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Abstract. This paper aims to examine Fπ-regular rings and identify some of their properties. We introduce
the characterization of Fπ-regular rings under duo rings and FGP -injective rings. Additionally, we offer
the motivating set for any element α ∈ A asM(α) = {0 6= c ∈ A : αc = αcbαc for some b ∈ A } and
demonstrate its connection to Fπ-regular rings. Moreover, we define F ∗π-regular rings which leads to
Fπ-regular rings. We also investigate the classification of 2-primal F ∗π-regular rings and its relationship to
strongly π-regular and π-regular rings.
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1. Introduction

The pioneering work of Emmy Noether on commutative algebra during the 1900s [17,28] laid the
foundation for what became the current notion of regularity. Noether defined many of the properties
of commutative rings that enabled their classification into types, although none of those types were
in exact correspondence with the modern definition of regular rings. Towards the middle of the
20th century, the properties of algebraic structures and the generalizations that could be made based
on their commutative or non-commutative properties, began to be explored in great depth. One of
the foremost mathematicians of the period was Irving Kaplansky, who made seminal contributions
to our understanding of associative rings and particularly to regular rings under conditions of non-
commutativity.
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Near the mid of the 1900s, one of the greatest contributors to algebra and the increasing interest in
regular rings was the outstanding mathematician and polymath, Von Neuman. Neuman was highly
influential, with his work on regular rings resulting in a class of rings named after him ‘Regular Rings’.
Regular ringswere receiving considerable attention at this time and their relations to othermathematical
structures gradually being uncovered. This enabled the generalizations and extensions of regular rings
to be discovered, including the characterization of rings into different levels of regularity. For example,
extensions of regularity that impose further conditions to the essential properties, led to classes of
rings being identified as having strong or weak regularity. Such generalizations were furthered by
McCoy’s 1939 [23] generalization of regular rings to π-RR. π-regularity has been extensively explored
by mathematicians [5,27] since McCoy made the generalization. Interest in associative rings continued
to increase during the 1950’s, typified by Kaplansky’s work [4] on regular rings that continues to be
influential in Ring theory.

Kaplansky’s work led to the definition of a Sπ-RR. Formal proof that all Sπ-RR are also π-RR was
first given by Azumaya [5], while El-Astal [1] showed the equality of all Sπ-RR and π-RR that form a
duo. Examples of Sπ-RR are also given in [15]. Further extensions of π-RR [2, 12, 21, 26] and Sπ-RR
have been investigated by many mathematicians [9,10,14,18]. Interest subsequently focused on the
similarities between different classes of π-RR and regular rings and the further properties that could
be derived from the fact that a ring was π-RR or regular [6, 7]. The relations between properties of
idempotents in π-RR and regular rings, and their implications for module theory [20], received much
attention. Mathematicians then began exploring the connection between these rings and group rings,
FGP -injective rings, as well as other algebraic structures [3, 4, 11, 19, 24].

The work presented in this paper characterises a new type of regular ring that represents an extension
of both π-RR and regular rings and is called Fπ-RR. The properties of these rings are investigated under
both duo rings and FGP -injective rings. F ∗π-RR are defined here and how these relate to Fπ-RR is
also presented.

2. Preliminaries

Thought this article, A indicates an associated ring with identity and A ∗ = A \ {0}. For a subset
X ⊂ A , its right and left annihilators are denoted by r(X ) and l(X ) respectively. The abbreviation r(α)

(or l(α)) is utilized if X = {α}. P(A ) denotes the prime radical of A and N(A ) denotes the nilpotent
elements of A . In addition, U(A ) denotes the set of all unit elements of A and Z(A ) denotes the set
of all zero divisors in A . The greatest common divisor of 0 6= x ∈ Zn is denoted by gcd(x, n). The
idempotent element in A is denoted by e.

Definition 2.1. Let A be a ring then:
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(i) A is RG-R if for every α ∈ A , an b ∈ A with α = αbα exists [25].

(ii) A is π-RR if for every element α ∈ A , there is a positive integer n where αn is regular [23].

(iii) A is Sπ-RR in which every α ∈ A , there are b ∈ A and anm where αm = αm+1b [5].

(iv) A is called reduced, if A contains no non-zero nilpotent elements [2].

