 1 1 1
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Consider a lattice L = (L,≤,∧,∨), where L = {1, a, b, 0} as drawn in the following
1

a b

0

We define an LFS L as follows:

Lµ =

1 a b c

1 0 0 a

 .

Hence L is L-fuzzy subalgebra but not L-fuzzy ideal of A.
Now we shall determine L is a complete lattice L = (L,≤,∧,∨, 0L, 1L).
Let A be a subset of H. Then the characteristic function χA of H is a function of H into {0L, 1L}

defined as follows:

χA(x) =

1L if x ∈ A
0L if x /∈ A.

By the definition of characteristic function, χA is a function ofH into {0L, 1L} ⊂ L. We denote the
LFS LA in H is described by its membership function χA, is called the characteristic LFS of A inH.

Lemma 3.8. Let the constant 1 ofH is in A. Then χA(1) ≥ χA(a) for all a ∈ H.

Proof. Assume that 1 ∈ A. Then for all a ∈ H, χA(1) = 1L ≥ χA(a). �

Lemma 3.9. Let A be a nonempty subset of a Hilbert algebra H. If χA(1) ≥ χA(a) for all a ∈ H, then the

constant 1 ofH is in A.

Proof. Assume that χA(1) ≥ χA(a) for all a ∈ H. SinceA is a nonempty subset ofH, we have an element
u in A, that is, χA(u) = 1L. Thus 1L ≥ χA(1) ≥ χA(u) = 1L. So χA(1) = 1L, that is, 1 ∈ A. �

Theorem 3.10. A nonempty subset A ofH is a subalgebra ofH if and only if the characteristic LFS LA is an

L-fuzzy subalgebra ofH.

Proof. Assume that A is a subalgebra of H. Let a, b ∈ H. Case 1: a, b ∈ A. Then χA(a) = 1L = χA(b),
so χA(a) ∧ χA(b) = 1L. Since A is a subalgebra of H, a ∗ b ∈ A and so χA(a ∗ b) = 1L. Therefore,
χA(a ∗ b) = 1L ≥ 1L = χA(a) ∧ χA(b).
Case 2: a /∈ A or b /∈ A. Then χA(a) = 0L or χA(b) = 0L, so χA(a) ∧ χA(b) = 0L. Therefore,
χA(a∗ b) ≥ 0L = χA(a)∧χA(b). Hence, LA is an L-fuzzy subalgebra ofH. Conversely, assume that LA

is an L-fuzzy subalgebra of H. Let a, b ∈ A. Then χA(a) = 1L = χA(b), so χA(a) ∧ χA(b) = 1L. Since
LA is an L-fuzzy subalgebra ofH, we have 1L ≥ χA(a ∗ b) ≥ χA(a) ∧ χA(b) = 1L. By anti-symmetry,
we have χA(a ∗ b) = 1L, that is, a ∗ b ∈ A. Hence, A is a subalgebra ofH. �
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Theorem 3.11. A nonempty subsetA ofH is an ideal ofH if and only if the characteristic LFS LA is an L-fuzzy

ideal ofH.

Proof. Assume that A is an ideal ofH. Since 1 ∈ A, it follows from Lemma 3.9 that χA(1) ≥ χA(x) for
all x ∈ H. Let x, y ∈ H. Case 1: y ∈ A. Then χA(y) = 1L. Since A is an ideal of H, x ∗ y ∈ A and so
χA(x ∗ y) = 1L. Therefore, χA(x ∗ y) = 1L ≥ 1L = χA(y). Case 2: y /∈ A. Then χA(y) = 0L. Therefore,
χA(x ∗ y) ≥ 0L = χA(y). Let x, y1, y2 ∈ H. Case 1: y1, y2 ∈ A. Then χA(y1) = 1L = χA(y2), so χA(y1) ∧
χA(y2) = 1L. SinceA is an ideal ofH, (y1 ∗ (y2 ∗x))∗x ∈ A and so χA((y1 ∗ (y2 ∗x))∗x) = 1L. Therefore,
χA((y1 ∗ (y2 ∗ x)) ∗ x) = 1L ≥ 1L = χA(y1) ∧ χA(y2). Case 2: y1 /∈ A or y2 /∈ A. Then χA(y1) = 0L or
χA(y2) = 0L, so χA(y1)∧χA(y2) = 0L. Therefore, χA((y1 ∗ (y2 ∗x))∗x) ≥ 0L = χA(y1)∧χA(y2). Hence,
LA is an L-fuzzy ideal ofH. Conversely, assume that LA is an L-fuzzy ideal ofH. Since χA(1) ≥ χA(x)
for all x ∈ H, by Lemma 3.9 that 1 ∈ A. Let x, y ∈ H such that y ∈ A. Then χA(y) = 1L. Since LA is an
L-fuzzy ideal ofH, 1L ≥ χA(x ∗ y) ≥ χA(y) = 1L. By anti-symmetry, we have χA(x ∗ y) = 1L, that is,
x ∗ y ∈ A. Let x, y1, y2 ∈ H such that y1, y2 ∈ A. Then χA(y1) = 1L = χA(y2), so χA(y1) ∧ χA(y2) = 1L.
SinceLA is anL-fuzzy ideal ofH, 1L ≥ χA((y1∗(y2∗x))∗x) ≥ χA(y1)∧χA(y2) = 1L. By anti-symmetry,
we have χA((y1 ∗ (y2 ∗ x)) ∗ x) = 1L, that is, (y1 ∗ (y2 ∗ x)) ∗ x ∈ A. Hence A is an ideal ofH. �

