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1. INTRODUCTION

A real algebraic integer § is called a Pisot number (or a Pisot-Vijayaraghavan number or a P.V. number
for short) if # > 1 and all of its conjugates lie inside the unit circle. The set of all Pisot numbers is
usually denoted by S. In 1955, Dufresnoy and Pisot [4] introduced a powerful method for investigating
the property of S, especially its derived set. This method can produce a family of minimal polynomails
of Pisot numbers. In 1945, Salem [5] introduced a new class of algebraic integers that are now known
as Salem numbers. A Salem number is a real algebraic integer 7 > 1 whose conjugates have modulus at
most 1 and at least one of them has a modulus 1. The set of Salem numbers is normally denoted by 7.
Boyd showed in [2] that indeed each Salem number can be derives via the minimal polynomial of a
Pisot number. Furthermore, it was established in [1, Theorem 6.4.3, p. 113-115] that if R is the minimal
polynomial of a Salem number, then there exist minimal polynomials P, and P of Pisot numbers such
that (22 + 1)R(2) = zPi(2) + P;(2) and (z — 1)R(2) = 2P»(z) — Py (z), where P*(z) = 24P P(z71). In
this article, we will investigate some property of sequences of Salem numbers that can be derived by
using the method invented by Dufresnoy and Pisot and the relation of the minimal polynomials of

Salem numbers and Pisot numbers.
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2. PrReLIMINARY REsuLTs AND NOTATIONS

Here let P be the minimal polynomial of a Pisot number 6 and f denote the power series f(z) :=

ﬁ(fg) = > 2 gunz", where A(z) = 1if P*(z) = P(z), otherwise A(z) = eP(z), where e = sign P(0).

In [4, Théoreme 1, p. 81] Dufresnoy and Pisot showed that the sequence of coefficients {u, } satisfies

the recursive system of inequalities:

Wi (U0, + s Um—1) < U, < Wy (Ugy - .y Um—1) fOrm > 2
where w; = ooif ug = 1. The values of w,,, and w;;, can be determined from the preceding ug, u; ..., upm—1
as follows. When the first m coefficients of the series f are given, let D,,,(z) = —2™ +d12™ 1 + ... +dp,
D
be such that the Maclaurin series of Emgz)) , where E,,,(z) = —2™D,,(27!), has the form
m(z
D, (z _
E:§Z§:u0+ulz+...+um1zm1+.... (1)

Then wy, is the coefficient of 2" in the series (1). To determine w;;,, let Din(z) = 2™+ dizmt 4+ dr

be such that

D
~m(z) =ug+uz 4. A Uup_1 2™ L (2)
Em(z)

where Em(z) = zmﬁm(z_l). Then wy}, is the coefficient of 2™ in the series (2). We can easily obtain the

first few polynomials D,, and 15m :

Dy (z) =up — z, Di(2) = z + up,
Ds(2) =ug + “ z— 2%, Dy(2) = ug + 2422 ifug # 1,
14+ ug 1 —ug
w1 :u%—l, ’IUI :].*ug,
2 2
Uy 2 * 2 uy
- 1 —1- :
w9 u0+1+u0 , Wy uo—i-uO_l

Note thatif ug =1, 52 is not defined. In this case, we let w3 = oco. The following are some facts about
W and wy;:
(1) wm = uy or w}, = uy only if f = D, /Ep, or f = Em / Em, respectively. If this is the case, then
P=-D,,orP = l~)m, respectively, and m = deg P. In either case we say that the rank of f is
m.
(2) Ifwy < uy < wj for allm > 2, we say that the rank of f is infinite. In this case the Pisot number

¢ is a limit point of S.
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Dufresnoy and Pisot [4, Théoréme 1 & 2, p. 81-82] showed that if 2 < n < s, where s is the rank of
f,each D,, and Bn has a unique zero 6,, > 1 and 6; > 1, respectively, outside the unit circle, all the
other zeros lying inside the unit circle. Hence if the coefficients of D,, and D,, are integers, then both
are minimal polynomials of some Pisot numbers 6;, and 6, respectively. Furthermore, 6, <6 < 6;"
and the sequences {6,,},_, and {67}, _, are monotone convergent to 6 (see [4, p. 84] or [1, Theorem
7.1.5, p. 130]).