(v) A is called a right (left) duo if and only if every right (left) ideal of A is a two sided ideal [22].

(vi) A is called a duo if and only if it is a right and left duo ring [22].

(vii) A is 2-PR if P(A ) = N(A ), or equivalently, if A /P(A ) is a reduced ring [21].

(viii) A is NI-ring if N(A ) forms a two sided ideal. Notice that a right (or left) duo ring is 2-PR. Moreover,

every 2-PR is an NI-ring [21].

Definition 2.2. Let A be a ring, andK ⊂ A is an ideal in A , then:

(i) K is regular if for each α ∈ K, there is b ∈ K where α = αbα [13].

(ii) K is called pure if for all α ∈ K, there is b ∈ K where α = αb [2].

(iii) K is completely prime if αb ∈ K implies either α ∈ K or b ∈ K where α, b ∈ A [8].

Definition 2.3. [3] A ring A is FGP -injective ring if for any 0 6= α ∈ A , there is 0 6= c ∈ A where

0 6= αc = cα and any right A -homomorphism from αcA to A extends to an endomorphism of A .

Theorem 2.4. [16] If I is an ideal in a ring A , then

{All ideals of A containing I} 1-1←→ {All ideals of A /I, given by J→ J/I}.

In view of the above assertion, every ideal in A /I can be written as J/I, where J is an ideal of A containing I.

Lemma 2.5. [22] Let A be a reduced ring. Then r(α) = l(α) for all non-zero element α ∈ A .

Lemma 2.6. [8] A ring A is 2-PR if and only if every minimal prime ideal is completely prime.

3. Fπ-regular rings

In this section, we define Fπ-RR as well as F ∗π-RR and outline some of their basic properties.

Definition 3.1. An element α in a ring A is said to be Fπ-regular if there exist 0 6= c ∈ A and b ∈ A where

αc = αcbαc. A ring A is said to be an Fπ-RR if and only if every element of A is an Fπ-regular element.

Example 3.2. The following rings are Fπ-RR:

(1) Boolean rings.

(2) Z6, Z10, and Z14.

(3) A2×2(Z), the ring of 2× 2 matrices over Z2.
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Clearly, RG-R and π-RR are Fπ-RR; however, the opposite is untrue. For example, Z4 is an Fπ-RR
that is not RG-R. In addition, if A = Z× Z6, then A is an Fπ-RR which is not π-RR.

Theorem 3.3. A ring A is Fπ-RR if and only if for every α ∈ A , there is 0 6= c ∈ A such that the principle

right (left) ideal αcA (A αc) of A is generated by an idempotent.

Proof. Let A be Fπ-RR and α ∈ A . Then, there exist 0 6= c ∈ A and b ∈ A where αc = αcbαc. Set
e = αcb. Let x ∈ αcA , then x = αcr for some r ∈ A . Thus, x = αcbαcr = eαcr ∈ eA , and therefore,
αcA ⊆ eA . Conversely, if d ∈ eA , then d = es for some s ∈ A . Thus, d = αcbs ∈ αcA . Hence,
eA ⊆ αcA , and therefore, αcA = eA . To prove that A αc = A e, put e = bαc in A . Conversely, let
α ∈ A . Choose e ∈ A where αcA = eA for some 0 6= c ∈ A . Then, e = αcb for some b ∈ A and
αc = em for some m ∈ A . Hence, eαc = αcbαc and eαc = eem = em = αc. Therefore, αc = αcbαc.
Thus, A is Fπ-RR. �

Theorem 3.4. Let A be an Fπ-RR. Then for every α ∈ A , there is 0 6= c ∈ A such that the principle right

(left) ideal αcA (A αc) of A is a right (left) annihilator of an element of A .

Proof. Suppose A be an Fπ-RR, with α ∈ A . Then there exist 0 6= c ∈ A and b ∈ A where αc = αcbαc.
Set e = αcb. Now, 1−e is also an element inA , and hence αcA = r(1−e). To prove that αcA ⊆ r(1−e),
let y ∈ αcA and then y = αcr for some r ∈ A . Hence y = αcbαcr = eαcr = ey and this means that
y − ey = (1 − e)y = 0. Therefore, y ∈ r(1 − e). Conversely, let x ∈ r(1 − e). Then (1 − e)x = 0

and this implies x = ex = αcbx. Therefore, x ∈ αcA . If e = bαc, then we can easily prove that
A αc = l(1− e). �

Corollary 3.5. If A is a reduced ring where every maximal ideal of A is a right annihilator, then A is an

Fπ-RR.

