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AsstracT. This paper introduces an iterative scheme for finding a common element of the set of solutions
of a family of split equilibrium problems, the set of solutions of finite family of variational inclusion
problems involving inverse strongly monotone mappings and multi-valued maximal monotone mappings,
and the set of fixed points of nonexpansive mappings in Hilbert space. Strong convergence analysis for
approximating these common elements are established and the convergence of the iterates generated under
suitable conditions is shown. These results are improvement and extension of the results obtained in [3]
and the references therein. In addition, this paper give a numerical example of the set of solutions of a
family of split equilibrium problems, the set of solutions of finite family of variational inclusion problems
and the set of fixed points of nonexpansive mappings derived from our generalization.
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1. INTRODUCTION

Throughout this paper, denote that J{ to be a real Hilbert space with a nonempty closed convex
subsets C, Q and R to be the set of all real numbers. For all z,z € € a mapping 8 : € — C is said to be

nonexpansive if
182 = 8z[| < [z — =||.
It is known that, the set of fixed points of § (to be denoted by Fiz(8)) is a closed and convex set.
The equilibrium problem for a bifunction F : € x € — R is formulated as a problem of determining
z € Csuch that
F(2,2) >0 (1.1)
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forall z € C. Let EP(F) denotes the set of all solutions of (1.1), thatis, EP(F) = {z € C: F(z,2) >
0,vZ € C}. The equilibrium problem (1.1) is an important formulation which is considered as a
generalization of some related problems, such as, variational inequality problems, optimization, fixed
point problems, control systems, game theory and other problems. In 2005, Combettes and Hirstoaga [4]
introduced several iterative schemes for finding approximation to the solutions of equilibrium problems
and established a strong convergence result when EP(¥) is nonempty. Several iterative methods have
also been proposed for approximations of common solution of (1.1) and fixed point problem of
nonexpansive mapping. In particular, Plubtieng and Punpaeng in [8] proposed the following iterative

scheme. Suppose z; € H and {z,} and {Z, } be iterates generated by

1
F(Zn, 2) + T—(z — ZpyZn — 2n) >0, VzEeH

Zn+l = nn7h<zn) + (I - 7771"4)82717 Vn € N. (12)

They proved that, if the sequence of parameters {7, } and {r,} satisfy some suitable conditions, then

the iterates {z,} and {z, } both converge strongly to the unique solution of the problem
(A —=~h)u,u—z) >0, Vz € Fiz(8) N EP(F), (1.3)
which is considered as the optimality condition for the problem
min S(Az,2) — £(2) (1.4)
2€Fie(S)NEP(F) 2" ’ '

where f is a potential function for vh. see [6], [7].

Another important problem is the variational inclusion, which concerns finding 2* € I such that
0 € B(z") + M(2"), (1.5)

where 0 is the zero vector in H, M : H — 2% is a set-valued mapping and B : H — H is a single valued
nonlinear mapping. Let I(B, M) denotes the set of solutions of (1.5). If B = 0, then (1.5) reduces to
the inclusion problem introduced in [9]. Moreover, if M = 9de where de : H — [0, 00] is the indicator
function of €, defined as, de(2) = 0, if z € € and de(2) = +o0, if z # €, then problem (1.5) is equivalent
to the variational inequality problem. In addition, it is known that problem (1.5) establishes a suitable
system for a consolidated study of optimal solutions in many related areas of optimization such as
variational inequalities, optimal control, mathematical programming, economics, complementarity
and so on. Several generalizations and extensions of the problem (1.5) have been studied; see [10] and
the references there in.

In 2009, Plubtieng and Sripard [12] proposed and studied an iterative approximation method for
finding common element for set of solutions to problem (1.5) involving an inverse strongly monotone

mapping and a multi-valued maximal monotone mapping, the set of solutions of problem (1.1) and
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the set of fixed points of a nonexpansive mapping in Hilbert spaces. The proposed scheme generates
the sequences {z,}, {y,} and {Z,} starting with an arbitrary point z; € H by
1
g(znay)+7<y_2n72n_zn> 207 vyej{7

Tn

Yn = 33\’[,/\(271 - )\Bin% Vn > 0,
Zn1 = Nay(zn) + (I = 10 D)8nyn, (1.6)

where A € (0,27], {n.} C [0,1], {rn} C (0,00),{S,,} is a sequence of nonexpansive mappings on H and
D is a strongly positive bounded linear operator. It is proved that under some suitable conditions, the
iterates {z,, }, {yn } and {2, } generated by (1.6) converge strongly to z* € N°, Fiz(8,)NI(B, M\)NEP(F),
where 2 = Pree pig(s,)ni®0nep@(z7).

On the other hand, the problem of determining a solution 2* € €, of a particular problem formulated
in 7y, such that z* = Az* € Q is a solution of another problem formulated in H,, where C, Q are
nonempty closed and convex subsets of real Hilbert spaces 3{; and 3, respectively and A : H; — Hy
is a bounded linear operator has been studied and considered by several researchers. In particular,
Kazmi and Rizvi [3] studied a class of split equilibrium problems involving bifunctions F; : € x € — R

and J5 : Q x Q — R which is determine by finding z* € J{; such that
Fi(z*,2) >0 (1.7)
for all z € € and such that,
Z¥ =Az" € Qsolves Fo(z*,2) > 0 (1.8)

for all zZ € Q. The set of all solutions of the problem (1.7) and (1.8) is denoted by T', i.e.,
I'={z€C:z¢€ EP(F;)such that Az € EP(F2)}. (1.9)

Kazmi and Rizvi [3] further proposed an iterative approximation for a common solution of a split
equilibrium problem, a fixed point problem for a nonexpansive mapping and a variational inequality
problem in real Hilbert spaces. The proposed iterative approximation is given by: For a given arbitrary

zo =v € C, let {u,},{2,} and {2, } be generated by
n = T} +AT(T]2 — DAz),
Zn = Pelup — A\Duy),
Zntl = QU+ 0nZp + YnSZn, (1.10)

where the sequences {v,}, {ay, } and {0, } arein (0, 1). Under some appropriate conditions, for instance,
An € (0,27),7, C (0,00) and v € + with L as the spectral radius of the operator A*A and A* is
the adjoint of A. The sequence {z,} generated by (1.10) converges strongly to a common solution

