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Abstract. In this paper, we investigate zeros of a family of polynomials that involve Pisot numbers and
Salem Numbers. We establish that the sequences of those zeros are monotone.
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1. Introduction

A real algebraic integer θ is called a Pisot number (or a Pisot-Vijayaraghavan number or a P.V. number
for short) if θ > 1 and all of its conjugates lie inside the unit circle. The set of all Pisot numbers is
usually denoted by S . In 1955, Dufresnoy and Pisot [4] introduced a powerful method for investigating
the property of S , especially its derived set. This method can produce a family of minimal polynomails
of Pisot numbers. In 1945, Salem [5] introduced a new class of algebraic integers that are now known
as Salem numbers. A Salem number is a real algebraic integer τ > 1 whose conjugates have modulus at
most 1 and at least one of them has a modulus 1. The set of Salem numbers is normally denoted by T .
Boyd showed in [2] that indeed each Salem number can be derives via the minimal polynomial of a
Pisot number. Furthermore, it was established in [1, Theorem 6.4.3, p. 113–115] that if R is the minimal
polynomial of a Salem number, then there exist minimal polynomials P1 and P2 of Pisot numbers such
that (z2 +1)R(z) = zP1(z)+P ∗1 (z) and (z− 1)R(z) = zP2(z)−P ∗2 (z), where P ∗(z) = zdegPP (z−1). In
this article, we will investigate some property of sequences of Salem numbers that can be derived by
using the method invented by Dufresnoy and Pisot and the relation of the minimal polynomials of
Salem numbers and Pisot numbers.

DOI: 10.28924/APJM/11-52

©2024 Asia Pacific Journal of Mathematics

1

https://doi.org/10.28924/APJM/11-52


Asia Pac. J. Math. 2024 11:52 2 of 8

2. Preliminary Results and Notations

Here let P be the minimal polynomial of a Pisot number θ and f denote the power series f(z) :=
A(z)
P ∗(z) =

∑∞
n=0 unz

n, where A(z) = 1 if P ∗(z) = P (z), otherwise A(z) = εP (z), where ε = sign P (0).
In [4, Théorème 1, p. 81] Dufresnoy and Pisot showed that the sequence of coefficients {un} satisfies
the recursive system of inequalities:

1 ≤ u0 ,

w1 = u20 − 1 ≤ u1 ,

wm(u0, . . . , um−1) ≤ um ≤ w∗m(u0, . . . , um−1) form ≥ 2,

wherew∗2 =∞ ifu0 = 1. The values ofwm andw∗m can be determined from the precedingu0, u1 . . . , um−1
as follows. When the firstm coefficients of the series f are given, letDm(z) = −zm+ d1z

m−1+ . . .+ dm

be such that the Maclaurin series of Dm(z)

Em(z)
, where Em(z) = −zmDm(z−1), has the form

Dm(z)

Em(z)
= u0 + u1z + . . .+ um−1z

m−1 + . . . . (1)

Then wm is the coefficient of zm in the series (1). To determine w∗m, let D̃m(z) = zm+d∗1z
m−1+ . . .+d∗m

be such that

D̃m(z)

Ẽm(z)
= u0 + u1z + . . .+ um−1z

m−1 + . . . ., (2)

where Ẽm(z) = zmD̃m(z−1). Then w∗m is the coefficient of zm in the series (2). We can easily obtain the
first few polynomials Dm and D̃m :

D1(z) =u0 − z, D̃1(z) = z + u0,

D2(z) =u0 +
u1

1 + u0
z − z2, D̃2(z) = u0 +

u1
1− u0

z + z2, if u0 6= 1,

w1 =u
2
0 − 1, w∗1 = 1− u20,

w2 =
u21

u0 + 1
+ u20 − 1, w∗2 = 1− u20 +

u21
u0 − 1

.

Note that if u0 = 1, D̃2 is not defined. In this case, we let w∗2 =∞. The following are some facts about
wm and w∗m:

(1) wm = um or w∗m = um only if f = Dm/Em or f = D̃m/Ẽm, respectively. If this is the case, then
P = −Dm or P = D̃m, respectively, andm = degP . In either case we say that the rank of f is
m.