In this paper, we focus on the case P # P* and |P(0)| > 2. Hence we obtain vy = |P(0)| > 2 and
deg P > 2. In[4, Lemme 4 & 5, p.83] and [ !, Theorem 7.1.2, p. 125], it was proved that the polynomials
D,, and D,, can be derived by using the recurrence relations

Um — Wm

Di1(2) = (14 2)Din(2) — 2Dpm-1(2), (3)

Um—1 — Wm—1

*
~ Wy, — U

Dyi1(2) = (14 2)Dyn(2) — 2Dpy1(2). (4)

If f is of finite rank s, that is, either P = —Dg  or P = 55, then for all £ > s we get wy, = ug, = wy,
Di(2) == (14 2)**Dy(2), Dy(2) = (1 —2F7*)Dy(2),
when P = —D,. For the case P = 133, we have
Di(2) = (1 — 2*7*)Dy(2) and Dy(2) := (1 + 2)**Dy(2).
For n € Nlet
Q, (2) = 2"P(z) — P*(z) and Q;(z)=2"P(z)+ P*(2).

These polynomials were introduced by Salem in [6] and were investigated further by Boyd [2]. It was
proved that Q; is reciprocal and always has a zero 7,7 > 1 and the remaining zeros are inside the

closed unit disk. So 7,1 is a Salem number. For Q;,, it will have a zero 7,; outside the unit circle if, and
only if, n > deg P — 2%. Similarly (see [3]), the polynomial 2" D,,,(z) — D}, (=) has at most one zero,
say Yn,m > 1in |z| > 1. If no such zero exists, we let y,, ,,, = 1. Also the polynomial 2" Dy (2) + D, (2)

always has exactly a zero, say 7y,,» > 1in |z| > 1. From [1, Theorem 6.4.3, p. 113-115], we know

zP(z)—P*(2)
z—1

that every minimal polynomial of a Salem number 7 can be written as for some minimal

polynomial P of a Pisot number. Therefore, we can restrict n to be 1. For simplicity, let

Q(z) :=2zP(z) — P*(2), Qm(z):=2Dn(2)— D;, (2),
@m(Z) := 2D (2) + ﬁfn(z), Ym = Yim, and  Fp = Fim.

As mentioned above, the polynomial ) will have a Salem number 7 as one of its zeros only if deg P —

2% < 1. If no such zero exists, we let 7 = 1. Similarly, v, is greater than 1 only if deg D,,, — 2%"78; <1

Therefore, it is worth studying the behavior of the sequence K, := m — 2 g?‘g;. In the next section
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we will show that the sequences {v,,} and {7,,} are monotone. We also prove in Section 4 that the

sequence { K, } is decreasing.

3. {¥m} AND {7} ARE MONOTONE

Let 7, v,, and #,,, be the zeros of Q, Q,,, and @m, respectively, as defined in Section 2. We also suppose

that up = |P(0)| > 2 and s is the rank of f.

Theorem 1. The sequence {7y}~ is non-decreasing.

Proof. Since deg D; — 2 g}g}; = Zgﬂ > 1, we have v, = 1. It follows from the definition that v > ;.
1

Next suppose that v, > v,_; for some k > 2. For 2 < k < s — 1, by using the identity (3) we have

Qr+1(2) =2Dk41(2) — Dy y4(2)
=2z{(1+ 2)Dy(z) — axzDy_1(2)} — {(1 + 2)Dj.(2) — arzDj_1(2)}
=14 2){2Dk(2) — Di(2)} — arz{zDp-1(2) — Dy_1(2)}
=(1+ 2)Qk(2) — ak2Qi-1(2), (5)

U — Wk

where a, = ZH=—

which is positive. Since y; > v,—1 and the leading ocefficient of ()i, is negative,
we obtain that Q;_1(7x) < 0. And since ~; is a zero of Qy, it follows from (5) that Qx1(v) =
—ar Yk Qr—1(7%) > 0. This implies yx4+1 > 7% for all 2 < k < s — 1. This proves the theorem for the case
that s is infinity.

Now suppose that s is finite and k£ > s. So we have either P = —D, or P = D,. If P = Dy, then
Dy(z) = (1 + 2)*=*Dy(z) and

Qr(z) =2(1+ 2)"*Dy(2) — (1 + 2) °D3(2) = (1 + 2) °Qs(2).
In this case we have yj, = v, = 7 forall k > s. If P = D, then D(z) = (1 — 2*~*)D,(z) and

Qi(2) =2(1 = 257*)Dy(2) — (zF* = 1) D(2)

s

=(1 - 2"*)(zDs(2) + Di(2)) = (1 = 2*7*)Qs(2).
Hence, in this case 7, = 45 = 7 for all k > s. The proof is now complete. O
Theorem 2. The sequence {7y }>2 is non-increasing.

