

ALMOST (τ_1, τ_2) -CONTINUITY AND (τ_1, τ_2) p-OPEN SETS

CHALONGCHAI KLANARONG¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Received Apr. 4, 2024

Abstract. This paper deals with the concept of almost (τ_1, τ_2) -continuous multifunctions. Furthermore,

some characterizations of almost (au_1, au_2) -continuous multifunctions are investigated.

2020 Mathematics Subject Classification. 54C08; 54C60; 54E55.

Key words and phrases. $(\tau_1, \tau_2)p$ -open set; upper almost (τ_1, τ_2) -continuous multifunction; lower almost (τ_1, τ_2) -continuous multifunction.

1. INTRODUCTION

In 1968, Singal and Singal [35] introduced the concept of almost continuous functions as a generalization of continuity. Popa [34] defined almost quasi-continuous functions as a generalization of almost continuity [35] and quasi-continuity [20]. Munshi and Bassan [22] studied the notion of almost semi-continuous functions. Maheshwari et al. [19] introduced the concept of almost feebly continuous functions as a generalization of almost continuity [35]. Noiri [27] introduced and investigated the concept of almost α -continuous functions. Nasef and Noiri [23] introduced two classes of functions, namely almost precontinuous functions and almost β -continuous functions by utilizing the notions of preopen sets and β -open sets due to Mashhour et al [21] and Abd El-Monsef et al. [1], respectively. The class of almost precontinuity is a generalization of each of almost feeble continuity and almost α -continuity. The class of almost β -continuity is a generalization of almost precontinuity and almost semi-continuity. Keskin and Noiri [16] introduced the concept of almost *b*-continuous functions by utilizing the notion of *b*-open sets due to Andrijević [2]. The class of almost *b*-continuity is a generalization of almost precontinuity and almost semi-continuity. The class of almost *b*-continuity is a generalization of almost precontinuity and almost semi-continuity.

DOI: 10.28924/APJM/11-58

b-continuity. In [6], the authors investigated some properties of (Λ, sp) -open sets. Viriyapong and Boonpok [38] studied several characterizations of (Λ, sp) -continuous functions by using (Λ, sp) -open sets and (Λ, sp) -closed sets. Moreover, several characterizations of strongly $\theta(\Lambda, p)$ -continuous functions, *-continuous functions, θ - \mathscr{I} -continuous functions, pairwise almost *M*-continuous functions and almost $(\mu, \mu')^{(m,n)}$ -continuous functions were presented in [36], [5], [10], [13] and [14], respectively.

In 1982, Popa [33] introduced and studied the notion of almost continuous multifunctions. Popa and Noiri [31] introduced the notion of almost quasi-continuous multifunctions. Furthermore, several characterizations of almost quasi-continuous multifunctions were investigated in [26]. Popa et al. [29] introduced the concept of almost precontinuous multifunctions. Additionally, some characterizations of almost precontinuous multifunctions were studied in [32]. Popa and Noiri [30] introduced and investigated the notion of almost α -continuous multifunctions. Noiri and Popa [25] introduced the concept of almost β -continuous multifunctions. The further characterizations of almost β -continuous multifunctions were studied in [28]. Ekici and Park [15] introduced and studied almost γ -continuous multifunctions. Noiri and Popa [24] introduced and investigated the notion of almost *m*-continuous multifunctions as multifunctions from a set satisfying some minimal conditions into a topological space. Laprom et al. [18] introduced and studied the notion of almost $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [39] introduced and investigated the concept of almost $(\tau_1, \tau_2)\alpha$ -continuous multifunctions. In particular, some characterizations of almost *-continuous multifunctions, almost $\beta(\star)$ -continuous multifunctions, almost $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions and almost weakly (τ_1, τ_2) -continuous multifunctions were established in [11], [8], [7] and [9], respectively. In this paper, we investigate some characterizations of upper and lower almost (τ_1, τ_2) -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [12] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [12] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [12] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [12] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*($\tau_1 \tau_2$ -*Cl*(*A*)) = $\tau_1 \tau_2$ -*Cl*(*A*).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).