S FZ[L‘(S) Nnrn VI(G, D), where z = PFix(S)ﬁFﬂVI(C,D)U'
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Motivated and inspired by the work of Plubtieng and Sripard [12] and Kazmi and Rizvi [3]. In
this paper, the author consider an iterative approximation for determining a common element of the
set of solutions of a finite family of variational inclusions involving for each i = 1,2,..., N, inverse
strongly monotone mappings and multivalued maximal monotone mappings, which concerns with

determining a point z* € 3 such that
0e BZ(Z*) + MZ(Z*) (111)

Given N, 1(B;,M;) to be the set of the solutions of (1.11), the set of solutions of a family of split
equilibrium problems and the set of fixed points of nonexpansive mappings in Hilbert space. The
problem (1.11) extends the concepts in the problem (1.5) to finite family of variational inclusions
covering. Particularly, several types of feasibility problem can be derived from the problem (1.11);
see [11]. The author consider the following iterative scheme: starting with an arbitrary point z; € 3

and define sequences {z,}, {Z,} and {u,} by
Ui = T2 (I —~AN(I =TIV A) 20, i =1,2,..., Ny,
Zn = Iiyan, = ANaBN) - Iy (T = ALaB1)tin,
Znt1 = &f(zn) +onzn + (1 —on)I — €,D)8nzn,

for all n € N, where 0, € (0,1),\i, € (0,20],7 € {1,2,...,N},{ex} C [0,1],{rn} C (r,o0) with
r>0,vC(0,1/L%),L = max{Ly,...,Ly,}and foreachi € {1,..., N1}, L; denotes the spectral radius
of A¥A; with A! as an adjoint of A;, D is a strongly positive bounded linear operator on H and {8, } is
a sequence of nonexpansive mappings on 3. This paper present some strong convergence theorems
for approximating these common elements under some standard conditions. The proposed results can

be seen as an improvements and extensions of the results proposed in [3] and some references therein.

2. PRELIMINARIES

In this section, the author present some notations and lemmas that will be required for the con-
vergence analysis of our method. Throughout this paper use z, — z and z, — z to indicate that the
sequence {z,} converges to z € J{ strongly and weakly respectively. It is also well known [13] that

Hilbert space J{ satisfies Opail’s condition; that is, for any sequence {z, } with z, — z, the inequality

limsup ||z, — z|| < limsup ||z, — Z|| (2.1)
n—oo n—oo

holds for every z € H with z # 2.

Lemma 2.1. In a real Hilbert space 3, for all z, z € I, the followings are satisfied:
@) 2=z =l21* - [12]* - 2(z - 2, 2),

() llz + 21 < lI2l1” + 2, 2 + 2),
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(3) llnz + (L =)zl = nllz]* + (L = )2l = n(1 — )|z — 2.

Recall that a mapping h : H{ — J is said to be contractive if there exists a constant n € (0, 1) such
that || f(2) — f(2)]| < nllz — Z|| for all 2,z € H{. An operator 8§ : H{ — I is said to be n-inverse strongly

monotone if there exists a positive 1 such that
(82— 8%,z — Z) > |8z — 8%||%, Vz,zZ € H. (2.2)

It has been shown that if § satisfied (2.2), then it is %—Lipschitz continuous and monotone mapping.
Furthermore, if 0 < ¢ < 27, for some positive number ( then the operator I — (8 is a nonexpansive
mapping where [ is the identity mapping on J{.

A set-valued M : H — 2% is called a maximal monotone if forall z,z € H,j € Mzand g € Mz imply
(z— 2,5 —g) > 0forevery (Z,g9) € §(H) imply j € Mz. Furthermore, for a positive number , the

resolvent operator gy ¢ associated with M and ( is defined as follows:
Inec(z) = (I + M) 1(2),Vz € K. (2.3)

It is important to mention that the resolvent operator gy ¢ is single-valued, nonexpansive and 1-inverse
strongly monotone (see [15]). Additionally, it has been shown that a solution of problem (1.5) is a
fixed point of the operator i x(/ — (B) forall ( > 0 (see [16]). Consequently, for each k£ € {1,..., N},
and ¢ > 0, the solution of a finite family of variational inclusion problems (1.11) is a common fixed

point of o ¢ (I — (By).

Lemma 2.2. [15] Let M : 3 — 2% be a maximal monotone mapping and B : H — 2% be a Lipschitz-

continuous mapping. Then, the mapping M + B : H — 2% is a maximal monotone mapping.

Lemma 2.3. [1/] Let h : H — H be a contraction with coefficient 0 < n < 1, and D be a strongly positive

linear bounded operator with ¢ > 0. Then,

(1) if0 < ¢ < &, then (= — 2,(D — Ch)z — (D — Ch)2) > ({ - Cnll= — 2|2, 2,2 € 3¢
(2) if0 < v < | D], then | I — vB| <1 — vC.

