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1. Introduction

In 1968, Singal and Singal [35] introduced the concept of almost continuous functions as a gener-
alization of continuity. Popa [34] defined almost quasi-continuous functions as a generalization of
almost continuity [35] and quasi-continuity [20]. Munshi and Bassan [22] studied the notion of almost
semi-continuous functions. Maheshwari et al. [19] introduced the concept of almost feebly continuous
functions as a generalization of almost continuity [35]. Noiri [27] introduced and investigated the con-
cept of almost α-continuous functions. Nasef andNoiri [23] introduced two classes of functions, namely
almost precontinuous functions and almost β-continuous functions by utilizing the notions of preopen
sets and β-open sets due to Mashhour et al [21] and Abd El-Monsef et al. [1], respectively. The class of
almost precontinuity is a generalization of each of almost feeble continuity and almost α-continuity. The
class of almost β-continuity is a generalization of almost quasi-continuity and almost semi-continuity.
Keskin and Noiri [16] introduced the concept of almost b-continuous functions by utilizing the notion
of b-open sets due to Andrijević [2]. The class of almost b-continuity is a generalization of almost
precontinuity and almost semi-continuity. The class of almost β-continuity is a generalization of almost
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b-continuity. In [6], the authors investigated some properties of (Λ, sp)-open sets. Viriyapong and
Boonpok [38] studied several characterizations of (Λ, sp)-continuous functions by using (Λ, sp)-open
sets and (Λ, sp)-closed sets. Moreover, several characterizations of strongly θ(Λ, p)-continuous func-
tions, ?-continuous functions, θ-I -continuous functions, pairwise almostM -continuous functions and
almost (µ, µ′)(m,n)-continuous functions were presented in [36], [5], [10], [13] and [14], respectively.

In 1982, Popa [33] introduced and studied the notion of almost continuous multifunctions. Popa
and Noiri [31] introduced the notion of almost quasi-continuous multifunctions. Furthermore, several
characterizations of almost quasi-continuous multifunctions were investigated in [26]. Popa et al. [29]
introduced the concept of almost precontinuous multifunctions. Additionally, some characterizations
of almost precontinuous multifunctions were studied in [32]. Popa and Noiri [30] introduced and
investigated the notion of almost α-continuous multifunctions. Noiri and Popa [25] introduced the
concept of almost β-continuous multifunctions. The further characterizations of almost β-continuous
multifunctions were studied in [28]. Ekici and Park [15] introduced and studied almost γ-continuous
multifunctions. Noiri and Popa [24] introduced and investigated the notion of almostm-continuous
multifunctions as multifunctions from a set satisfying someminimal conditions into a topological space.
Laprom et al. [18] introduced and studied the notion of almost β(τ1, τ2)-continuous multifunctions.
Viriyapong and Boonpok [39] introduced and investigated the concept of almost (τ1, τ2)α-continuous
multifunctions. In particular, some characterizations of almost ?-continuous multifunctions, almost
β(?)-continuous multifunctions, almost (τ1, τ2)δ-semicontinuous multifunctions and almost weakly
(τ1, τ2)-continuous multifunctions were established in [11], [8], [7] and [9], respectively. In this paper,
we investigate some characterizations of upper and lower almost (τ1, τ2)-continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [12] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [12] of A and is denoted by τ1τ2-Cl(A). The union of all
τ1τ2-open sets of X contained in A is called the τ1τ2-interior [12] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [12] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).
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(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subsetA of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)p-open [9] (resp. α(τ1, τ2)-open [37])
if A ⊆ τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))). The complement of a (τ1, τ2)p-
open (resp. α(τ1, τ2)-open) set is called (τ1, τ2)p-closed (resp. α(τ1, τ2)-closed).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into Y , and we
always assume that F (x) 6= ∅ for all x ∈ X . For a multifunction F : X → Y , following [3] we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B 6= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X , F (A) = ∪x∈AF (x).

3. Characterizations of upper and lower almost (τ1, τ2)-continuous multifunctions

In this section, we investigate some characterizations of upper and lower almost (τ1, τ2)-continuous
multifunctions.

Definition 1. [17]Amultifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper almost (τ1, τ2)-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x), there exists a τ1τ2-open set U ofX containing

x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper

almost (τ1, τ2)-continuous if F has this property at each point of X .

Lemma 2. [17] For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper almost (τ1, τ2)-continuous;

(2) F+(V ) ⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F−(K) for every σ1σ2-closed setK of Y ;

(4) τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F−(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F+(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every subset B of Y ;

(6) F+(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y ;

(7) F−(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed setK of Y .