Definition 3.12. Let L be an LFS inH with the membership function Lµ. For any t ∈ L, the sets

U(Lµ, t) = {x ∈ H : Lµ(x) ≥ t}

U+(Lµ, t) = {x ∈ H : Lµ(x) > t}

L(Lµ, t) = {x ∈ H : Lµ(x) ≤ t}

L−(Lµ, t) = {x ∈ H : Lµ(x) < t}

are referred to as an upper t-level subset, an upper t-strong level subset, a lower t-level subset and a
lower t-strong level subset of L, respectively.

Theorem 3.13. An LFS L is an L-fuzzy subalgebra of H if and only if U(Lµ, t) is, if it is nonempty, a

subalgebra ofH for every t ∈ L.

Proof. Assume L is an L-fuzzy subalgebra of H. Let t ∈ L be such that U(Lµ, t) 6= ∅. Let x, y ∈ H.
Then

x, y ∈ U(Lµ, t) ⇒ Lµ(x) ≥ t,Lµ(y) ≥ t

⇒ Lµ(x) ∧Lµ(y) ≥ t

⇒ Lµ(x ∗ y) ≥ Lµ(x) ∧Lµ(y) ≥ t

⇒ Lµ(x ∗ y) ≥ t

⇒ x ∗ y ∈ U(Lµ, t).

Hence, U(Lµ, t) is a subalgebra of H. Conversely, assume for all t ∈ L, U(Lµ, t) is a subalgebra of H if
it is nonempty. Let x, y ∈ H. Choose t = Lµ(x) ∧Lµ(y) ∈ L. Then Lµ(x) ≥ t and Lµ(y) ≥ t. Thus
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x, y ∈ U(Lµ, t) 6= ∅. As the hypothesis, we get U(Lµ, t) is a subalgebra of H and so x ∗ y ∈ U(Lµ, t).
Thus Lµ(x ∗ y) ≥ t = Lµ(x) ∧Lµ(y). Hence L is an L-fuzzy subalgebra ofH. �

Lemma 3.14. Let L be an LFS inH. Then L satisfies the condition Lµ(1) ≥ Lµ(a) for all a ∈ H if and only

if U(Lµ, t), if it is nonempty, contains 1 ∈ H for every t ∈ L .

Proof. Let t ∈ L be such that U(Lµ, t) 6= ∅. Let a ∈ H. Then

a ∈ U(Lµ, t) ⇒ Lµ(a) ≥ t

⇒ Lµ(1) ≥ Lµ(a) ≥ t

⇒ 1 ∈ U(Lµ, t).

Conversely, assume for all t ∈ L , U(Lµ, t) contains 1 ∈ H if it is nonempty. Choose t = Lµ(a) ∈ L.
ThenLµ(a) ≥ t. Thus a ∈ U(Lµ, t) 6= ∅. As the hypothesis, 1 ∈ U(Lµ, t). ThusLµ(1) ≥ t = Lµ(a). �

Theorem 3.15. An LFS L is an L-fuzzy ideal ofH if and only if U(Lµ, t) is, if it is nonempty, an ideal ofH

for every t ∈ L.

Proof. Assume L is an L-fuzzy ideal ofH. Let t ∈ L be such that U(Lµ, t) 6= ∅. Let x, y ∈ H. Then

y ∈ U(Lµ, t) ⇒ Lµ(y) ≥ t

⇒ Lµ(x ∗ y) ≥ Lµ(y) ≥ t

⇒ Lµ(x ∗ y) ≥ t

⇒ x ∗ y ∈ U(Lµ, t).

Let x, y1, y2 ∈ H. Then

y1, y2 ∈ U(Lµ, t) ⇒ Lµ(y1) ≥ t,Lµ(y2) ≥ t

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≥ Lµ(y1) ∧Lµ(y2) ≥ t

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≥ t

⇒ (y1 ∗ (y2 ∗ x)) ∗ x ∈ U(Lµ, t).