Lemma 2.4. Suppose € is a Banach space forn > 0,v > 0and z € €,

Ipz =4, (;z + (1 - :>3nz>. (2.4)

Lemma 2.5. [18] Let M; : 5 — 2% be a maximal monotone operators, B; : H — H be a;-inverse strongly
monotone operators for each i = 1,2,..., N and {w,} be a bounded sequence in J(. Suppose that for each
j=1,2,...,N, X, > 0satisfy

(Hl) limy, 00 220:1 |>\j,n - )\j,n+1| < 00,

(H2) liminf,, o0 Ajpn > 0.
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Set @IfL = 33\/[,67)%’" (I — Ak,an) e HMlJ\l,n (I — )\1,{31) and @g =1. Then,for ke {1, 2,..., N},
o
> 10F wi — OFw;|| < . (2.5)
i=1
Proof. Foreach k € {1,2,..., N}, get from Lemma 2.5,
||3Mkv)‘k,n+l (I - )‘k,n—&-lBk)wn - 3Mk7/\k,n (I - )\k,an)wnH
Ak
< L= 1 a o (= A1 Br)wall + [lwnl))- (2.6)
Ak,n—i—l ’
Furthermore, it follows from @ﬁ, that
OF = Intu e (I — Mo Br)OE " (2.7)
Combining (2.6) and (2.7), obtain
19541 wn — O |
< 130 = Men1B)O8 T wn — Brgene (I — Mk Bi)Of wy |
< 10 (= M1 BR)ON T wn — Int g pr (T = Mt 1B1)OF |
FNInterenir T = Mot 1 BR)OE w, — Ingen,, (I — MonBi) OF g |
_ _ Ak _
< 6kt — 0wl + [1= | (10~ Auir B0l + )
kn+1
A
< l6ktun - 0wl + [1- 5o
)\k,nJrl
<
k A
< 1001w — Ofwall + 37 1~ |
=1 I,n+1
k
A
= > -2, (2.8)
_ >\l,n+1

=1

where M; = sup{||w,|| + Zgil 3Nt N (1 — Ment1BE)OF 1w, ||}, According to (3;) and (Hs), (2.6)

holds.

g

Lemma 2.6. [19] Let {z,} and {z,} be bounded sequences in a Banach space & and {a,} be a sequence in

[0,1] with 0 < liminf, . o, < limsup,,_,., an < 1. Suppose zp+1 = (1 — an)Zn + anzy for all integers

n > 0and limsup,, o (||Zn+1 — Znll — |2n+1 — 2nl]) < 0. Then, lim, o ||Zn — 2n|| = 0.

Lemma 2.7. [20] Let {(,,} be a sequence of nonnegative real numbers such that (41 < (1 —yn)(n +6n,n >0

where {~y, } is a sequence in (0, 1) and {~y } is a sequence in R such that (i) > 77 | vn, = oo (ii) limsup,,_,

0or (iif) Y07 | Yo < 00. Then, limy, o0 G = 0.

Assumption 2.8. Let  : € x € — R be a bifunction satisfying the following assumptions:

In <
Tn T
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(1) F(z,2) >0, Vz € C,
(2) Fis monotone, i.e., F(z,z) + F(z,2) <0, Vz,Z € C,
(3) F is upper hemi-continuous, i.e., for each z, z,w € C,limsup,_,q F(tw + (1 —t)z,2) < F(z,2),

(4) For each z € C fixed, the function z — F(z, Z) is convex and lower semi-continuous;

Lemma 2.9. [4] Suppose that the bifunctions F : € x € — R satisfy Assumption 2.8. For any z € H and
r > 0, define a mapping T2 : H — € as follows:

‘.sz:{26@:9’(2,10)—}—%(10—2,2—2) >0,Yw € C}

Then, the following holds:
(1) TV is single-valued;

(2) TY is firmly nonexpansive, i.e.,
1792 = T9z12 < (792 -992,2-2), z,2€ 7,

(3) Fix(T7) = EP(F).
(4) EP(F) is closed and convex.

Lemma 2.10. [21] Let F : € x € — R be a bifunction satisfying Assumption 2.8 and let T and T, be defined

as in Lemma 2.9, for r,s > 0. Letting z, z € 3, one has
s
192 - 9220 < = 2l + 1. 2|7 s

Lemma 2.11. [22] Let F : € x € — R be a bifunction satisfying Assumption 2.9 and let T2, T} be defined as
in Lemma 2.10, for s,t > 0. Then, the following holds:

—1
1772 — 722 < 2297 — 972,972 — 2),Vz € K.
S

Lemma 2.12. (Demiclosedness principle) Let T : C — C be a nonexpansive operator, where C C H; is closed
convex. If T admits a fixed point, then the operator I — T is demiclosed, in other word, if {z,, } weakly converges

to z and {(I — T)zy } converges strongly to z, then it follows that (I —T)z = Z.

3. MaIN Resutrr

Theorem 3.1. Let 1, Hy be two real Hilbert spaces and C C H1,Q C Hy be nonempty closed convex subsets.
Let A; : 3y — Jy be a bounded linear operator foreachi = 1,2, ..., Ny with Ny € N. Assume thatF : CxC —
Rand F; : A x Q— R (i=1,2,...,Ny) satisfy (1) — (4) of Assumption 2.8. Let B; : C — H; be o-inverse
strongly monotone mappings for each i = 1,2,..., Ny with Ny € Nand let M; : 5 — 27 i = 1,2,... N
be maximal monotone mappings such that Q := (N2>, Fiz(8,)) N SEP N (N_I(B;, M;)) # 0, where
SEP ={z€C:z¢e EP(F)and A;z € EP(F;),i =1,2,...,N1}. Let f be a contraction of H into itself
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with constant o« € (0,1) and let D be a strongly positive bounded linear operator on H with coefficient &€ > 0

and 0 < & < g Let {zp}, {Zn} and {u, } be sequences generated by z; € H and
ui,n = Tgn(l - V‘A:(I - Tii)‘Ai)va 1= 1) 2) ey N17
Zn = 3MN,>\N,n (I — AN,nBN) .. .33\/[1)\1% (I — )\l,n‘Bl)uim,a (31)
Zn+1 = €& f(zn) + onzn + (1 — o)l — €,D)81, 20,

where oy, € (0,1), N\in, € (0,204],3 € {1,2,..., N} satisfy (H1) — (H2),{e,} C [0,1],{rn} C (r, 00) with
r>0,vC(0,1/L%),L =max{Ly,..., Ly, }and L; is the spectral radius of the operator A}A; and A is the
adjoint of A; for each i € {1,..., N1} and assume that the control sequences {e, }, {0y} and {r,} satisfy the

following conditions:

(C1) limpyoo € =0;
(C2) Y0iien =00
(C3) 2oniilentr — en| < o0;
(C4) 22021 [rns1 — | < oo

Suppose that > "> sup{||Sp+12 — Spz|| : z € C} < oco. Let 8 be a mapping of H, into itself defined by
8z = limy, 00 8y 2, for all z € 3y and suppose that Fix(8) = NS, Fix(8,). Then, the sequence {z,}
generated by (3.1) converges strongly to a point z, where z = Po(I — D + £ f)(2) is a unique solution of the

variational inequality

I\

(D —¢f)z,2—2) <0, 2€Q. (3.2)

Proof. Given ¢, — 0, suppose that ¢, < (1 — ,)||D[| " and 1 — €, (£ — &) > 0. Notice that if |jul| = 1,
then

(1 =0 ) —eD)u,u) = (1 — 0p) — €n(Du,uy > (1 — 0y, — €,]|D]|) > 0. (3.3)
From Lemma 2.3, obtain
(1 =0 —€,D||<(1—0yp) — en. (3.4)

By Lemma 2.5, it get z,, = eN u; n. Next, consider several steps for the proof.
Step 1. The sequence {z,} is bounded.
Since €, — 0, suppose that €, < || D|~!. Let p € Q. Considering that for k € {1,2,..., N},

IV A (I — Ag.nBi), is nonexpansive and p = IV Ao (I — Mg Bi)p, get

120 = pll = 107 win = Opll < l|uin — pll- (3.5)
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Sincep e Q, p e ‘.Tf:jp and (I —~A; (I — ‘J‘,{}L’)Ai)p = p. Thus,

1T7 (I = yAF (L = T Ai)zn — T5 (I — AT (T = T30 A

ol

i —pll =
< (= AT =TTV Ad) 20 — (T — AL = T A
< sl
Substituting (3.6) in (3.5), get
120 — ol = [N i — OVl < Il — pll < ll2n —
Then,
Jania=all = (1= )T = xD)S,0 i~ 5,630 + il en) — )
Fenl€1(6) = Do) + o — )
< (1= enl€ - 2Ol ol + enl€ - ag) ELZ2EL

It follows by induction and (3.8) that

o — ll < max{m ol

Hence, {z,} is bounded, and consequently, {u;}, {z.},

I£6) Dol 5,

v
§—a¢
{f

Step 2. Show that ||z, +1 — 2| = 0.

Define z,+1 = op2, + (1 — 0y)vy, for each n > 0. Then obtain,

Un+1 —Up =

It follows that

~_( ) — ——( )
—(z — z - (z —onZ
1— Tt n+2 On+12n+1 1_ on n+1 Onin
enr18f(Zny1) + ((1 — Un—i-l)I — €nt1D)8n 12041
1—0pp1
_enéf(2n) + (1 —on)] — exD)Snzn
1—0,

ent18f (nt1)  enéf(zn) b Sui1Ei1 — Sun

1-— O'n+1 1-— Onp
+ Dgnzn - %7+198n+15n+1

1— 1-— On+1

€ €
I (€f (2n41) = DS Znin) + 2 (€F (20) -

— Onp+1 — Onp

+Sn+lzn+1 - Sn—i-lzn + Sn—i—lgn - Snén

[ont1 = vall = 12041 = 2nl]

€n _
L (16f ()| + 1 DSns1 Znga|])

1 —ont1

(zn)}, and {8,Z, } are also bounded.

D81 7n)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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€ _ _ _
+1 _na (I€f )l + 1DSnZnll) + [[Sn+1Zn+1 — Snt1Zn]|
n
+I8n+12n — Snznll — [[2n+1 — 2nll
€n+41 _
< ﬁ(lléf(znﬂ)ll + [ DSnt1Zn41l])
n
€ _ _ _
7= —(IEf @)l + [DSnzall) + 2011 = 2l
— o,
+||Sn+15n - Snzn” - Hzn+1 - Zn” (3~11)
From (3.1), get
”En-i—l - ZnH = HHMN,AN,n (I - /\N,n'BN) ce HMLM," (I - Al,ngl)ui7n+l
Iy awn L = ANABN) - Tty s, (= A Br)tinl|
< wintr = - (3.12)
Since the mapping I — A} (I — T77)A,; is nonexpansive by Lemma 2.10 and 2.11, then
||u’i7n+1 - ul,n”
= T (L= AAT T = T ) A) 21 = T7 (1= Y AL = T79) A 20|
< T =AATT = T ) AD 201 — (1 =y AT (L = T70)Ad)za|
|""n+1 Tn| Fi
ST (A = T ) A
—(I = AT = T70, Az |
<z = zall + 1 = AATT = T2, ) A) 20 = (1= AT = T7E) Azl
+ |Tn+]. - T’ﬂ| 6n+1
Tn+1
. r
= |lznt1 = zall + I9AF (T7, Aizn — T30 Aiz0) | + Mén—kl
Tn+1
Trntl — T
< N — 2l + LTl
1
wn |17 - 2
AP, — 9 A T Ao — A
Tn41
1
willr 2 rppr—r
< o = zall # ]|t =l g et 2l
< Nantr = znll + Nip, (3.13)

where

On+1

sup |< r +1‘Aizn - Tiiﬂizna r +1-A Zn — ‘Azzn>|
neN

6n+l
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= sup [T, (1 — yAT (I = T2, VA znsr — (T = YAT(T = T, ) AD) zna),

Tn41 Tn+1
neN n+ n+
and

1
T 1—T 2 r —r
Nins+1 = YIAL [W%H} + ’”+1T”|5n+1_

Substituting (3.13) in (3.12), obtain
1Zn+1 = Zull < tint1 — winll < ll2n+1 = 2ull + Nins1- (3.14)