Proof. Straightforward. �

Theorem 3.6. If A is an Fπ-RR without zero divisors, then A is a division ring.

Proof. Let 0 6= α ∈ A . Since A is Fπ-RR, there exist 0 6= c ∈ A and b ∈ A where αc = αcbαc. Then,
(1− αcb)αc = 0 implies 1− αm = 0, wherem = cb ∈ A . Hence, 1 = αm. In addition, α(1− cbα)c = 0

implies 1 = cbα = mα, and hence α is invertible. Therefore, A is a division ring. �

Corollary 3.7. Let A be an integral domain. If A is an Fπ-RR, then A is a field.

Theorem 3.8. The direct product of rings with identities is an Fπ-RR if at least one of them is an Fπ-RR.

Proof. Let A and S be rings where A is an Fπ-RR. It is enough to show that T = A ×S is Fπ-RR. Let
(α1, α2) ∈ Twhere α1 ∈ A and α2 ∈ S. Take (0, 0) 6= c = (c1, 0) ∈ T with c1 6= 0 and b = (b1, b2) ∈ T.
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Now, (α1, α2)(c1, 0)(b1, b2)(α1, α2)(c1, 0) = (α1c1b1α1c1, 0) = (α1c1, 0) = (α1, α2)(c1, 0). Therefore, T
is an Fπ-RR.

�

If both rings are not Fπ-RR, then the direct product is not an Fπ-RR. For example,Z×Z is not an Fπ-RR.

The homomorphic image of an Fπ-RR is not Fπ-RR. For example, if A = Z × Z6 and I = {(0, x) :

x ∈ Z6} is an ideal of A . Then, A is an Fπ-RR. Now, A /I ∼= Zwhich is not an Fπ-RR.

Theorem 3.9. Let I be an ideal of a ring A . If A /I is Fπ-RR and I is regular, then A is Fπ-RR.

Proof. Let I be a regular ideal of A and α ∈ A . Then, ᾱ ∈ A /I. If ᾱ = I, then α ∈ I and I is
regular. Thus, there is d ∈ I where α = αdα; hence, A is Fπ-RR. If ᾱ 6= I, then α /∈ I, and this
implies that ᾱ ∈ A /I. As A /I is Fπ-RR, there exist 0̄ 6= c̄ ∈ A /I and b̄ ∈ A /I with ᾱc̄ = ᾱc̄b̄ᾱc̄. Thus,
αc−αcbαc ∈ I and since I is regular, there is z ∈ I satisfying (αc−αcbαc) = (αc−αcbαc)z(αc−αcbαc).
Hence, αc = αc(b + z − zαcb− bαcz + bαczαcb)αc. Set h = b + z − zαcb− bαcz + bαczαcb, and since
c̄ 6= 0̄, then c 6= 0. Consequently, for all α ∈ A , there exist 0 6= c ∈ A and h ∈ A with αc = αchαc.
Hence, A is Fπ-RR. �

Definition 3.10. A ring A is F ∗π-RR if for every α ∈ A and α /∈ I for some ideal I of A , there exist c /∈ I

and b ∈ A where αc = αcbαc.

Clearly, F ∗π-RR is Fπ-RR, but the converse is not true. For example, Z12 is an F ∗π-RR, while Z16 is
an Fπ-RR which is not F ∗π-RR.

Theorem 3.11. Let I be an ideal of a ring A . If A is F ∗π-RR, then A /I is F ∗π-RR.

Proof. Let A be F ∗π-RR. Suppose ᾱ ∈ A /I and ᾱ /∈ J̄, where J̄ is an ideal of A /I. Then, J̄ = J/I with
I ⊂ J. Thus, α ∈ A , and α /∈ J as J is an ideal of A . Since A is F ∗π-RR, there exist c /∈ J and b ∈ A

where αc = αcbαc. Hence, ᾱc̄ = ᾱc̄b̄ᾱc̄. Since c /∈ J, we have c̄ /∈ J̄ and b̄ ∈ A /I. Therefore, A /I is
F ∗π-RR. �

Theorem 3.12.
∏

Ai is F ∗π-RR if and only if Ai is F ∗π-RR for all i.