By Lemma 3.14, we have 1 ∈ U(Lµ, t). Hence U(Lµ, t) is an ideal of H. Conversely, assume for
all t ∈ L, U(Lµ, t) is an ideal of H if it is nonempty. Let x, y ∈ H. By Lemma 3.14. we have Lµ

satisfies the condition Lµ(1) ≥ Lµ(a) for all a ∈ H. Choose t = Lµ(y) ∈ L. Then Lµ(y) ≥ t. Thus
y ∈ U(Lµ, t) 6= ∅. As the hypothesis, we get U(Lµ, t) is an ideal of H and so x ∗ y ∈ U(Lµ, t). Thus
Lµ(x ∗ y) ≥ t = Lµ(y). Let x, y1, y2 ∈ H. Choose t = Lµ(y1) ∧Lµ(y2) ∈ L. Then Lµ(y1) ≥ t and
Lµ(y2) ≥ t. Thus y1, y2 ∈ U(Lµ, t) 6= ∅. As the hypothesis, we get U(Lµ, t) is an ideal of H and so
y1, y2 ∈ U(Lµ, t). Thus Lµ(y1 ∗ (y2 ∗ x)) ∗ x) ≥ t = Lµ(y1) ∧Lµ(y2). Hence L is an L-fuzzy ideal of
H. �

Theorem 3.16. Let L = (L,≤,∧,∨) be a linearly ordered set. Then L is an L-fuzzy subalgebra ofH if and

only if U+(Lµ, t) is, if it is nonempty, a subalgebra ofH for every t ∈ L.
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Proof. Assume L is an L-fuzzy subalgebra of H. Let t ∈ L be such that U+(Lµ, t) 6= ∅. Let x, y ∈ H.
Then Lµ(x) and Lµ(y) are compatible. Suppose that Lµ(x) ≥ Lµ(y), that is, Lµ(x) ∧Lµ(y) = Lµ(y).
Then

x, y ∈ U+(Lµ, t) ⇒ Lµ(x) > t,Lµ(y) > t

⇒ Lµ(x) ∧Lµ(y) = Lµ(y) > t

⇒ Lµ(x ∗ y) ≥ Lµ(x) ∧Lµ(y) > t

⇒ x ∗ y ∈ U+(Lµ, t).

Hence, U+(Lµ, t) is a subalgebra of H. Conversely, assume for all t ∈ L, U+(Lµ, t) is a subalgebra
of H if it is nonempty. Suppose there exist x, y ∈ H such that Lµ(x ∗ y) � Lµ(x) ∧Lµ(y). It means
that Lµ(x ∗ y) < Lµ(x) ∧Lµ(y). Choose t = Lµ(x ∗ y) ∈ L. Then Lµ(x) ∧Lµ(y) > t and so Lµ(x) ≥

Lµ(x) ∧Lµ(y) > t and Lµ(y) ≥ Lµ(x) ∧Lµ(y) > t. Thus x, y ∈ U+(Lµ, t) 6= ∅. As the hypothesis,
we get U+(Lµ, t) is a subalgebra of H and so x ∗ y ∈ U+(Lµ, t). Thus Lµ(x ∗ y) > t = Lµ(x ∗ y), a
contradiction. Hence Lµ(x ∗ y) ≥ Lµ(x) ∧Lµ(y) for all x, y ∈ H. Hence L is an L-fuzzy subalgebra
ofH. �

Lemma 3.17. Let L = (L,≤,∧,∨) be a linearly ordered set. Then L satisfies the condition Lµ(1) ≥ Lµ(a)

for all a ∈ H if and only if U+(Lµ, t), if it is nonempty, contains 1 ∈ H for every t ∈ L .

Proof. Let t ∈ L be such that U+(Lµ, t) 6= ∅. Let a ∈ H. Then

a ∈ U+(Lµ, t) ⇒ Lµ(a) > t

⇒ Lµ(1) ≥ Lµ(a) > t

⇒ 1 ∈ U+(Lµ, t).

Conversely, assume for all t ∈ L ,U+(Lµ, t) contains 1 ∈ H if it is nonempty. Suppose there exists x ∈ H

such that Lµ(1) � Lµ(x). It means that Lµ(1) < Lµ(x). Choose t = Lµ(1) ∈ L . Then Lµ(x) > t.
Thus x ∈ U+(Lµ, t) 6= ∅. As the hypothesis, we get 1 ∈ U+(Lµ, t). Thus Lµ(1) > t = Lµ(1), a
contradiction. Hence Lµ(1) ≥ Lµ(x) for all x ∈ H. �

Theorem 3.18. Let L = (L,≤,∧,∨) be a linearly ordered set. Then L is an L-fuzzy ideal ofH if and only if

U+(Lµ, t) is, if it is nonempty, an ideal ofH for every t ∈ L.