Supposing that Y o7 | sup{||8,+12 — Spz| : z € €} < oo, obtain

lim [|8y+12n — 8nZn| = 0. (3.15)
n—0o0
From Lemma 2.5, obtain
lim [0, uins1 — ON tjnia| = 0. (3.16)
n—oo

By O and I — yA¥(I — TJi)A; are nonexpansive, get

i
n

Znt1 — Znll = ||®7]zv+1ui,n+1 - qui,n”

IN

1O 1Uins1 — ON i g1 || + 1O i1 — O il

IN

10, 1tint1 — O s || + ([t g1 — winl]- (3.17)
Substituting (3.13) in (3.17), obtain
|Zn+1 — Zull < ”@7]:[+1Ui,n+1 - egui,n-&-l” + 12041 = znll + Mint1- (3.18)

Substituting (3.18) in (3.11), obtain

[vnt1 = vall = 2041 — 2|

€nt1 _
< T (1€ )l + [ DSnsaZna )
— On+1

€n

+ (€S )l + D8 Zall) + 1O7 1 tisnr1 — O tisnal

1—o0,
i1 + [|Snt12n — SnZnll (3.19)

Based on (3.15), (3.16) and the conditions (C'1) and (C'5), deduce that
nh_{go(||vn+1 — Unl| = Izn41 — 2nl)) = 0. (3.20)
Thus, from Lemma 2.6, it has lim,,_, ||, — 2| = 0. Consequently, it now follows that
7}1_)11010 [2n41 — 2nll = nh—>Holo(1 —on)llvn = za] = 0. (3.21)
From (3.16), (3.18), (3.21) and the condition (C4), obtain
T [|Z041 = 2a]| = 0. (3.22)

Step 3. Show that for k = 1,2,..., N, lim, 00 ||OFu;  — ©5 1w, || = 0.
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In fact, suppose p € €2, then it can be deduced from the strong nonexpansiveness of

It o (I — Ak By) that
||@7,zui,n _pH2
= 13t ren (T = MenBr)OE w0 — Int ap (I = A Bro)pl>
< (OFtip — p, O iy — p) (3.23)
o (T T L Ty o ]

Thus, obtain
1O win — plI* < 105 uim — plI* = [Ofttin — OF uinll?, (3.24)

imply that foreach k € {1,2,..., N},

N
20 =2l = 107 wim —pl* < 100uim = plI* = D 1Ohuin — 5 uinl)?
k=1
< luin =2l = €5 uin — O3 uin*. (3.25)

(3.6) imply that ||u;,, — p||*> < ||zn — p||?, thus
120 = pII* < llzn — pI* — 1O71in — OF il (3.26)
Set 0, = £f(zn,) — D8z, and let A > 0 be a constant such that
A > sup{ Il e = I} (327)
Deduce from Lemma 2.2 and the fact that || - ||? is convex that

l2n+1 = ol

”(1 - Un)(snzn _p) + Un(zn - p) + €n0n”2

< (1= 00)(8nZn — p) + onlzn = )| + 2640, 2011 — p)

< (1= 00)|18n2n — pl* + anllzn — plI* + 20 %€,

< (1 =on)llza = pI? + onllzn — plI* + 2%,

< (1= 02) (llon =5l = 1€~ € Muin?) + 0l = ol + 2%,

< lzn = pl? = (1 = 00) |05 Ui — O w12 + 2X %6, (3.28)

By Condition (C'1) and Step 2, obtain

10F tin — OF M 012

IN

1
l—o (l2n —pH2 — [|2nt1 —p||2 + 2)\26n)
n

1

1—0,

IN

(2|20 — 2Zng1 ]l + 2X%€,) — 0, as n — oo. (3.29)
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Step 4. Claim that lim,,_,o | A7 (1 — T39)A;2,|| = 0 and limy, o0 [|[uin — 20 = 0.

First, show that lim,, o ||uin — 2|| = 0 for each i = {1,2,..., N1 }. Since each

AT =TI A, is #—inverse strongly monotone, by (3.1), we have

IN

i, — pII?

197, (I =~ AT (I =TT A)z0 — T (1= AL = T70) A
(L =~ A5 (L = T70)As)zn — (I =4 AF (L = T70) Al

(20 = p) = V(AT = T Aizn — AT (L= T70) Ap) |

2w = plI? = 29(zn = p, AL = T ) Aizn — AT (I = T1) Aip)
AP AT = TP Az — AT = T70) Aip?

Vg ; % .
l2n = plI* — Tl — TV Aizn — AF (1= T2 Aupl|?
7

F2AKT =TI Aizy — AT — T Ap||?

1 , . ;
lon = 91+ (7 = 73 ) MG = T iz = AT = Tt
1 ,
lon = p12 +9 (7 = 73 ) M43 (7 = T Aisn . (330)

It follows that since (3.28) and (3.7) imply that ||z, — p||? < |lu;, — p|/?, obtain

241 — pI?
_ 2 2 2
< (1 =00)|1Z0 = pl* 4 onllze — pl|* + 2X\2€,
< (1= on)lluin — plI? + onllzn — plI* + 27 %€,
1 . .
< @=ow)ln =i 77 - 25 ) Wi - T A
KA
+onllzn _pH2 + 2\,
1 . .
< lzn—p —on)Y|\ Y — 53 i L= 05 )Aizn En-
<l = oI+ (= 0 (9= 73 MG = T A+ 202
K
. 1 1 1
Since y < 77 = max{,j%, ce ﬁ}/ get
1

1 N ,
(1= 0 (g2 =) I3 = T A

IN

20 = plI? = [2n41 — PII* + 2N %€n

< Nen = znsall(lzn = pll + llznsr = pll) + 23%€n.

Since ||z, — zn+1|| — 0 and the conditions (C1) — (C5), get

lim [|A7 (I = T7)Aizn]| = 0 (3.31)
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foreachi e {1,...

foreachi e {1,...