- (3) $\tau_1\tau_2$ -*Cl*(*A*) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)p$ -open [9] (resp. $\alpha(\tau_1, \tau_2)$ -open [37]) if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)))). The complement of a $(\tau_1, \tau_2)p$ -open (resp. $\alpha(\tau_1, \tau_2)$ -open) set is called $(\tau_1, \tau_2)p$ -closed (resp. $\alpha(\tau_1, \tau_2)$ -closed).

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [3] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.$$

In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Characterizations of upper and lower almost (τ_1, τ_2) -continuous multifunctions

In this section, we investigate some characterizations of upper and lower almost (τ_1, τ_2) -continuous multifunctions.

Definition 1. [17] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)). A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost (τ_1, τ_2) -continuous if F has this property at each point of X.

Lemma 2. [17] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper almost (τ_1, τ_2) -continuous;
- (2) $F^+(V) \subseteq \tau_1 \tau_2$ -Int $(F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))) for every $\sigma_1 \sigma_2$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(K)))) \subseteq F^-(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(B))))) \subseteq F^-(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^+(\sigma_1\sigma_2\operatorname{-Int}(B)) \subseteq \tau_1\tau_2\operatorname{-Int}(F^+(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Int}(B)))))$ for every subset B of Y;
- (6) $F^+(V)$ is $\tau_1\tau_2$ -open in X for every $(\sigma_1, \sigma_2)r$ -open set V of Y;
- (7) $F^{-}(K)$ is $\tau_{1}\tau_{2}$ -closed in X for every $(\sigma_{1}, \sigma_{2})r$ -closed set K of Y.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper almost (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(V))))) \subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;

- (3) $\tau_1\tau_2$ - $Cl(F^-(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(V)))) \subseteq F^-(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;
- (4) $F^+(V) \subseteq \tau_1 \tau_2$ -Int $(F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))) for every (σ_1, σ_2) p-open set V of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $(\sigma_1, \sigma_2)p$ -open set of *Y*. Then, $\sigma_1\sigma_2$ -Cl(*V*) is $\sigma_1\sigma_2$ -closed in *Y* and by Lemma 2, we have

$$\tau_1\tau_2\operatorname{-Cl}(F^-(\sigma_1\sigma_2\operatorname{-Cl}(\sigma_1\sigma_2\operatorname{-Int}(\sigma_1\sigma_2\operatorname{-Cl}(V))))) \subseteq F^-(\sigma_1\sigma_2\operatorname{-Cl}(V)).$$

(2) \Rightarrow (3): Let *V* be any $(\sigma_1, \sigma_2)p$ -open set of *Y*. By (2),

$$\tau_{1}\tau_{2}\text{-}\operatorname{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(V))))$$

$$\subseteq \tau_{1}\tau_{2}\text{-}\operatorname{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Int}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\operatorname{Cl}(V)).$$

 $(3) \Rightarrow (4)$: Let *V* be any $(\sigma_1, \sigma_2)p$ -open set of *Y*. Thus by (3), we have

$$X - \tau_{1}\tau_{2}\text{-Int}(F^{+}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V))))$$

$$= \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(X - F^{+}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V))))$$

$$= \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V))))$$

$$= \tau_{1}\tau_{2}\text{-}\mathrm{Cl}(F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V))))$$

$$\subseteq F^{-}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V)))$$

$$\subseteq F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V)))$$

$$\subseteq F^{-}(Y - \sigma_{1}\sigma_{2}\text{-}\mathrm{Int}(\sigma_{1}\sigma_{2}\text{-}\mathrm{Cl}(V)))$$

$$\subseteq F^{-}(Y - V)$$

$$= X - F^{+}(V)$$

and hence $F^+(V) \subseteq \tau_1 \tau_2$ -Int $(F^+(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))).

 $(4) \Rightarrow (1)$: Let *V* be any $(\sigma_1, \sigma_2)r$ -open set of *Y*. Then, *V* is $(\sigma_1, \sigma_2)p$ -open in *Y* and by (4),

$$F^+(V) \subseteq \tau_1 \tau_2 \operatorname{-Int}(F^+(\sigma_1 \sigma_2 \operatorname{-Int}(\sigma_1 \sigma_2 \operatorname{-Cl}(V)))) = \tau_1 \tau_2 \operatorname{-Int}(F^+(V))$$

Thus, $F^+(V)$ is $\tau_1\tau_2$ -open in X. It follows from Lemma 2 that F is upper almost (τ_1, τ_2) -continuous.