Proof. Assume L is an L-fuzzy ideal ofH. Let t ∈ L be such that U+(Lµ, t) 6= ∅. Let x, y ∈ H. Then

y ∈ U+(Lµ, t) ⇒ Lµ(y) > t

⇒ Lµ(x ∗ y) ≥ Lµ(y) > t

⇒ x ∗ y ∈ U+(Lµ, t).



Asia Pac. J. Math. 2024 11:51 8 of 15

Let x, y1, y2 ∈ H. Then Lµ(y1) and Lµ(y2) are compatible. Suppose that Lµ(y1) ≥ Lµ(y2), that is,
Lµ(y1) ∧Lµ(y2) = Lµ(y2). Then

y1, y2 ∈ U+(Lµ, t) ⇒ Lµ(y1) > t,Lµ(y2) > t

⇒ Lµ(y1) ∧Lµ(y2) = Lµ(y2) > t

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≥ Lµ(y1) ∧Lµ(y2) > t

⇒ (y1 ∗ (y2 ∗ x)) ∗ x ∈ U+(Lµ, t).

By Lemma 3.14, we have 1 ∈ U+(Lµ, t). Hence, U+(Lµ, t) is an ideal of H. Conversely, assume
for all t ∈ L, U+(Lµ, t) is an ideal of H if it is nonempty. Suppose there exist x, y ∈ H such that
Lµ(x∗y) � Lµ(y). It means that Lµ(x∗y) < Lµ(y). By Lemma 3.14, we have L satisfies the condition
Lµ(1) ≥ Lµ(a) for all a ∈ H. Choose t = Lµ(x∗y) ∈ L. Then Lµ(y) > t and so Lµ(x∗y) ≥ Lµ(y) > t.
Thus y ∈ U+(Lµ, t) 6= ∅. As the hypothesis, we get U+(Lµ, t) is an ideal ofH and so x ∗ y ∈ U+(Lµ, t).
ThusLµ(x∗y) > t = Lµ(x∗y), a contradiction. HenceLµ(x∗y) ≥ Lµ(y) for all x, y ∈ H. Suppose there
exist x, y1, y2 ∈ H such thatLµ((y1∗(y2∗x))∗x) � Lµ(y1)∧Lµ(y2). It means thatLµ((y1∗(y2∗x))∗x) <

Lµ(y1) ∧ Lµ(y2). By Lemma 3.14, we have L satisfies the condition Lµ(1) ≥ Lµ(a) for all a ∈ H.
Choose t = Lµ((y1 ∗ (y2 ∗x))∗x) ∈ L. Then Lµ(y1)∧Lµ(y2) > t and so Lµ(y1) ≥ Lµ(y1)∧Lµ(y2) > t

and Lµ(y2) ≥ Lµ(y1) ∧Lµ(y2) > t. Thus y1, y2 ∈ U+(Lµ, t) 6= ∅. As the hypothesis, we get U+(Lµ, t)

is an ideal ofH and so (y1∗(y2∗x))∗x ∈ U+(Lµ, t). ThusLµ((y1∗(y2∗x))∗x) > t = Lµ((y1∗(y2∗x))∗x),
a contradiction. Hence Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≥ Lµ(y1) ∧Lµ(y2) for all x, y1, y2 ∈ H. Hence L is an
L-fuzzy ideal ofH. �

Definition 3.19. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. Let L be LFS in H. The LFS L ′

defined by (∀a ∈ H)(L ′
µ(a) = (Lµ(a))

′ = Lµ(a)
′) is called the complement of L inH.

Theorem 3.20. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. Then L ′ is an L-fuzzy subalgebra ofH if

and only if L(Lµ, t) is, if it is nonempty, a subalgebra ofH for every t ∈ L.

Proof. Assume L ′ is an L-fuzzy subalgebra of H. Let t ∈ L be such that L(Lµ, t) 6= ∅. Let x, y ∈ H.
Then

x, y ∈ L(Lµ, t) ⇒ Lµ(x) ≤ t,Lµ(y) ≤ t

⇒ Lµ(x) ∨Lµ(y) ≤ t

⇒ ((Lµ(x) ∨Lµ(y))
′ ≥ t′

⇒ Lµ(x)
′ ∧Lµ(y)

′ ≥ t′

⇒ Lµ(x ∗ y)′ ≥ Lµ(x)
′ ∧Lµ(y)

′ ≥ t′

⇒ Lµ(x ∗ y)′ ≥ t′

⇒ Lµ(x ∗ y) ≤ t

⇒ x ∗ y ∈ L(Lµ, t).
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Hence, L(Lµ, t) is a subalgebra of H. Conversely, assume for all t ∈ L, L(Lµ, t) is a subalgebra of H if
it is nonempty. Let x, y ∈ H. Choose t = Lµ(x) ∨Lµ(y) ∈ L. Then Lµ(x) ≤ t and Lµ(y) ≤ t. Thus
x, y ∈ U(Lµ, t) 6= ∅. As the hypothesis, we get L(Lµ, t) is a subalgebra of H and so x ∗ y ∈ L(Lµ, t).
Thus Lµ(x ∗ y) ≤ t = Lµ(x) ∨Lµ(y). By Lemma 2.4 (1), we have Lµ(x ∗ y)′ ≥ t = Lµ(x)

′ ∧L ′
µ(y).