Proof. Let∏Ai is F ∗π-RR. Let α ∈ Ai and α /∈ Jwhere J is ideal in Ai. Then, J̄ = {(α1, α2, . . . , αi, . . .) :

αj ∈ Aj ,∀j 6= i, αi ∈ J} is an ideal of ∏Ai and ᾱ = (0, . . . , α, 0, . . .) /∈ J̄. Since ∏Ai is F ∗π-RR, then
there exist c̄ /∈ J̄ with c̄ = (c1, c2, . . . , ci, . . .), and b̄ ∈

∏
Ai where ᾱc̄ = ᾱc̄b̄ᾱc̄. As c̄ /∈ J̄, we have

ci /∈ J; otherwise a contradiction. Thus, αci = αcibiαci in Ai. Hence Ai is F ∗π-RR. Conversely, let Ai

is F ∗π-RR, for all i. Suppose α = (α1, α2, . . .) ∈
∏

Ai and α /∈ J̄ where J̄ is an ideal in ∏
Ai. Since

α /∈ J̄, there is at least αi /∈ Ji = {ji : (j1, j2, . . . , ji, . . .) ∈ J̄}. Since Ai is F ∗π-RR, there is ci /∈ Ji and
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bi ∈ Ai where αici = αicibiαici. Hence, αc = αcbαc where c = (0, . . . , ci, 0, . . .) /∈ J̄; otherwise, ci ∈ Ji

a contradiction. �

4. The motivating set and Fπ-regular rings

In this section, we introduce the motivating set for any element α ∈ A asM(α) = {0 6= c ∈ A :

αc = αcbαc for some b ∈ A } and demonstrate its connection to Fπ-RR. Let us pave the way to explore
such a connection by presenting the following two assertions.

proposition 4.1. Let A be a ring, then the following holds:

(1) If a ∈ U(A ), then a is regular [13].

(2) If a ∈ N(A ) ∪ U(A ), then a is π-regular [5].

(3) If a ∈ Z(A ), then a is Fπ-regular.

(4) If a ∈ U(A ), then U(A ) ⊂M(a).

Corollary 4.2. Zn is Fπ-RR for all positive integer n ≥ 2.

Proof. Let x ∈ Zn. If 0 6= x ∈ U(Zn), then x is regular by Proposition 4.1, and then Zn Fπ-RR. Otherwise,
if 0 6= x /∈ U(Zn), then gcd(x, n) = d 6= 1. Thus, x = sd and n = tdwhere s, t are positive integers and
t < n. Hence, tx = std = sn and then x is a zero divisor which proves that Zn is Fπ-RR by Proposition
4.1. �

proposition 4.3. A is a RG-R if and only ifM(α) = A ∗, for all α ∈ A .

Proof. Let A be a RG-R and 0 6= α ∈ A . Clearly,M(α) ⊂ A ∗. To prove that A ∗ ⊂ M(α), let y ∈ A ∗.
Then αy ∈ A . Since A is RG-R, there is b ∈ A where αy = αybαy. Therefore, y ∈ M(α). Hence,
M(α) = A ∗. Conversely, let x ∈ A where M(x) = A ∗. Since A is a ring with identity, we have
1 ∈ M(x). Therefore, x.1 = x.1.b.x.1 for some b ∈ A . Hence, x = xbx which proves that A is
RG-R. �

proposition 4.4. A ring A is π-RR if and only if for all α /∈ N(A ) ∪U(A ), there is a positive integer n where

αn ∈M(α).

Proof. Let A be π-RR and α /∈ N(A ) ∪ U(A ). Then αn = αnbαn with n ∈ Z+ and b ∈ A . Thus,
αn−1 ∈M(α). Conversely, let α ∈ A . If α ∈ N(A ) ∪ U(A ), then by Proposition 4.1, α is π-regular. If
α /∈ N(A )∪U(A ) and αn ∈M(α) for some positive integer n, then αn+1 = αn+1bαn+1 for some b ∈ A

which proves that A is π-RR. �

proposition 4.5. A ring A is Fπ-RR if and only if for all α /∈ Z(A ) ∪ U(A ),M(α) 6= φ.