Theorem 1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of

Y ;
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(3) τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(V )))) ⊆ F−(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) F+(V ) ⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V )))) for every (σ1, σ2)p-open set V of Y .

Proof. (1) ⇒ (2): Let V be any (σ1, σ2)p-open set of Y . Then, σ1σ2-Cl(V ) is σ1σ2-closed in Y and by
Lemma 2, we have

τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))) ⊆ F−(σ1σ2-Cl(V )).

(2)⇒ (3): Let V be any (σ1, σ2)p-open set of Y . By (2),

τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(V ))))

⊆ τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V )))))

⊆ F−(σ1σ2-Cl(V )).

(3)⇒ (4): Let V be any (σ1, σ2)p-open set of Y . Thus by (3), we have

X − τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V ))))

= τ1τ2-Cl(X − F+(σ1σ2-Int(σ1σ2-Cl(V ))))

= τ1τ2-Cl(F−(Y − σ1σ2-Int(σ1σ2-Cl(V ))))

= τ1τ2-Cl(F−(σ1σ2-Cl(Y − σ1σ2-Cl(V ))))

= τ1τ2-Cl(F−(σ1σ2-Cl(σ1σ2-Int(Y − σ1σ2-Cl(V )))))

⊆ F−(σ1σ2-Cl(Y − σ1σ2-Cl(V )))

= F−(Y − σ1σ2-Int(σ1σ2-Cl(V )))

⊆ F−(Y − V )

= X − F+(V )

and hence F+(V ) ⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V )))).
(4)⇒ (1): Let V be any (σ1, σ2)r-open set of Y . Then, V is (σ1, σ2)p-open in Y and by (4),

F+(V ) ⊆ τ1τ2-Int(F+(σ1σ2-Int(σ1σ2-Cl(V )))) = τ1τ2-Int(F+(V )).

Thus, F+(V ) is τ1τ2-open inX . It follows from Lemma 2 that F is upper almost (τ1, τ2)-continuous. �

Definition 2. [17] Amultifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower almost (τ1, τ2)-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅, there exists a τ1τ2-open set U of X

containing x such that σ1σ2-Int(σ1σ2-Cl(V )) ∩ F (z) 6= ∅ for each z ∈ U . A multifunction F : (X, τ1, τ2)→

(Y, σ1, σ2) is said to be lower almost (τ1, τ2)-continuous if F has this property at each point of X .

Lemma 3. [17] For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:
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(1) F is lower almost (τ1, τ2)-continuous;

(2) F−(V ) ⊆ τ1τ2-Int(F−(σ1σ2-Int(σ1σ2-Cl(V )))) for every σ1σ2-open set V of Y ;

(3) τ1τ2-Cl(F+(σ1σ2-Cl(σ1σ2-Int(K)))) ⊆ F+(K) for every σ1σ2-closed setK of Y ;

(4) τ1τ2-Cl(F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(B))))) ⊆ F+(σ1σ2-Cl(B)) for every subset B of Y ;

(5) F−(σ1σ2-Int(B)) ⊆ τ1τ2-Int(F−(σ1σ2-Int(σ1σ2-Cl(σ1σ2-Int(B))))) for every subset B of Y ;

(6) F−(V ) is τ1τ2-open in X for every (σ1, σ2)r-open set V of Y ;

(7) F+(K) is τ1τ2-closed in X for every (σ1, σ2)r-closed setK of Y .

Theorem 2. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(F+(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of

Y ;

(3) τ1τ2-Cl(F+(σ1σ2-Cl(σ1σ2-Int(V )))) ⊆ F+(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) F−(V ) ⊆ τ1τ2-Int(F−(σ1σ2-Int(σ1σ2-Cl(V )))) for every (σ1, σ2)p-open set V of Y .

Proof. The proof is similar to that of Theorem 1. �

Definition 3. [4] A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost (τ1, τ2)-continuous at a

point x ∈ X if for each σ1σ2-open set V of Y containing f(x), there exists a τ1τ2-open set U of X containing

x such that f(U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be almost

(τ1, τ2)-continuous if f has this property at each point of X .

Corollary 1. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is almost (τ1, τ2)-continuous;

(2) τ1τ2-Cl(f−1(σ1σ2-Cl(σ1σ2-Int(σ1σ2-Cl(V ))))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V

of Y ;

(3) τ1τ2-Cl(f−1(σ1σ2-Cl(σ1σ2-Int(V )))) ⊆ f−1(σ1σ2-Cl(V )) for every (σ1, σ2)p-open set V of Y ;

(4) f−1(V ) ⊆ τ1τ2-Int(f−1(σ1σ2-Int(σ1σ2-Cl(V )))) for every (σ1, σ2)p-open set V of Y .
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