Hence L ′ is an L-fuzzy subalgebra ofH. �

Lemma 3.21. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. and L be an LFS in H. Then L ′ satisfies

the condition Lµ(1) ≥ Lµ(a) for all a ∈ H if and only if L(Lµ, t), if it is nonempty, contains 1 ∈ H for every

t ∈ L .

Proof. Let t ∈ L be such that L(Lµ, t) 6= ∅. Let a ∈ H. Then

a ∈ L(Lµ, t) ⇒ Lµ(a) ≤ t

⇒ Lµ(a)
′ ≥ t′

⇒ Lµ(1)
′ ≥ Lµ(a)

′ ≥ t′

⇒ Lµ(1)
′ ≥ t′

⇒ Lµ(1) ≤ t

⇒ 1 ∈ L(Lµ, t).

Conversely, assume for all t ∈ L , L(Lµ, t) contains 1 ∈ H if it is nonempty. Choose t = Lµ(a) ∈ L.
Then Lµ(a) ≤ t. Thus a ∈ L(Lµ, t) 6= ∅. As the hypothesis, 1 ∈ L(Lµ, t). Thus Lµ(1) ≤ t = Lµ(a). By
Lemma 2.4 (3), we have Lµ(1)

′ ≥ Lµ(a)
′. �

Theorem 3.22. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. Then L ′ is an L-fuzzy ideal of H if and

only if L(Lµ, t) is, if it is nonempty, an ideal ofH for every t ∈ L.

Proof. Assume L ′ is an L-fuzzy ideal ofH. Let t ∈ L be such that L(Lµ, t) 6= ∅. Let x, y ∈ H. Then

y ∈ L(Lµ, t) ⇒ Lµ(y) ≤ t

⇒ Lµ(y)
′ ≥ t′

⇒ Lµ(x ∗ y)′ ≥ Lµ(y)
′ ≥ t′

⇒ Lµ(x ∗ y)′ ≥ t′

⇒ Lµ(x ∗ y) ≤ t

⇒ x ∗ y ∈ L(Lµ, t).

Let x, y1, y2 ∈ H. Then

y1, y2 ∈ L(Lµ, t) ⇒ Lµ(y1) ≤ t,Lµ(y2) ≤ t

⇒ Lµ(y1) ∨Lµ(y2) ≤ t

⇒ (Lµ(y1) ∨Lµ(y2))
′ ≥ t′

⇒ Lµ(y1)
′ ∧Lµ(y2)

′ = (Lµ(y1) ∨Lµ(y2))
′ ≥ t′
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⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x)′ ≥ Lµ(y1)
′ ∧Lµ(y2)

′ ≥ t′

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x)′ ≥ t′

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x) ≤ t

⇒ (y1 ∗ (y2 ∗ x)) ∗ x ∈ L(Lµ, t).

By Lemma 3.21, we have 1 ∈ L(Lµ, t). Hence, L(Lµ, t) is an ideal of H. Conversely, assume for
all t ∈ L, L(Lµ, t) is an ideal of H if it is nonempty. Let x, y ∈ H. By Lemma 3.21, we have Lµ

satisfies the condition Lµ(1) ≥ Lµ(a) for all a ∈ H. Choose t = Lµ(y) ∈ L. Then Lµ(y) ≤ t. Thus
y ∈ L(Lµ, t) 6= ∅. As the hypothesis, we get L(Lµ, t) is an ideal of H and so x ∗ y ∈ L(Lµ, t). Thus
Lµ(x ∗ y) ≤ t = Lµ(y). Let x, y1, y2 ∈ H. Choose t = Lµ(y1) ∨Lµ(y2) ∈ L. Then Lµ(y1) ≤ t and
Lµ(y2) ≤ t. Thus y1, y2 ∈ L(Lµ, t) 6= ∅. As the hypothesis, we get L(Lµ, t) is an ideal of H and so
y1, y2 ∈ L(Lµ, t). Thus Lµ(y1 ∗ (y2 ∗ x)) ∗ x) ≤ t = Lµ(y1) ∨ Lµ(y2). By Lemma 2.4 (1), we have
Lµ(y1 ∗ (y2 ∗ x)) ∗ x)′ ≥ Lµ(y1)

′ ∧Lµ(y2)
′. Hence L ′ is an L-fuzzy ideal ofH. �

Theorem 3.23. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice with ≤ a linearly ordered set. Then L ′ is an

L-fuzzy subalgebra ofH if and only if L−(Lµ, t) is, if it is nonempty, a subalgebra ofH for every t ∈ L.