Asia Pac. J. Math. 2024 11:56 7 of 11

Proof. Let A be Fπ-RR and x /∈ Z(A ) ∪ U(A ). Then for every x ∈ A , there is 0 6= c ∈ A and b ∈ A

where xc = xcbxc. Thus, c ∈M(x) and henceM(x) 6= φ. Conversely, let x ∈ A . If x ∈ Z(A ) ∪ U(A ),
then x is Fπ-regular by Proposition 4.1. If x /∈ Z(A ) ∪ U(A ), and sinceM(x) 6= φ, there is 0 6= c ∈ A

and b ∈ A where xc = xcbxc. Thus, A is Fπ-RR. �

Corollary 4.6. If A is Fπ-RR, and α /∈ Z(A ), thenM(α) is a regular set.

Proof. Let A be Fπ-RR and α /∈ Z(A ). By Proposition 4.5,M(α) 6= φ. Let x ∈M(α). Then 0 6= x ∈ A

and αx = αxbαx for some b ∈ A . Hence, α(x− xbαx) = 0. Since α /∈ Z(A ), x = xbαx = xrxwhere
r = bα ∈ A . Therefore,M(α) is regular.

�

Corollary 4.7. A ring A is Fπ-RR if and only if for all α /∈ Z(A ), there exist b ∈ A and 0 6= c ∈ A where

c = cbαc.

Theorem 4.8. Let A be a ring such that for every α ∈ A , there is c ∈ M(α) where l(αc) = l(α). Then the

following statements are equivalent:

(1) A is RG-R.

(2) A is a π-RR.

(3) A is an Fπ-RR.

Proof. It is clear that (1)⇒ (2)⇒ (3). We only prove (3)⇒ (1). Let A be an Fπ-RR where α ∈ A and
c ∈ M(α) with l(αc) = l(α). Then αc = αcbαc. Therefore, (1− αcb)αc = 0 implies (1− αcb) ∈ l(αc).
Hence (1−αcb) ∈ l(α), and α−αcbα = 0. Setm = cb ∈ A . Thus, α = αmα and then A is a RG-R. �

Corollary 4.9. Let A be a ring and for every α ∈ A , there exist d ∈M(α) and d /∈ Z(A ). Then A is RG-R.

5. Duo rings and Fπ-regular rings

This section provides some properties of Fπ-RR under duo rings.

Theorem 5.1. Let A be a duo ring. Then A is Fπ-RR if and only if for every α ∈ A , there is 0 6= c ∈ A such

that the principle ideal αcA is an idempotent.

Proof. Suppose A be an Fπ-RR. Let us show that (αcA )2 = (αc)2A for all α, c ∈ A . Since A is a unital
ring, we have (αc)2A ⊂ αcA αcA . On the other hand, let y ∈ (αcA )2. So, y = αcmαcn for some
m,n ∈ A . Since A is duo, then y = (αc)2ḿn ∈ (αc)2A . Since A is Fπ-RR, then for every α ∈ A there
exist 0 6= c ∈ A and b ∈ A where αc = αcbαc. To prove that αcA is an idempotent its enough to show
that αcA = (αc)2A . Clearly, (αc)2A ⊆ αcA . To prove that αcA ⊆ (αc)2A , let x ∈ αcA . So, x = αcr

for some r ∈ A . Hence, x = αcbαcr = (αc)2b̄r = (αc)2r̄ ∈ (αc)2A . Therefore, αcA is an idempotent
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ideal. Conversely, since for every α ∈ A , there is 0 6= c ∈ A where αcA is an idempotent, implies
αcA = (αcA )2. Hence, αc = (αc)r(αc) for some r ∈ A . Therefore, A is Fπ-RR.

�

Theorem 5.2. Let A be a duo ring. Then, A is an Fπ-RR if and only if for every α ∈ A , there is 0 6= c ∈ A

such that αc = ue for some unit u ∈ A and for some idempotent e ∈ A .