, N1}. Hence,

lim (1 — TV Aizn|| = 0 (3.32)

,N1}. Since 77 is firmly nonexpansive and I — vA; (I — T39)A, is

nonexpansive, by (3.1), get

s — pII?

|77, (I = AL = T A 20 =TT pl)”

< (Uip — D, 2n + *yAf(‘J';{i — DAz, —p)

= Sllluan — I +llzn + VAT (T~ DAiza — plP?
i = p = (20 + VA (TVE = D Aize — ][I}

= %{Hui,n —pI? + (I = AL =TT AD 20 — (I = AT (L = T Ap|>
_Hui,n — Zn — V‘A;({Jﬁf - I)AianQ}

< %{Hui,n = 2l® + llzn = PII® = lluin — 20 — AT (T7) = DAi)za]?}

= %{lluz',n =l + llzn = pII* = [luin — zall® + V25 (T = DAzl
—2y (i — zn,Af(‘Tii — DAz}

imply that
i =9I < llzw = Bl = i = 20l + 2 — 2l |AF (T — Dizall. (3:33)

Hence, by Lemma 2.5 and (3.33), obtain

INIA

IN

IN

and hence,

1201 — pII?

(1= n)llZa = plI* + onllzn — pl* + 22 %€,

(1= on)lluim — Pl + onllzn — pl|* +2X %€,

(1= an)llzn = 2l = luin = 20ll* + 2vJwsn = 2all|AF (T3 = DAizall]
+0ul|20 — pl* + 2¥%n

|2 — pH2 — (1 =op)lluin — ZnH2

+29(1 = on)lluin — zullllA] (777 = D Aizn]l + 27\ %en, (3.34)

lttisn — 2n?

(= 51 = ansa =l + 231 = 0w = ]
—
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X[ AF(TT — 1) Az + 2)\2€n>

1
<
- 1—-0,

{Ilzn = Zns1l| (20 = pll = [lznt1 = pl) + 29(1 = on)[[tin — 2l

XA (TT — 1) Az + 2)\26n}. (3.35)

Since {z,} is bounded, lim inf, _, €, = 0,lim, o0 ||2n — 2n+1|| = 0, limy, 00 || (1 — ‘T;{i).Aian =0,and

A > sup,, ; {[|0nll, |z — pll}, it follows that

lim ||u;, — 2| =0 (3.36)
n—od
foreachi e {1,..., N1}
Step 5. Claim that lim,, oo ||%in — Zn|| = 0, limy, o0 || 2 — Zn|| = 0 and limy, 0 ||SZ, — Z || = 0.
Notice that
[win — Znl
= (18 i — vl
< O i — O il + 108 i — O Pui (3.37)

+..o.+ H(aiuzn - erlz“an + H@}zuzn - eguiynH + [[tin — Ui nl|-

From (2.5), obtain

lim |ju;y, — 25| = 0. (3.38)

n—oo

Moreover, from [z, — Zu[| < [[2n = winll + [[uin = Zal, get

lim |z, — Z,|| = 0. (3.39)

n—o0

Note from (3.1)

l2n — Snznl|
< Hzn - n—lzn—lH + ||Sn—12n—1 - Sn—lénH + ”Sn—lzn - 8ngn”
< en-1l€f(Tn-1) = DSn—1Zn—1l + [|Zn-1 — 2|

+onllTn—1 — Sn—1Zn—1l] + sup{||Sn+12 — Snz|| : z € ||Za||}- (3.40)
Since €, — 0,0, = 0asn — 00, limy o0 [|Znt1 — Zn]| = 0 and sup{||S,+12 — Spz|| :}
z € {Z}} — 0, obtain

lim ||z, — 8,zn| = 0. (3.41)

n—o0



Asia Pac. J. Math. 2024 11:62 16 of 23

It now follows from (3.39), (3.40), and ||z, — 8,.Zn|| < ||Zn — 2nll + ||2n — SnZx|| that

limy, 00 ||Zn — SnZn|| = 0. Since
1520 = Znll < [15%0 = 8nZnll + 18020 — Znl|
< sup{||Sz — 8pz| : z € {Zn}} + ||I8nZn — Zull- (3.42)
Therefore,
i [|Sz, — 2] = 0. (3.43)

Step 6. This proof shows that w € (N2, Fiz(8,)) N T N (MY, I(Bi, M;)).

First, show w € N, Fliz(8,,). Assume that w ¢ N7, Fiz(S,); then w # Sw.
It follows from (2.1) and (3.43) that

liminf ||z, —w|| < liminf|Zz, — Sw||
n—o0 n—oo

IN

lim inf (|2, — S% | + Sz, — Swl}

< liminf||z, — w|. (3.44)
n—oo

This is a contradiction. Hence, w € NS, Flix(8,,).

Next, show that w € I'. Since w € I',;w € EP(¥) and A;w € EP(J;) foreachi = 1,...,N;. Let
Wiy = I — AN — ‘J'iﬁ)Ai)zn foreachi =1,...,N;. By (3.31) and (3.36), get that w; ,, — 2z, — 0 and
‘J’,iwivn—wm — 0asn — oco. By Lemma 2.10, obtain H‘J’iwi,n—ﬁﬁlwm\\ < \1—%\]\‘3’5%7”—%,”]\ —0
as n — oo. Hence ‘J’fwi,n — w;y, — 0asn — oo foreachi =1,..., Ny. Since ‘J’;{; is nonexpansive and
{w;n} converges weakly to w, by Lemma 2.12 obtain w = T3 w, thatis w € EP(F). On the other hand,
since (I — yAF(I — T2)A;)zn — 2, — 0 (by (3.36)) and I — A} (I — TJi)A,; is nonexpansive, from

Lemma 2.10 and 2.12 it follows that w = (I — A} (I — TJi)A;)w,i.e.,w = T2 A;w. Therefore, w € T.
1

(67

Lipschitz continuous monotone mapping and D(B;) = ;. It follows from Lemma 2.2 that M; +

Now show that w € ﬁﬁ\ilf (Bi,M;). In fact, since B; is a;-inverse strongly monotone, B; is a