(2) If wk < uk < w∗k for allm ≥ 2, we say that the rank of f is infinite. In this case the Pisot number
θ is a limit point of S.
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Dufresnoy and Pisot [4, Théorème 1 & 2, p. 81–82] showed that if 2 ≤ n ≤ s, where s is the rank of
f , each Dn and D̃n has a unique zero θn > 1 and θ+n > 1, respectively, outside the unit circle, all the
other zeros lying inside the unit circle. Hence if the coefficients of Dn and D̃n are integers, then both
are minimal polynomials of some Pisot numbers θ−n and θ+n , respectively. Furthermore, θ−n ≤ θ ≤ θ+n
and the sequences {θn}sn=1 and {θ+n }sn=3 are monotone convergent to θ (see [4, p. 84] or [1, Theorem
7.1.5, p. 130]).

In this paper, we focus on the case P 6= P ∗ and |P (0)| ≥ 2. Hence we obtain u0 = |P (0)| ≥ 2 and
degP > 2. In [4, Lemme 4 & 5, p.83] and [1, Theorem 7.1.2, p. 125], it was proved that the polynomials
Dn and D̃n can be derived by using the recurrence relations

Dm+1(z) = (1 + z)Dm(z)− um − wm

um−1 − wm−1
zDm−1(z), (3)

D̃m+1(z) = (1 + z)D̃m(z)− w∗m − um
w∗m−1 − um−1

zD̃m−1(z). (4)

If f is of finite rank s, that is, either P = −Ds or P = D̃s, then for all k > swe get wk = uk = w∗k,

Dk(z) := (1 + z)k−sDs(z), D̃k(z) := (1− zk−s)Ds(z),

when P = −Ds. For the case P = D̃s, we have

Dk(z) := (1− zk−s)D̃s(z) and D̃k(z) := (1 + z)k−sD̃s(z).

For n ∈ N let

Q−n (z) = znP (z)− P ∗(z) and Q+
n (z) = znP (z) + P ∗(z).

These polynomials were introduced by Salem in [6] and were investigated further by Boyd [2]. It was
proved that Q+

n is reciprocal and always has a zero τ+n > 1 and the remaining zeros are inside the
closed unit disk. So τ+n is a Salem number. For Q−n , it will have a zero τ−n outside the unit circle if, and
only if, n > degP − 2P ′(1)

P (1) . Similarly (see [3]), the polynomial znDm(z)−D∗m(z) has at most one zero,
say γn,m > 1 in |z| > 1. If no such zero exists, we let γn,m = 1. Also the polynomial znD̃m(z) + D̃∗m(z)

always has exactly a zero, say γ̃n,m > 1 in |z| > 1. From [1, Theorem 6.4.3, p. 113–115], we know
that every minimal polynomial of a Salem number τ can be written as zP (z)−P ∗(z)

z−1 for some minimal
polynomial P of a Pisot number. Therefore, we can restrict n to be 1. For simplicity, let

Q(z) := zP (z)− P ∗(z), Qm(z) := zDm(z)−D∗m(z),

Q̃m(z) := zD̃m(z) + D̃∗m(z), γm := γ1,m, and γ̃m := γ̃1,m.

As mentioned above, the polynomial Q will have a Salem number τ as one of its zeros only if degP −
2 P (1)
P ′(1) < 1. If no such zero exists, we let τ = 1. Similarly, γm is greater than 1 only if degDm−2Dm(1)

D′m(1) < 1.
Therefore, it is worth studying the behavior of the sequence Km := m − 2Dm(1)

D′m(1) . In the next section



Asia Pac. J. Math. 2024 11:52 4 of 8

we will show that the sequences {γm} and {γ̃m} are monotone. We also prove in Section 4 that the
sequence {Km} is decreasing.

3. {γm} and {γ̃m} Are Monotone

Let τ , γm and γ̃m be the zeros ofQ,Qm and Q̃m, respectively, as defined in Section 2. We also suppose
that u0 = |P (0)| ≥ 2 and s is the rank of f .