Proof. Assume L ′ is an L-fuzzy subalgebra of H. Let t ∈ L be such that L−(Lµ, t) 6= ∅. Let x, y ∈
L−(Lµ, t). Then Lµ(x) and Lµ(y) are compatible. Suppose that Lµ(x) ≤ Lµ(y), that is, Lµ(x) ∨

Lµ(y) = Lµ(y). Then

x, y ∈ L−(Lµ, t) ⇒ Lµ(x) < t,Lµ(y) < t

⇒ Lµ(x) ∨Lµ(y) = Lµ(y) < t

⇒ (Lµ(x) ∨Lµ(y))
′ = Lµ(y)

′ > t′

⇒ Lµ(x ∗ y)′ ≥ Lµ(x)
′ ∧Lµ(y)

′ > t′

⇒ Lµ(x ∗ y)′ > t′

⇒ Lµ(x ∗ y) < t

⇒ x ∗ y ∈ L−(Lµ, t).

Hence, L−(Lµ, t) is a subalgebra ofH. Conversely, assume for all t ∈ L, L−(Lµ, t) is a subalgebra of
H if it is nonempty. Suppose there exist x, y ∈ H such that Lµ(x ∗ y)′ � Lµ(x)

′ ∧Lµ(y)
′. It means

that Lµ(x ∗ y)′ < Lµ(x)
′ ∧ Lµ(y)

′. By Lemma 2.4 (1), we have Lµ(x ∗ y)′ < Lµ(x)
′ ∧ Lµ(y)

′ =

(Lµ(x) ∨Lµ(y))
′. By Lemma 2.4 (5), we have Lµ(x ∗ y) > Lµ(x) ∨Lµ(y). Choose t = Lµ(x ∗ y) ∈ L.

Then Lµ(x) ∨Lµ(y) < t and so Lµ(x) ≤ Lµ(x) ∨Lµ(y) < t and Lµ(y) ≤ Lµ(x) ∨Lµ(y) < t. Thus
x, y ∈ L−(Lµ, t) 6= ∅. As the hypothesis, we get L−(Lµ, t) is a subalgebra ofH and so x∗y ∈ L−(Lµ, t).
Thus Lµ(x ∗ y) < t = Lµ(x ∗ y), a contradiction. Hence Lµ(x ∗ y)′ ≥ Lµ(x)

′ ∧Lµ(y)
′ for all x, y ∈ H.

Hence L ′ is an L-fuzzy subalgebra ofH. �
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Lemma 3.24. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice with≤ a linearly ordered set and L ′ be an LFS

in H. Then L ′ satisfies the condition Lµ(1) ≥ Lµ(a) for all a ∈ H if and only if L−(Lµ, t), if it is nonempty,

contains 1 ∈ H for every t ∈ L .

Proof. Let t ∈ L be such that L(Lµ, t) 6= ∅. Let a ∈ H. Then

a ∈ L(Lµ, t) ⇒ Lµ(a) ≤ t

⇒ Lµ(a)
′ ≥ t′

⇒ Lµ(1)
′ ≥ Lµ(a)

′ ≥ t′

⇒ Lµ(1)
′ ≥ t′

⇒ Lµ(1) ≤ t

⇒ 1 ∈ L(Lµ, t).

Conversely, assume for all t ∈ L , L(Lµ, t) contains 1 ∈ H if it is nonempty. Suppose there exists a ∈ H

such that Lµ(1)
′ � Lµ(a)

′. It means that Lµ(1)
′ < Lµ(a)

′. By Lemma 2.4 (5), we have Lµ(1) > Lµ(a).
Choose t = Lµ(1) ∈ L. Then Lµ(a) < t. Thus a ∈ L−(Lµ, t) 6= ∅. As the hypothesis, 1 ∈ L−(Lµ, t).
Thus Lµ(1) < t = Lµ(1), a contradiction. Hence Lµ(1)

′ ≥ Lµ(a)
′ for all a ∈ H. �

Theorem 3.25. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice with ≤ a linearly ordered set. Then L ′ is an

L-fuzzy ideal ofH if and only if L(Lµ, t) is, if it is nonempty, an ideal ofH for every t ∈ L.

Proof. Assume L ′ is an L-fuzzy ideal ofH. Let t ∈ L be such that L−(Lµ, t) 6= ∅. Let x, y ∈ H. Then

y ∈ L−(Lµ, t) ⇒ Lµ(y) < t

⇒ Lµ(y)
′ > t′

⇒ Lµ(x ∗ y)′ ≥ Lµ(y)
′ > t′

⇒ Lµ(x ∗ y)′ > t′

⇒ Lµ(x ∗ y) < t

⇒ x ∗ y ∈ L−(Lµ, t).