Proof. First note that since Q1(z) = 2Dy (2) + D (z) = 2% + 2ugz + 1, Q1(z) > 0 forall z > 1. So 7 does

not exist. From the definition, we have

~ ud —up — 2ug + 1
Qz(z):(l+z)<z2+ 0 ul 10 z—i—l)
o—
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2 _a2_1\2_ —_1)2
which has 7, = ur2uo g 1+¢(;g;%uf) up=l*=4o=1)® 4 45 one of its zeros. For 2 <k<s-1,by

using the identity (4) we get

Qr+1(2) =2{(1 + 2)Di(2) = bpzDi—1(2)} + {(1 + 2)Di(2) — bezDj 1 (2)}

=(1+ 2)Qr(2) — bezQi—1(2), (6)

Wy —Uf

where b, = Note that by < 0and b, > 0 forall 3 < k < s — 1. Since @1(12) >0and by <0,

wr_ L —up_1°
Qs(72) = —bzkﬁgl@l(%) > 0. It implies 52 > 7s.

Now suppose that 4,1 > 7% for some k, 3 < k < s — 1. So Qi—1(3%) < 0. From (6), we have
@kﬂ(’yk) = —bk%@k—ﬂ’?k) > 0 because b, > 0 and @k—l(%) < 0. Hence we obtain 45 > di41. This
proves the theorem for the case that s is infinity.

Suppose that s is finite and k£ > s. So we have either P = —Dg or P = 155. If P = —D,, then

Dy(2) = (1 — 257%)Dy(z) and
Qr(z) =2(1 = 287°)Dy(2) + (z* = 1)D}(2)
=(1 - 257°)(2Ds(2) = Di(2)) = (1 = 2*7)Qs(2).
Thus we get 3 = 7 = 7,. If P = Dy, then Dy (z) = (1 + 2z)*D,(z) and
Qu(z) =2(1+2)"*Dy(2) + (1 +2) 7 Di(2) = (1 +2)" Qs (2).
This gives us 4, = 7 = 45 for all k > s. The proof is now complete. O

Since the construction of Dy depends on choice of uj, we next show that the values of ;41 and

Ak+1 decrease with respect to u.
Theorem 3. For 2 < k < s, the values of i1 and 7,1 decrease if uy, decreases.
Proof. Recall that, from (5), we have

Qr+1(2) =(1+ 2)Qx(2) — apzQr-1(2),

where a, = = — If gy < 2 < g4, then Qp-1(2) <0, Qi(z) < 0and Qpy1(2) = 0 because
V-1 < Yk < Yk+1- So, when z is fixed, the value of (1 + 2)Qx(z) — arzQx—1(z) decreases if aj, decreases
(because a;, > 0). Hence the minimum value of 71 is attained when ay, is the minimal, that is, when
uy, is the minimal.

Similarly, from (6) we have

Qr1(2) =(1+ 2)Qu(2) — brzQp—1(2),

wi—u
Where bk; = 111;::_1;7—1;;_1

- We get Qr—1(2) <0, Qi(2) < 0,and Qg11(2) > 0if 441 < 2 < 4. Since by, > 0

for k > 3, the value of (1 + 2)Qx(2) — bpzQp_1(2) increases if b, increases and z is fixed. If Qj41(2)
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increases, it implies that the value of 1, decreases (because ék+1($) > 0,Vx > xy1). Hence, the

o ~ . . . . . wi—u
minimum value of 4 ; is attained when by, is the maximal. Since by, = —*—*

o Ok is the maximal if
k—1 -

uy, is the minimal. This completes the proof. O

4. {K,,} Is DECREASING

Recall we define

deg D,, — 22=(0)i¢ D (1) £ 0,
K, = g D (1) (1) #

—0 if Dy (1) = 0.

Theorem 4. Suppose that ug = |P(0)| > 1. The sequence {Kp,},,~, is non-increasing. If s is finite and

P(z) = —Ds(z), then K,,, = K, forall m > s. If s is finite and P(z) = Ds(z), then K, = —oc for all m > s.