Theorem 1. The sequence {γk}k≥1 is non-decreasing.

Proof. Since degD1 − 2D1(1)
D′1(1)

= u0+1
u0−1 > 1, we have γ1 = 1. It follows from the definition that γ2 ≥ γ1.

Next suppose that γk ≥ γk−1 for some k ≥ 2. For 2 ≤ k ≤ s− 1, by using the identity (3) we have

Qk+1(z) =zDk+1(z)−D∗k+1(z)

=z{(1 + z)Dk(z)− akzDk−1(z)} − {(1 + z)D∗k(z)− akzD∗k−1(z)}

=(1 + z){zDk(z)−D∗k(z)} − akz{zDk−1(z)−D∗k−1(z)}

=(1 + z)Qk(z)− akzQk−1(z), (5)

where ak = uk−wk
uk−1−wk−1

which is positive. Since γk ≥ γk−1 and the leading ocefficient ofQk−1 is negative,
we obtain that Qk−1(γk) ≤ 0. And since γk is a zero of Qk, it follows from (5) that Qk+1(γk) =

−akγkQk−1(γk) ≥ 0. This implies γk+1 ≥ γk for all 2 ≤ k ≤ s− 1. This proves the theorem for the case
that s is infinity.

Now suppose that s is finite and k > s. So we have either P = −Ds or P = D̃s. If P = D̃s, then
Dk(z) = (1 + z)k−sDs(z) and

Qk(z) =z(1 + z)k−sDs(z)− (1 + z)k−sD∗s(z) = (1 + z)k−sQs(z).

In this case we have γk = γs = τ for all k > s. If P = D̃s, then Dk(z) = (1− zk−s)D̃s(z) and

Qk(z) =z(1− zk−s)D̃s(z)− (zk−s − 1)D̃∗s(z)

=(1− zk−s)(zD̃s(z) + D̃∗s(z)) = (1− zk−s)Q̃s(z).

Hence, in this case γk = γ̃s = τ for all k > s. The proof is now complete. �

Theorem 2. The sequence {γ̃k}k≥2 is non-increasing.

Proof. First note that since Q̃1(z) = zD̃1(z) + D̃∗1(z) = z2 +2u0z+1, Q̃1(z) > 0 for all z ≥ 1. So γ̃1 does
not exist. From the definition, we have

Q̃2(z) = (1 + z)

(
z2 +

u20 − u1 − 2u0 + 1

u0 − 1
z + 1

)
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which has γ̃2 =
u1+2u0−u2

0−1+
√

(u1+2u0−u2
0−1)2−4(u0−1)2

2(u0−1) > 1 as one of its zeros. For 2 ≤ k ≤ s − 1, by
using the identity (4) we get

Q̃k+1(z) =z{(1 + z)D̃k(z)− bkzD̃k−1(z)}+ {(1 + z)D̃∗k(z)− bkzD̃∗k−1(z)}

=(1 + z)Q̃k(z)− bkzQ̃k−1(z), (6)

where bk =
w∗k−uk

w∗k−1−uk−1
. Note that b2 < 0 and bk > 0 for all 3 ≤ k ≤ s− 1. Since Q̃1(γ̃2) > 0 and b2 < 0,

Q̃3(γ̃2) = −b2γ̃2Q̃1(γ̃2) > 0. It implies γ̃2 > γ̃3.
Now suppose that γ̃k−1 > γ̃k for some k, 3 ≤ k ≤ s − 1. So Q̃k−1(γ̃k) < 0. From (6), we have

Q̃k+1(γ̃k) = −bkγ̃kQ̃k−1(γ̃k) > 0 because bk > 0 and Q̃k−1(γ̃k) < 0. Hence we obtain γ̃k > γ̃k+1. This
proves the theorem for the case that s is infinity.