Let x, y1, y2 ∈ H. Then Lµ(y1) and Lµ(y2) are compatible. Suppose that Lµ(y1) ≥ Lµ(y2), that is,
Lµ(y1) ∧Lµ(y2) = Lµ(y2). Then

y1, y2 ∈ L−(Lµ, t) ⇒ Lµ(y1) < t,Lµ(y2) < t

⇒ Lµ(y1) ∨Lµ(y2) < t

⇒ (Lµ(y1) ∨Lµ(y2))
′ > t′

⇒ Lµ(y1)
′ ∧Lµ(y2)

′ = (Lµ(y1) ∨Lµ(y2))
′ > t′

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x)′ ≥ Lµ(y1)
′ ∧Lµ(y2)

′ > t′

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x)′ > t′

⇒ Lµ((y1 ∗ (y2 ∗ x)) ∗ x) < t

⇒ (y1 ∗ (y2 ∗ x)) ∗ x ∈ L−(Lµ, t).
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By Lemma 3.24, we have 1 ∈ L−(Lµ, t). Hence L−(Lµ, t) is an ideal of H. Conversely, assume
for all t ∈ L, L−(Lµ, t) is an ideal of H if it is nonempty. Suppose there exist x, y ∈ H such that
Lµ(x ∗ y)′ � Lµ(y)

′. It means that Lµ(x ∗ y)′ < Lµ(y)
′. By Lemma 2.4 (5), we have Lµ(x ∗ y) > Lµ(y).

Choose t = Lµ(x ∗ y) ∈ L. Then Lµ(y) < t and so Lµ(x ∗ y) ≤ Lµ(x ∗ y) ∨ Lµ(y) < t. Thus
y ∈ L−(Lµ, t) 6= ∅. As the hypothesis, we get L−(Lµ, t) is an ideal of H and so x ∗ y ∈ L−(Lµ, t).
Thus Lµ(x ∗ y) < t = Lµ(x ∗ y), a contradiction. Hence Lµ(x ∗ y)′ ≥ Lµ(y)

′ for all x, y ∈ H.
Suppose there exist x, y1, y2 ∈ H such that Lµ(y1 ∗ (y2 ∗ x)) ∗ x)′ � Lµ(y1)

′ ∧Lµ(y2)
′. It means that

Lµ(y1 ∗ (y2 ∗x))∗x)′ < Lµ(y1)
′∧Lµ(y2)

′. By Lemma 2.4 (1), we have Lµ(y1 ∗ (y2 ∗x))∗x)′ < Lµ(y1)
′∧

Lµ(y2)
′ = (Lµ(y1) ∨Lµ(y2))

′. By Lemma 2.4 (5), we have Lµ(y1 ∗ (y2 ∗ x)) ∗ x) > Lµ(y1) ∨Lµ(y2).
Choose t = Lµ(y1 ∗ (y2 ∗x)) ∗x) ∈ L. Then Lµ(y1)∨Lµ(y2) < t and so Lµ(y1) ≤ Lµ(y1)∨Lµ(y2) < t

and Lµ(y2) ≤ Lµ(y1) ∨Lµ(y1) < t. Thus y1, y2 ∈ L−(Lµ, t) 6= ∅. As the hypothesis, we get L−(Lµ, t)

is an ideal ofH and so y1∗(y2∗x))∗x ∈ L−(Lµ, t). ThusLµ(y1∗(y2∗x))∗x) < t = Lµ(y1∗(y2∗x))∗x),
a contradiction. Hence Lµ(y1 ∗ (y2 ∗ x)) ∗ x)′ ≥ Lµ(y1)

′ ∧Lµ(y2)
′ for all x, y ∈ H. Hence L ′ is an

L-fuzzy ideal ofH. �

4. Cartesian Product of LFSs

Definition 4.1. Let L and M be LFSs in nonempty sets U1 and U2, respectively. The Cartesian product
of L and M is L ×M : U1 × U2 → L described by its membership function (L ×M )µ such that
(∀a ∈ U1, b ∈ U2)((L ×M )µ(a, b) = Lµ(a) ∧Mµ(b)). It is clearly that (L ×M ) is an LFS in U1 × U2.

Remark 4.2. Let H1 = (H1, ∗, 11) and H2 = (H2, ◦, 12) be Hilbert algebras. We can easily prove that
H1 ×H2 is a Hilbert algebra defined by (∀a, b ∈ H1, u, v ∈ H2)((a, u)~ (b, v) = (a ∗ b, u ◦ v)).

Theorem 4.3. LetL andM beL-fuzzy subalgebras of Hilbert algebrasH1 = (H1, ∗, 11) andH2 = (H2, ◦, 12),

respectively. Then L ×M is an L-fuzzy subalgebra of a Hilbert algebraH1 ×H2.