B;,i = 1,2,..., N is maximal monotone. Let (p,g) € GM; + B;),i = 1,2,...,N thatis g — B;p €
(M;p),i=1,2,..., N. Since @ﬁui,n = My Ann (I— )\NﬂnBN)@fl_lum, get @ﬁ_lum — )\kmBk@?";_lui,n €
(I + XMy ) (OF u; ), that is,

1

X (@ﬁ—mm — OF ;i — Ak,ngk@ﬁ—lui,n) € My <@ﬁui7n>. (3.45)
k.n

By the maximal monotonicity of M; 4+ B;, obtain

<p — O%u;p, g — Brp — (@Z_lui,n — OFu;, — /\k,an@ﬁ_luz‘,n)> >0, (3.46)

>\kn

)
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which implies that
<p - eﬁui,na g>

1
<p — O uin, Bip +

)\kn

)

v

k—1 k k-1

= <P — OF i, Bep — BrONu;, + BrOFu;, — BrOF 1w,

1
+— (@ﬁ_lum - @Z’LL@JL) >
Akm,

> 0+ <p — OF i, BrOL iy — Bk(aﬁ_lui,n>
k 1 k-1 k
+ P — @nuz ny ~ @n Ui m — @nul n . (347)
’ Ak;7n ) )
fork € {1,2,...,N}. From lim,,_,~ H@flum — @fflui’nH = 0, especially @ﬁlum — w. Since By, k =
1,2,..., N, are Lipschitz continuous operators, then || B;0*~1u; , — B; Ok, || — 0. Therefore, from
(3.47), get
lim (p — O in;,9) = (p—w,g) > 0. (3.48)
1—00

Since By, +My, k € {1,2,..., N} is maximal monotone, imply that 0 € (M +By)(w), k = {1,2,..., N},
thatis, w € ﬂfill (B, M;). Thus, obtain the desired result.
Next prove that
limsup((D —&f)z, 2 — zp,) <0, (3.49)

n—oo

where z = Po(I —D+£f)(2) is a unique solution of the problem (3.2). To that end, select a subsequence
{zn, } of {2} such that

lim (D —&f)z, 2 — zpn,) = limsup((D — £f)z, 2 — z). (3.50)

i—00 n—00

From the claim of Step 5, obtain

limsup{(D — £f)z, 2 — 20) = lim (D = £f)z,2 = 2,) = (D = £f)2,2 = w) <0, (3.51)

n—oo i—
Step 7. Claim that z,, — w.
By using Lemma 2.1 (2) and 2.3, obtain

[

= (1= 0p) — D) (SnZn — w) + on(zn — w) + €, (Ef (2) — Dw)||?

< (1 = on)] — D) (SnZn — w) + on(2n — w)HZ
+2e,( f(2n) — Dw, 21 — w)
< (1 _Un)I_enD)(SnZn_w)H2+Un”Zn_wH2

+2€n<§f(zn) - f(w)v Zn+1 — w> + 2€n<§f(w) — Dw, Zn+1 — ’UJ>
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< ((T—on) - Eng)HSnZn - w”2 + onllzn — w||2

+26n€al|zn — wl|z0s1 — W] + 26 (€ F () — Do, 2p1 — w)

< (1= o) = ead)llzn — wl® + onllzn — wl?
renta(lan = 0l + ania = w]?) + 260 (€ () = D01~ )
< (1= en(E = €a) 120 — wl + entallznss — w]?
F2en(£f(w) = D, 2041 — ). (3.52)
It follows that
lenss — wl® < (1—%)1%—%2 ) - Dz — ). (B5)

Now, from conditions (C1) — (C5), Step 6 and Lemma 2.7, get

lim ||z, —wl| = 0.
n—oo

This completes the proof. O

Corollary 3.2. Let 3y, Hsy be two real Hilbert spaces and C C H;,Q C Ha be nonempty closed convex
subsets. Let A : H1 — Jy be a bounded linear operator. Assume thatF : € x € — R, : A xQ - R
are bifunctions satisfying (A1) — (A4). Let B; : C — H; be a;-inverse strongly monotone mappings for each
i=1,2,..., Ny with Ny € Nand let M; : H — 2 i = 1,2,..., N be maximal monotone mappings such
that Q = (N2, Fix(8,)) N SEP N (NN_I(B;, M;)) # 0, where SEP = {z € C: 2z € EP(F) and Az €
EP(31)}. Let f be a contraction of H into itself with constant o € (0 1) and let D be a strongly positive
bounded linear operator on H with coefficient £ > 0 and 0 < € < %. Let {z,},{z,} and {u,} be sequences

generated by z, € H and

up =T (I —yA*(I — TEY) A) 2,
Zn = IMy AL = AN BN) - -HML)\I,n(I — A nB1)un, (3.54)
Znt1 = & f(zn) + onzn + (1 — op)I — €,D)8,, 2y,

forall n € N, where oy, € (0,1), \ip, € (0,204, € {1,2,..., N} satisfy (H1) — (H2),{e,} C [0,1],{rn} C
(r,00) with r > 0,~ C (0,1/L?), L is the spectral radius of the operator A* A and A* is the adjoint of A for each
i€ {l,..., N1} satisfying

(C1) limy oo €n = 0;
(C2) Y32 en = o0;
(C3) 2opZi lent1 — en| < oo
(C4) D202y Irnga — | <007
(C5)

lim,, oo 0y = 0.
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Suppose that >~ >° | sup{||Sn+12 — Spz| : z € €} < oco. Let 8 be a mapping of H, into itself defined by
Sz = limp—00 Spz, for all z € Hy and suppose that Fixz(8) = N0, Fix(8,). Then, the sequence {z,}
generated by (3.54) converges strongly to the point z = Po(I — D + £f)(2).