Suppose that s is finite and k > s. So we have either P = −Ds or P = D̃s. If P = −Ds, then
D̃k(z) = (1− zk−s)Ds(z) and

Q̃k(z) =z(1− zk−s)Ds(z) + (zk−s − 1)D∗s(z)

=(1− zk−s)(zDs(z)−D∗s(z)) = (1− zk−s)Qs(z).

Thus we get γ̃k = τ = γs. If P = D̃s, then D̃k(z) = (1 + z)k−sD̃s(z) and

Q̃k(z) =z(1 + z)k−sD̃s(z) + (1 + z)k−sD̃∗s(z) = (1 + z)k−sQ̃s(z).

This gives us γ̃k = τ = γ̃s for all k > s. The proof is now complete. �

Since the construction of Dk+1 depends on choice of uk, we next show that the values of γk+1 and
γ̃k+1 decrease with respect to uk.

Theorem 3. For 2 ≤ k < s, the values of γk+1 and γ̃k+1 decrease if uk decreases.

Proof. Recall that, from (5), we have

Qk+1(z) =(1 + z)Qk(z)− akzQk−1(z),

where ak = uk−wk
uk−1−wk−1

. If γk ≤ z ≤ γk+1, then Qk−1(z) ≤ 0, Qk(z) ≤ 0 and Qk+1(z) ≥ 0 because
γk−1 ≤ γk ≤ γk+1. So, when z is fixed, the value of (1+ z)Qk(z)− akzQk−1(z) decreases if ak decreases
(because ak > 0). Hence the minimum value of γk+1 is attained when ak is the minimal, that is, when
uk is the minimal.

Similarly, from (6) we have

Q̃k+1(z) =(1 + z)Q̃k(z)− bkzQ̃k−1(z),

where bk =
w∗k−uk

w∗k−1−uk−1
. We get Q̃k−1(z) ≤ 0, Q̃k(z) ≤ 0, and Q̃k+1(z) ≥ 0 if γ̃k+1 ≤ z ≤ γ̃k. Since bk > 0

for k ≥ 3, the value of (1 + z)Q̃k(z) − bkzQ̃k−1(z) increases if bk increases and z is fixed. If Q̃k+1(z)
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increases, it implies that the value of γ̃k+1 decreases (because Q̃k+1(x) > 0 , ∀x > γ̃k+1). Hence, the
minimum value of γ̃k+1 is attained when bk is the maximal. Since bk =

w∗k−uk

w∗k−1−uk−1
, bk is the maximal if

uk is the minimal. This completes the proof. �

4. {Km} Is Decreasing

Recall we define

Km :=

degDm − 2D′m(1)
Dm(1) if Dm(1) 6= 0,

−∞ if Dm(1) = 0.

Theorem 4. Suppose that u0 = |P (0)| > 1. The sequence {Km}m≥1 is non-increasing. If s is finite and

P (z) = −Ds(z), thenKm = Ks for allm ≥ s. If s is finite and P (z) = D̃s(z), thenKm = −∞ for allm > s.

Proof. Since D1(z) = u0 − z and D2(z) = u0 +
u1

1+u0
z − z2, we get

K1 = 1 +
2

u0 − 1
=
u0 + 1

u0 − 1

K2 = 2− 2
u1

1+u0
− 2

u0 +
u1

1+u0
− 1

= 2
(u0 + 1)2

u20 + u1 − 1
.

Since u1 ∈ N and u1 > w1 = u20 − 1, we obtain

K2 ≤ 2
(u0 + 1)2

2u20 − 1
.

We have 2(u0+1)2

2u2
0−1

≤ u0+1
u0−1 if, and only if, 2(u2

0−1)
2u2

0−1
≤ 1 which is true for all u0 ≥ 2. Hence,K1 ≥ K2.