Proof. Let A be Fπ-RR and α ∈ A . Then, there exist 0 6= c ∈ A and b ∈ A where αc = αcbαc. Hence,
e = αcb. Since A is duo, then αc = eαc = αce. Now, αc = e − e2 + αc = (1 − e + αc)e = ue where
u = 1−e+αc. Notice that u is a unit in A as (1−e+αc)(1−e+eb) = 1. Therefore, ue = αc. Conversely,
if α ∈ A , there is 0 6= c ∈ A where αc = ue for some unit u ∈ A and e ∈ A . Hence e = rαc; where r is
the inverse of u in A . Thus, αc = αce = αcrαc, for some r ∈ A . Therefore, A is an Fπ-RR. �

Theorem 5.3. If A be a duo ring, then A is an Fπ-RR if and only if for every α ∈ A , there is 0 6= c ∈ A

where αcA is a pure ideal.

Proof. Let A be an Fπ-RR. Then for every α ∈ A , there exist 0 6= c ∈ A and b ∈ A where αc = αcbαc.
Now αcr ∈ αcA for some r ∈ A and as A is duo, we obtain αcr = r̄αc = r̄αcbαc = αcr.αcb̄ = αcrd

where d = αcb̄ ∈ αcA and both r̄, b̄ are in A . Thus, αcA is a pure ideal. Conversely, let α ∈ A , there
is 0 6= c ∈ A where αcA is a pure ideal. Then αc = αcy for some y ∈ αcA . Since A is duo, we have
y ∈ A αc. Therefore, y = bαc for some b ∈ A . Hence, αc = αcbαc so A is Fπ-RR. �

6. FGP -injective rings and Fπ-regular rings

This section presents the connection between FGP -injective rings and Fπ-RR.

Theorem 6.1. If for all α ∈ A , there exists 0 6= c ∈ A where αcA is FGP -injective, then A is Fπ-RR.

Proof. Assume acA is FGP -injective and α ∈ A . Consider the identity mapping i : αcA → αcA for
some 0 6= c ∈ A . Since αcA is FGP -injective, there is z ∈ αcA where i(αcb) = zαcb for all b ∈ A .
Now, αc = i(αc) = zαc and since z ∈ αcA implies z = αcr for some r ∈ A . Hence, αc = αcrαc. �

Theorem 6.2. Let A be reduced ring with every maximal right ideal is FGP -injective. Then, A is an Fπ-RR.

Proof. Let α ∈ A . We claim that αcA + r(αc) = A . If not, there is a maximal right idealM ⊂ A

where αcA + r(αc) ⊆ M. Define the canonical injective v : αcA → M by v(αcb) = αcb for every
b ∈ A . SinceM is an FGP -injective, there is y ∈ M where v(αcb) = yαcb. Hence, αc = yαc which
is αc− yαc = 0, and then (1− y) ∈ l(αc). Since A is reduced, (1− y) ∈ r(αc). So, 1− y ∈ M and as
a result 1 ∈ M which is a contradiction. Now, 1 = αcd + n for some d ∈ A and n ∈ r(αc) and this
implies that αcdαc + nαc = αc. Since A is reduced, n ∈ l(αc). Thus, αc = αcdαc. Hence, A is an
Fπ-RR. �
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Theorem 6.3. Let A be a ring where for every α ∈ A , A /r(αc) is an FGP -injective for some 0 6= c ∈ A .

Then A is an Fπ-RR.

Proof. Fix 0 6= α ∈ A and let v : αcA → A /r(αc) be a function defined by v(αcx) = x+r(αc) for every
x ∈ A . Clearly, v is a well-defined right homomorphism. Since A /r(αc) is FGP -injective, there is
ȳ ∈ A /r(αc) where v(αcx) = (y+ r(αc))αcx = yαcx+ r(αc). In particular, v(αc) = 1 + r(αc), and this
implies that 1 + r(αc) = yαc+ r(αc). Hence, 1− yαc ∈ r(αc) and then αc(1− yαc) = 0 = αc− αcyαc.
Therefore, αc = αcyαc and A is Fπ-RR. �

Theorem 6.4. Let A be a duo ring. If for every α ∈ A , A /(αcA ) is FGP -injective with r(αc) = 0 for some

0 6= c ∈ A , then A is a division ring.