Corollary 3.3. Let 1, Hy be two real Hilbert spaces and C C H1,Q C Hy be nonempty closed convex subsets.
Let A : Hy — Ha be a bounded linear operator. Assume that F : € x C — R is a bifunction that satisfies
(A1) — (A4) and let 8 be a nonexpansive mapping. Let B; : ¢ — JH; be a;-inverse strongly monotone mappings
foreachi=1,2,..., No with Ny € Nand let M; : H — 27 i = 1,2, ..., N be maximal monotone mappings
such that Q := Fiz(8) N EP(F) N (NA_1(B;, M;)) # 0. Let f be a contraction of K into itself with constant
a € (0,1) and let D be a strongly positive bounded linear operator on H with coefficient £ > 0 and 0 < £ < g
Let {z,},{z.} and {u,} be sequences generated by x1 € H and

Uy = ‘J'gnzn,
Z0 = Dt (L= ANaBN) By, (1= AiaB1)un, (3.55)
Znt1 = en&f(2n) + onzn + ((1 — an)I’— en D)8z,
forall n € N, where o, € (0,1), \ip, € (0,20],7 € {1,2,..., N} satisfy (H1) — (H2),{e,} C [0,1],{rn} C
(r, 00) with r > 0 satisfy
(C1) littnsoo € = 0;
(C2) >0 €en=00;
(C3) X0y lent1 — €n| < 00;
(C4) limy 00 0y = 0.

Then, the sequence {zy} generated by (3.55) converges strongly to the point z = Po(l — D + £f)(z).
4. NUMERICAL ILLUSTRATION
In this section, the author present main result by considering the following numerical example.

Example 4.1. Suppose H; = Hy = R, the set of all real numbers with inner product defined by (z, z) = 2z, for
all z,z € R and induced norm |-| . Suppose that € = [0, 1] and Q = [—3, 0], let the bifunctions F : € x € — R
and F; : Q x Q — R be defined by F(z,2) = (2 — 1)(Z — 2) forall z,zZ € Cand F;(u,v) = (u+ 6i)(v — u)
for all w,v € Q respectively. Let the mappings B; : C — H, be defined as B;(z) = 2iz foreachi = 1,2,--- Ny.
Suppose M; : R — 28 be M; = {2iz} for each i = 1,2,..., No. We further supposed the mapping D to be
identity mapping, the contraction f : C — C to be defined by f(2) = 3z, forall x € C, A; : Hy — H; be

defined by A;(z) = —%z’zfor eachi=1,2,...,Nyand for z € C, let §;(z) = ﬁ%for eachi=1,2,...,N.

It is easy to prove that the bifunctions " and J; satisfy Assumption 2.8. The mapping A is a bounded
linear operator on R with ||A|| = [|A*| = 2. Further, B; is 5-- inverse strongly monotone mappings
for each ¢ = 1,2,...,N. Moreover, it is easy to observe that §; are nonexpansive mappings with
Fix(8) = [0, 00).
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For the numerical illustration, setting N = N; = Ny = 2 and choose the control parameters as
€n —

n%rl,an = #, for \; , = i foreachi=1,2,...,N,¢ =14and r, = %. For reference, the Matlab

codes were written in personal computer.

0.7 T T T T T T 07 T T T T T T
B
{ N |
06} / 4 | B S S SV IR
/ 0.66 - | B
| |
/ osat | 1
05F { g |
| oe2f | B
| |
. w . J
S04 | 4 £ oosk | 4
|
| |
| 058 | +
| |
03 “ B |
| 0561 | B
| |
| J
I}
0541 g
02 * 4 “
/ |
/ 052 | d
/ |
|
o1 . . . . . . 054 . . . . . .
o 5 10 15 20 25 30 35 o 5 10 15 20 25 30 35
lteration Iterations
(A) zg=0.1 (B) zo0 = 0.5
1.15 T T T T T T
T
M
RN 4
f
[
105 [ | 4
[
| |
4| 1
|
|
095 \ 4
{
_ ki
& osf | B
085 g
08 g
075 4
07 \ -
ke
065 | | 1 | |
0 10 15 20 25 30 35
Iterations
(C) zZ0 = 1.0

Ficure 1. Convergence of z,, with different initial points.
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TasLE 1. Convergence results of z,,

zg = 0.1 xg = 0.5 zg = 1.0
Iterations . Iterations . Iterations .

1 0.1 1 0.5 1 1
2 0.2142 2 0.6276 2 1.1444
3 0.4881 3 0.6812 3 0.9227
4 0.6255 4 0.6854 4 0.7603
5 0.6647 5 0.6787 5 0.6963
6 0.6709 6 0.6736 6 0.6769
7 0.6703 7 0.6707 7 0.6713
8 0.669 8 0.6692 8 0.6693
9 0.6683 9 0.6683 9 0.6683
10 0.6677 10 0.6677 10 0.6677
11 0.6673 11 0.6673 11 0.6673
12 0.667 12 0.667 12 0.667
13 0.6668 13 0.6668 13 0.6668
14 0.6667 14 0.66667 14 0.6667
15 0.6667 15 0.6667 15 0.6667
16 0.6667 16 0.6667 16 0.6667
17 0.6667 17 0.6667 17 0.6667
18 0.6667 18 0.6667 18 0.6667
19 0.6667 19 0.6667 19 0.6667
20 0.6667 20 0.6667 20 0.6667

It can be observed from Figure 1 and Table 1 that, the iterates generated converge to the common

solution of the considered problems.

5. ConcLusioN

In this paper, an iterative scheme for approximations of a common element of the set of solutions
of finite family of variational inclusion problems consisting of set of finite family of inverse strongly
monotone operators and finite family of multi-valued maximal monotone mappings, set of solutions of
family of split equilibrium problems and the set of fixed points of a family of nonexpansive mappings
in real Hilbert space. Under some suitable and easy to verify conditions, some strong convergence
of the sequences generated by the proposed method to the common element of the solutions of the

considered problems are established. A numerical example to illustrate the implementation of the
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proposed method indicates that, the proposed method is implementable and theorem extends and

improves the corresponding results obtained in [3] and some existing results in the literature.
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