Definition 2. [17] A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)) \cap F(z) \neq \emptyset$ for each $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost (τ_1, τ_2) -continuous if F has this property at each point of X.

Lemma 3. [17] For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is lower almost (τ_1, τ_2) -continuous;
- (2) $F^{-}(V) \subseteq \tau_{1}\tau_{2}$ -Int $(F^{-}(\sigma_{1}\sigma_{2}$ -Int $(\sigma_{1}\sigma_{2}$ -Cl(V)))) for every $\sigma_{1}\sigma_{2}$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(F^+(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(K)))) \subseteq F^+(K)$ for every $\sigma_1\sigma_2$ -closed set K of Y;
- (4) $\tau_1\tau_2$ - $Cl(F^+(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(B))))) \subseteq F^+(\sigma_1\sigma_2$ -Cl(B)) for every subset B of Y;
- (5) $F^{-}(\sigma_{1}\sigma_{2}\text{-Int}(B)) \subseteq \tau_{1}\tau_{2}\text{-Int}(F^{-}(\sigma_{1}\sigma_{2}\text{-Int}(\sigma_{1}\sigma_{2}\text{-Cl}(\sigma_{1}\sigma_{2}\text{-Int}(B)))))$ for every subset B of Y;
- (6) $F^{-}(V)$ is $\tau_{1}\tau_{2}$ -open in X for every $(\sigma_{1}, \sigma_{2})r$ -open set V of Y;
- (7) $F^+(K)$ is $\tau_1\tau_2$ -closed in X for every $(\sigma_1, \sigma_2)r$ -closed set K of Y.

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is lower almost (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(F^+(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(V))))) \subseteq F^+(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(F^+(\sigma_1\sigma_2-Cl(\sigma_1\sigma_2-Int(V)))) \subseteq F^+(\sigma_1\sigma_2-Cl(V))$ for every (σ_1, σ_2) p-open set V of Y;
- (4) $F^{-}(V) \subseteq \tau_1 \tau_2$ -Int $(F^{-}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))) for every (σ_1, σ_2) p-open set V of Y.

Proof. The proof is similar to that of Theorem 1.

Definition 3. [4] A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost (τ_1, τ_2) -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing f(x), there exists a $\tau_1 \tau_2$ -open set U of X containing x such that $f(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)). A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be almost (τ_1, τ_2) -continuous if f has this property at each point of X.

Corollary 1. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *f* is almost (τ_1, τ_2) -continuous;
- (2) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(\sigma_1\sigma_2$ - $Cl(V))))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;
- (3) $\tau_1\tau_2$ - $Cl(f^{-1}(\sigma_1\sigma_2$ - $Cl(\sigma_1\sigma_2$ - $Int(V)))) \subseteq f^{-1}(\sigma_1\sigma_2$ -Cl(V)) for every $(\sigma_1, \sigma_2)p$ -open set V of Y;
- (4) $f^{-1}(V) \subseteq \tau_1 \tau_2$ -Int $(f^{-1}(\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)))) for every (σ_1, σ_2) p-open set V of Y.

Acknowledgements

This research project was financially supported by Mahasarakham University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

 M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.