Proof. Let 0 6= α ∈ A . Define v : αcA → A /(αcA ) by v(αcx) = x + αcA , for every x ∈ A . Since
r(αc) = 0, then v is well defined. Since A /(αcA ) is FGP -injective, there is z̄ ∈ A /αcA where
v(αcx) = (z+αcA )αcx = zαcx+αcA . So, v(αc) = zαc+αcA . In particular, v(αc) = 1 +αcA hence
1− zαc ∈ αcA . But zαc ∈ A αc = αcA , implies 1 ∈ αcA . Hence αcA = A . Thus αcb = 1 for some
b ∈ A . Let cb = m, thus A is a division ring. �

Theorem 6.5. Let A be a ring and for every α ∈ A , αcA is a right annihilator generated by the same element

for some 0 6= c ∈ A . If A /αcA is FGP -injective, then A is Fπ-RR.

Proof. Let α ∈ A . Define v : αcA → A /(αcA ) by v(αcx) = x+ αcA , for every x ∈ A . Clearly, v is
a well defined right homomorphism. Since A /(αcA ) is FGP -injective, there is z̄ ∈ A /αcA where
v(αcx) = (z+αcA )αcx = zαcx+αcA . So, v(αc) = zαc+αcA . In particular, v(αc) = 1 +αcA hence
1− zαc ∈ αcA = r(αc). Thus αc = αczαc. Therefore, A is Fπ-RR. �

7. 2-primal rings and F ∗π-regular rings

This section provides the relation between 2-PR F ∗π-RR and RG-R, Sπ-RR and π-RR.

Lemma 7.1. If A is a 2-PR, and A /P(A ) is Fπ-RR. Then every prime ideal of A is maximal.

Proof. Let P ⊂ A be a prime ideal. Since A is 2-PR, by the above lemma, there is a minimal prime ideal
M of A which is completely prime. Since, A /M is Fπ-RR, then for every 0 6= α+ M ∈ A /M, there exist
0 6= c+ M ∈ A /M and b + M ∈ A /Mwhere (α+ M)(c+ M) = (α+ M)(c+ M)(b + M)(α+ M)(c+ M).
Hence α(c− cbαc) ∈ M. As α /∈ Mwe have (c− cbαc) ∈ M and then (1− cbα)c ∈ M. However, since
c /∈ M, we have 1 − cbα ∈ M. Thus 1 + M = (cb + M)(α + M) and therefore A /M is a division ring.
Hence,M is maximal and so is P . �

Corollary 7.2. Let A be 2-PR. If A is F ∗π-RR, then A is a π-RR/ Sπ-RR.
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Corollary 7.3. Let A be 2-PR. If A is F ∗π-RR, then every prime factor ring of A forms a division ring.

Proof. Suppose A is F ∗π-RR, and notice that using Theorem 3.11, A /P is F ∗π-RR. As a result, A /P is
an Fπ-RR for every prime ideal P . Since A is 2-PR, then by Lemma 7.1, A /P is a division ring. �

Lemma 7.4. Let A be reduced. If A is F ∗π-RR, then A is a RG-R/ π-RR / Sπ-RR.

Lemma 7.5. Let A be reduced. If A is F ∗π-RR, then every prime factor ring of A is a division ring.

Proof. Suppose A is a reduced F ∗π-RR. Then it is 2-PR F ∗π-RR and by Corollary 7.3, every prime
factor ring is a division ring.

�

Lemma 7.6. Let A be a 2-PR. If A is F ∗π-RR, then A /P(A ) is RG-R.

Proof. Let A be F ∗π-RR. Since A is 2-PR, then A /P(A ) is reduced and the result holds by Lemma
7.4. �

Lemma 7.7. Let A be NI-ring. If A is F ∗π-RR, then A /N(A ) is RG-R.

Proof. Suppose A is an NI-ring and F ∗π-RR, then A /N(A ) is reduced F ∗π-RR and hence by Lemma
7.4, A /N(A ) is RG-R. �

8. Conclusion

In this paper, we discovered Fπ-RR which are extension of both π-RR and RG-R and clarify some
important properties. The properties of these rings are also investigated under both duo rings and
FGP-injective rings. In addition, we explored F ∗π-RR and showed its relations to Fπ-RR. Such an
extension plays a vital role to reformulate the applications of regular rings on algebraic K-theory and
algebraic geometry (specifically for the smoothness of varieties).
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