Proof. Let a, b ∈ H1, u, v ∈ H2. Then

(L ×M )µ((a, u)~ (b, v)) = (L ×M )µ(a ∗ b, u ◦ v)

= Lµ(a ∗ b) ∧Mµ(u ◦ v)

≥ (Lµ(a) ∧Lµ(b)) ∧ (Mµ(u) ∧Mµ(v))

= (Lµ(a) ∧Mµ(u)) ∧ (Lµ(b) ∧Mµ(v))

= (L ×M )µ(a, u) ∧ (L ×M )µ(b, v).

Hence, L ×M is an L-fuzzy subalgebra ofH1 ×H2. �

Theorem 4.4. Let L and M be L-fuzzy ideals of Hilbert algebras H1 = (H1, ∗, 11) and H2 = (H2, ◦, 12),

respectively. Then L ×M is an L-fuzzy ideal of a Hilbert algebraH1 ×H2.
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Proof. Let (x, y) ∈ H1 ×H2. Then

(L ×M )µ(1, 1) = Lµ(1) ∧Mµ(1)

≥ Lµ(x) ∧Mµ(y)

= (L ×M )µ(x, y).

Let (x1, x2), (y1, y2) ∈ H1 ×H2. Then

(L ×M )µ((x1, x2) ∗ (y1, y2)) = (L ×M )µ((x1 ∗ y1), (x2 ∗ y2))

= Lµ((x1 ∗ y1)) ∧Mµ((x2 ∗ y2))

≥ Lµ(y1) ∧Lµ(y2)

= (L ×M )µ(y1, y2),

Let (x1, y1), (x2, y2), (x3, y3) ∈ H1 ×H2. Then
(L ×M )µ(((x2, y2) ∗ ((x3, y3) ∗ (x1, y1))) ∗ (x1, y1))

= (L ×M )µ((x2 ∗ (x3 ∗ x1)) ∗ x1, (y2 ∗ (y3 ∗ y1)) ∗ y1)

= Lµ((x2 ∗ (x3 ∗ x1)) ∗ x1) ∧Mµ((y2 ∗ (y3 ∗ y1)) ∗ y1)}

≥ (Lµ(x2) ∧Mµ(x3)) ∧Lµ(y2) ∧Mµ(y3)

= (Lµ(x2) ∧Mµ(y2)) ∧ (Lµ(x3) ∧Mµ(y3)

= (L ×M )µ(x2, y2) ∧ (L ×M )µ(x3, y3).

Hence L ×M is an L-fuzzy ideal ofH1 ×H2. �

The following theorem is a straightforward result of Theorems 3.13, 3.15 and ??.

Theorem 4.5. (1) An LFS L ×M is an L-fuzzy subalgebra of H1 ×H2 if and only if U((L ×M )µ, t)

is, if it is nonempty, a subalgebra ofH1 ×H2 for every t ∈ L.

(2) An LFS L ×M is an L-fuzzy ideal ofH1 ×H2 if and only if U((L ×M )µ, t) is, if it is nonempty,

an ideal ofH1 ×H2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 3.16 and 3.18.

Theorem 4.6. Let L = (L,≤,∧,∨) be a linearly ordered set. Then the following statements are true.

(1) An LFS L ×M is an L-fuzzy subalgebra of H1 ×H2 if and only if U+((L ×M )µ, t) is, if it is

nonempty, a subalgebra ofH1 ×H2 for every t ∈ L.

(2) An LFS L ×M is an L-fuzzy ideal of H1 ×H2 if and only if U+((L ×M )µ, t) is, if it is nonempty,

an ideal ofH1 ×H2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 3.20 and 3.22.

Theorem 4.7. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice. Then the following statements are true.
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(1) An LFS (L ×M )′ is an L-fuzzy subalgebra of H1 ×H2 if and only if L((L ×M )µ, t) is, if it is

nonempty, a subalgebra ofH1 ×H2 for every t ∈ L.

(2) An LFS (L ×M )′ is an L-fuzzy ideal ofH1 ×H2 if and only if L((L ×M )µ, t) is, if it is nonempty,

an ideal ofH1 ×H2 for every t ∈ L.

The following theorem is a straightforward result of Theorems 3.23 and 3.25.

Theorem 4.8. Let L = (L,≤,∧,∨,′ , 0L, 1L) be a Boolean lattice with ≤ is a linear order. Then the following

statements are true.

(1) An LFS (L ×M )′ is an L-fuzzy subalgebra of H1 ×H2 if and only if L−((L ×M )µ, t) is, if it is

nonempty, a subalgebra ofH1 ×H2 for every t ∈ L.

(2) An LFS (L ×M )′ is an L-fuzzy ideal ofH1×H2 if and only if L−((L ×M )µ, t) is, if it is nonempty,

an ideal ofH1 ×H2 for every t ∈ L.
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