- [2] D. Andrijević, On *b*-open sets, Mat. Vesnik, 48 (1996), 59–64.
- [3] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [4] C. Boonpok, P. Pue-on, Characterizations of almost (τ₁, τ₂)-continuous functions, Int. J. Anal. Appl. 22 (2024), 33. https://doi.org/10.28924/2291-8639-22-2024-33.
- [5] C. Boonpok, On some spaces via topological ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/ math-2023-0118.
- [6] C. Boonpok, J. Khampakdee, (Λ, sp)-open sets in topological spaces, Eur. J. Pure Appl. Math. 15 (2022), 572–588. https://doi.org/10.29020/nybg.ejpam.v15i2.4276.
- [7] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) -continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.
- [8] C. Boonpok, Upper and lower $\beta(\star)$ -continuity, Heliyon, 7 (2021), e05986. https://doi.org/10.1016/j.heliyon.2021. e05986.
- [9] C. Boonpok, (τ₁, τ₂)δ-semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.
 heliyon.2020.e05367.
- [10] C. Boonpok, On characterizations of *-hyperconnected ideal topological spaces, J. Math. 2020 (2020), 9387601. https: //doi.org/10.1155/2020/9387601.
- [11] C. Boonpok, On continuous multifunctions in ideal topological spaces, Lobachevskii J. Math. 40 (2019), 24–35. https: //doi.org/10.1134/s1995080219010049.
- [12] C. Boonpok, C. Viriyapong, M. Thongmoon, On upper and lower (τ_1, τ_2)-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [13] C. Boonpok, *M*-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [14] T. Duangphui, C. Boonpok and C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- [15] E. Ekici, J.H. Park, A weak form of some types of continuous multifunctions, Filomat, 20 (2006), 13–32. https://www.jstor.org/stable/24894864.
- [16] A. Keskin, T. Noiri, Almost b-continuous functions, Chaos Solitons Fractals, 41 (2009), 72–81. https://doi.org/10. 1016/j.chaos.2007.11.012.
- [17] C. Klanarong, S. Sompong, C. Boonpok, Upper and lower almost (τ₁, τ₂)-continuous multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. https://doi.org/10.29020/nybg.ejpam.v17i2.5192.
- [18] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- [19] S.N. Maheshwari, G.I. Chae, P.C. Jain, Almost feebly continuous functions, Ulsan Inst. Tech. Rep. 13 (1982), 195–197.
- [20] S. Marcus, Sur les fonctions quasicontinues au sens de S. Kempisty, Colloq. Math. 8 (1961), 47–53.
- [21] A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt. 53 (1982), 47–53. https://cir.nii.ac.jp/crid/1573950400472990592.
- [22] B.M. Munshi, D.S. Bassan, Almost semi-continuous mappings, Math. Student, 49 (1981), 239–248.
- [23] A.A. Nasef, T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar. 74 (1997), 211–219.
- [24] T. Noiri, V. Popa, A unified theory of almost continuity for multifunctions, Sci. Stud. Res., Ser. Math. Inform. 20 (2010), 185–214.
- [25] T. Noiri, V. Popa, On upper and lower almost β -continuous multifunctions, Acta Math. Hungar. 82 (1999), 57–73.

- [26] T. Noiri, V. Popa, Characterizations of almost quasi-continuous multifunctions, Res. Rep. Yatsushiro Nat. Coll. Tech. 15 (1993), 97–101.
- [27] T. Noiri, Almost α -continuous functions, Kyungpook Math. J. 28 (1988), 71–77.
- [28] V. Popa, T. Noiri, On upper and lower weakly β -continuous multifunctions, Anal. Univ. Sci. Budapest, 43 (2000), 25–48.
- [29] V. Popa, T. Noiri, M. Ganster, On upper and lower almost precontinuous multifunctions, Far East J. Math. Sci. Special Vol. (1997), 49–68.
- [30] V. Popa, T. Noiri, On upper and lower almost α -continuous multifunctions, Demonstratio Math. 29 (1996), 381–396.
- [31] V. Popa, T. Noiri, On upper and lower almost quasi-continuous multifunctions, Bull. Inst. Math. Acad. Sinica, 21 (1993), 337–349.
- [32] V. Popa, T. Noiri, M. Ganster, K. Dlaska, On upper and lower θ-irresolute multifunctions, J. Inst. Math. Comput. Sci. Ser. Math. 6 (1993), 137–149.
- [33] V. Popa, Almost continuous multifunctions, Mat. Vesnik, 6 (1982), 75–84.
- [34] V. Popa, On the decomposition of the quasi-continuity in topological spaces (Romanian), Stud. Circ. Mat. 30 (1978), 31–35.
- [35] M.K. Singal, A.R. Singal, Almost continuous mappings, Yokohama J. Math. 16 (1968), 63–73.
- [36] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- [37] N. Viriyapong, S. Sompong, C. Boonpok, (τ₁, τ₂)-extremal disconnectedness in bitopological spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- [38] C. Viriyapong, C. Boonpok, (Λ, *sp*)-continuous functions, WSEAS Trans. Math. 21 (2022), 380–385. https://doi.org/ 10.37394/23206.2022.21.45.
- [39] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.