Proof. Since D1(z2) = ug — z and Ds(2) = ug + 14—z — 22, we get

14+ug
2 ug + 1
Ky =1 —
! +u0—1 ug — 1
U _9 2
- Ttu _, (ug+1)
K2_2_2u+0u1 —1_22—1— -1
0 14+ug Up T UL

Since u; € Nand u; > wy = u(% — 1, we obtain

Koy < QM
- 2u(2) -1
We have 2(;?{11)2 < Zgﬂ if, and only if, Qéz(éj) < 1 which is true for all vy > 2. Hence, K1 > K.
0 0

Suppose that K,, < K,,_; for some 2 < n < s — 1. We want to show that K, ;1 < K,,. By the identity

(3), we get
Dny1(1) =2Dy(1) — anDn—1(1), (7)
nt1(1) =Dn(1) + 2Dy, (1) = an(Dn-1(1) + D, (1)), (8)
where a, = —==¥»— > 0. For convenience, we write Dy (1) and Dj (1) as D and D, respectively.

We have K,, 11 < K, if, and only if,

Dl D/
n+1-—2="tH <p_o-n
n+1 n

which is equivalent to
Dn(DnH - 2D;~b+1> < _2D;1Dn+1' (9)
Note that D (1) > 0 for all £ < s. From (7) and (8), we have
Dyi1 — 2D}, =2Dy, — anDy—1 — 2 [ Dy, + 2D;, — an(Dn—1 + D;,_1)]

=a,Dp_1 — 4D;1 + 2a,D!

n—1-
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So (9) becomes
Dy (anDp_1 —4D), + 2a,D,,_,) < 2D, (2D,, — ayDy,—1)

which is equivalent to

Dn_l + 2D/ -1 D/
—_— < 1
anl o Dn ( 0)

because ay,, D,, and D,,_; are positive. Note that K,, < K,,_; if, and only if, the inequality (10) holds.
This shows that K,,+1 < K, as desired. Therefore, by induction, we obtain that K,, < K,,_; for all
2<n<s.

Now suppose that s is finite. If P(z) = Ds(z), then D,,(1) = 0 for all n. > s + 1. Hence K,, = —occ in
this case. If P(z) = —Ds(z), then D, (z) = (1 + 2)"*D,(z) foralln > s+ 1. So forn > s + 1

(n — 5)275"1D,(1) + 2"* D' (1)

Kp =n —2
n = on=sD,(1)
Di(1)
=n—(n—s)— 2222 = K,
n—(n—s) D.(1) s
The proof now is complete. U

Since the construction of D,, depends on choice of u,,—1, we can consider K,, as a function with

variable u,,—1. The next theorem shows that K, is decreasing with respect to u,,_.
Theorem 5. For 3 < m, K,, is a decreasing function with respect to 1.

Proof. Here we write D, (1) = D, for all n. By the definition and the identities (7) and (8), we kave

D/
Koy =m + 1 — 2741
m+1
D, +2D),, — a(Dy—1 + D, _4)

= 1-2
m 2Dy — am D1 ’

where a,, = mel We will show that K, is a decreasing function with respect to u,,, that is,

Um—1— Wy —

we want to show that

OKmy1 9 0 [Dm+2D;, — am(Dm—1+ Dy, 1) am <0
My Oap, 2D, — GmDm—1 Oup, —
Since gZ—: = m > 0, it suffices to show that
0 [Dm+2D), —am(Dm_1+ D, 1) -0
oam, 2D, — amDpm—1 =
Since

Dy + 2Dy, — (D1 + Dy 1) =D + 2D, — an D,

m—1

2Dm - amDm—l * 2Dm - amDm—l ’
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we need to show that
0 [2D), — Dy, — an D]

m—1

_ —2D,, D!y + Dyy_1(2D,, — D)

— > 0. 11
Ooam 2D, — amDm—1 (2Dm — amDm_1)2 - ( )
Since, by Theorem 4, { K, } is decreasing, we can write
D/
Ky =m —22™ =1 4§, (12)
D,,
D/
K1 =(m—1)—2=""1 —14§,,_,, (13)
Dm—l
for some 6,;,—1 > 6,,. From (12) and (13), we get
— 2 — O
9D — Dy = (m—2—0m)Dyy and D!, | = %Dm,y

Thus, we obtain
_2Dme/nfl + Dm—1(2DqIn - Dm) = DmDm—l((Sm—l - 5m) >0

because 0,,—1 > 0, and D,,,, D,,,—1 > 0. Therefore the inequality (11) holds. This proves alng::l >0,

as desired. O
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