Suppose thatKn ≤ Kn−1 for some 2 ≤ n ≤ s− 1. We want to show thatKn+1 ≤ Kn. By the identity
(3), we get

Dn+1(1) =2Dn(1)− anDn−1(1), (7)

D′n+1(1) =Dn(1) + 2D′n(1)− an(Dn−1(1) +D′n−1(1)), (8)

where an = un−wn
un−1−wn−1

> 0. For convenience, we write Dk(1) and D′k(1) as Dk and D′k, respectively.
We haveKn+1 ≤ Kn if, and only if,

n+ 1− 2
D′n+1

Dn+1
≤ n− 2

D′n
Dn

which is equivalent to

Dn(Dn+1 − 2D′n+1) ≤ −2D′nDn+1. (9)

Note that Dk(1) > 0 for all k ≤ s. From (7) and (8), we have

Dn+1 − 2D′n+1 =2Dn − anDn−1 − 2
[
Dn + 2D′n − an(Dn−1 +D′n−1)

]
=anDn−1 − 4D′n + 2anD

′
n−1.
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So (9) becomes

Dn(anDn−1 − 4D′n + 2anD
′
n−1) ≤ −2D′n(2Dn − anDn−1)

which is equivalent to
Dn−1 + 2D′n−1

Dn−1
≤ 2

D′n
Dn

(10)

because an, Dn and Dn−1 are positive. Note thatKn ≤ Kn−1 if, and only if, the inequality (10) holds.
This shows that Kn+1 ≤ Kn, as desired. Therefore, by induction, we obtain that Kn ≤ Kn−1 for all
2 ≤ n ≤ s.

Now suppose that s is finite. If P (z) = D̃s(z), then Dn(1) = 0 for all n ≥ s+ 1. HenceKn = −∞ in
this case. If P (z) = −Ds(z), then Dn(z) = (1 + z)n−sDn(z) for all n ≥ s+ 1. So for n ≥ s+ 1

Kn =n− 2
(n− s)2n−s−1Ds(1) + 2n−sD′s(1)

2n−sDs(1)

=n− (n− s)− 2
D′s(1)

Ds(1)
= Ks.

The proof now is complete. �

Since the construction of Dm depends on choice of um−1, we can consider Km as a function with
variable um−1. The next theorem shows thatKm is decreasing with respect to um−1.

Theorem 5. For 3 ≤ m, Km is a decreasing function with respect to um−1.

Proof. Here we write Dn(1) = Dn for all n. By the definition and the identities (7) and (8), we kave

Km+1 =m+ 1− 2
D′m+1

Dm+1

=m+ 1− 2
Dm + 2D′m − am(Dm−1 +D′m−1)

2Dm − amDm−1
,

where am = um−wm
um−1−wm−1

. We will show thatKm+1 is a decreasing function with respect to um, that is,
we want to show that

∂Km+1

∂um
= −2 ∂

∂am

[
Dm + 2D′m − am(Dm−1 +D′m−1)

2Dm − amDm−1

]
· ∂am
∂um

≤ 0.

Since ∂am
∂um

= 1
um−1−wm−1

> 0, it suffices to show that

∂

∂am

[
Dm + 2D′m − am(Dm−1 +D′m−1)

2Dm − amDm−1

]
≥ 0.

Since
Dm + 2D′m − am(Dm−1 +D′m−1)

2Dm − amDm−1
= 1 +

−Dm + 2D′m − amD′m−1
2Dm − amDm−1

,
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we need to show that
∂

∂am

[
2D′m −Dm − amD′m−1

2Dm − amDm−1

]
=
−2DmD

′
m−1 +Dm−1(2D

′
m −Dm)

(2Dm − amDm−1)2
≥ 0. (11)

Since, by Theorem 4, {Km} is decreasing, we can write

Km =m− 2
D′m
Dm

= 1 + δm, (12)

Km−1 =(m− 1)− 2
D′m−1
Dm−1

= 1 + δm−1, (13)

for some δm−1 ≥ δm. From (12) and (13), we get

2D′m −Dm = (m− 2− δm)Dm and D′m−1 =
m− 2− δm−1

2
Dm−1.

Thus, we obtain

−2DmD
′
m−1 +Dm−1(2D

′
m −Dm) = DmDm−1(δm−1 − δm) ≥ 0

because δm−1 ≥ δm and Dm, Dm−1 > 0. Therefore the inequality (11) holds. This proves ∂Km+1

∂um
≥ 0,

as desired. �
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