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Abstract. This work delves into solving the two-dimensional Poisson problem through the Finite Element
Method which is relevant in various physical scenarios including heat conduction, electrostatics, gravity
potential, and fluid dynamics. However, finding exact solutions to these problems can be complicated and
challenging due to complexities in the domains such as re-entrant corners, cracks, and discontinuities of
the solution along the boundaries, and due to the singular source function f . Our focus in this work is
to solve the Poisson equation in the presence of re-entrant corners at the vertices of Ωwhere some of the
interior angles are greater than π. When the domain features a re-entrant corner, the numerical solution
can display singular behavior near the corners. To address this, we propose a graded mesh algorithm
that helps us to tackle the solution near singular points. We deriveH1 and L2 error estimate results, and
we use MATLAB to present numerical results that validate our theoretical findings. By exploring these
concepts, we hope to provide new insights into the Poisson problem and inspire future research into the
application of numerical methods to solve complex physical scenarios.
2020 Mathematics Subject Classification. 65N30.
Key words and phrases. Graded mesh; finite element algorithm; re-entrant corners; basis function; interpo-
lation.

1. Introduction

In this paper, we consider the following stationary state Poisson equation with Dirichlet boundary
condition

−∆u = f in Ω u = 0 on ∂Ω (1.1)

where, the Laplace operator ∆ = ∂2

∂x2
+ ∂2

∂y2
and Ω is a bounded polygonal domain. In this work, first,

we validate existing theoretical results by solving 2D Poisson equation using linear finite elements for
convex domains. The main work in this research is to present a graded mesh algorithm that enables us
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to capture the singular behavior of the numerical solution due to re-entrant corners on non-convex
domains. Then we solve the 2D Poisson equation using the finite element method which is a widely
used numerical technique for solving differential equations that arise in mathematical modeling and
engineering.

The Poisson problem has applications in engineering and applied mathematics including heat con-
duction, electrostatics, gravity potential, fluid dynamics, and many other fields. However, solving these
problems numerically presents major computational difficulties due to complexities in the domains
such as re-entrant corners, cracks, and discontinuities of the solution along the boundaries, and due to
the singular source function f . Even when an exact solution can be obtained, a numerical solution may
be preferable, especially if the exact solution is very complicated. Our focus in this work is to solve the
Poisson equation in the presence of re-entrant corners at the vertices of Ω where some of the interior
angles are greater than π.

By the regularity theory, the solution u is in H1+β(Ω) with the regularity index β = min( παi , 1) ,
where αi are interior angles of the polygonal domain Ω. It is easy to see that when themaximum interior
angle is larger than π, i.e., Ω is non-convex, u 6∈ H2(Ω) and thus the finite element approximation
based on quasi-uniform grids will not produce the optimal convergence rate. Graded meshes near the
singular vertices are employed to recover the optimal convergence rate. Such meshes can be constructed
based on a priori estimates [2], [3], [4], [5], [6], [7], [8] or on a posteriori analysis [9], [10], [11]. In
this paper, we shall consider the approach used in [4], [7], [28] and in particular, focus on the linear
finite element approximation of (1.1).

Instead of standard Sobolev spaces, we here use weighted Sobolev spaces to prove the results on
graded meshes for corner singularities. In [12], [13], knowledge of singular expansions of the solution
near the vertices is used to prove super convergence on rectangular meshes. Also in [14], the knowledge
of singular expansions of the solution near the vertices is used to justify the super-convergence of
recovered gradients on adaptive grids obtained from a posteriori processes. We use weighted Sobolev
spaces to prove the supe- convergence of the solution on a class of gradedmeshes for corner singularities,
which can be generated by a simple and explicit process. Since the singular expansion is not required
in our analysis, it is possible to extend our results to other singular problems (transmission problems,
Schrodinger type operators, and many other singular operators from physics) [7], [15], which can be
treated in similar weighted Sobolev spaces. Throughout this paper, by x . y, we mean x ≤ Cy, for a
generic constant C > 0, and by x ' y, we mean x . y and y . x. All constants hidden in this notation
are independent of the problem size N and the solution. However, they may depend on the shape of Ω,
and on other parameters which will be specified in the context.

Remark 1.1. For simplicity, the current paper focuses on analyzing a 2-dimensional Poisson problem with linear

finite elements. However, the analysis could be extended to 3 dimensions and higher-order finite elements although
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this may present some challenges. Additionally, the problem could be expanded to include non-homogeneous

boundary conditions through a simple linear transformation.

The rest of the article is organized as follows: In section 2, we present the standard finite element
method and H1 and L2 error estimate results for the 2D Poisson equation under a convex domain. In
section 3, we introduced weighted Sobolev spaces and a graded mesh algorithm to solve the Poisson
equation on non-convex domains using linear finite elements. We also present the H1 and L2 error
estimate results for non-convex domains. In section 4, we present numerical results to validate our
theoretical results and a conclusion is the section 5. Throughout the following text, the generic positive
constants C may take different values in different formulas but it is always independent of the mesh.
The rest of the article is organized as follows: In section 2, we present the standard finite element
method and H1 and L2 error estimate results for the 2D Poisson equation under a convex domain. In
section 3, we introduced weighted Sobolev spaces and a graded mesh algorithm to solve the Poisson
equation on non-convex domains using linear finite elements. We also present the H1 and L2 error
estimate results for non-convex domains. In section 4, we present numerical results to validate our
theoretical results and a conclusion is the section 5. Throughout the following text, the generic positive
constants C may take different values in different formulas but it is always independent of the mesh.

2. Finite element method

In this section, we will present a basic finite element algorithm, its well-posedness, and its regularity
for Poisson’s equation. We also present H1 and L2 error estimate results for the 2D Poisson equation
(1.1) for convex polygonal domains for linear finite elements.

2.1. Finite Element Algorithm. The Poisson equation under consideration is as follows: Let Ω ⊂ R2

be a polygonal domain. Consider the Poisson problem

−∆u = f in Ω, u = 0 on ∂Ω, (2.1)

We denote by Hm(Ω) for an integer m ≥ 0, the Sobolev space that consists of square-integrable
functions whose ith weak derivatives are also square-integrable for 0 ≤ i ≤ m. For s > 0 that is not
an integer, we denote by Hs(Ω) the fractional order Sobolev space. For τ ≥ 0, Hτ

0 (Ω) represents the
closure inHτ (Ω) of the space of C∞ functions with compact supports in Ω, andH−τ (Ω) represents the
dual space ofHτ

0 (Ω). Let L2(Ω) := H0(Ω). We shall denote the norm ‖ · ‖L2(Ω) by ‖ · ‖when there is no
ambiguity about the underlying domain.

By applying Green’s formulas, the variational formulation for the Poisson problem (2.1) can be
written as:

a(u, v) :=

∫
Ω
∇u∇vdx =

∫
Ω
fvdx = (f, v), ∀v ∈ H1

0 (Ω). (2.2)
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The finite element discretized Poisson problem then reads: find the solution un ∈ V k
n of the Poisson

equation
(∇un,∇v) =〈f, v〉 ∀v ∈ V k

n . (2.3)

Figure 1. Linear hat basis function in 2D

Denote, φ be the 2D linear Lagrange basis functions as can be seen from the figure (1). Then we can
define the basic finite element algorithm as follows:

Algorithm 1 2D Finite Element Algorithm.

Step 1: Create a triangulation : T of Ω ⊂ R2 and define the corresponding space of continuous piece-
wise linear functions Vh,0 with the hat function basis {φi}nii=1.

Step 2: Generate the ni × ni stiffness matrix S and the ni × 1 load vector b, with entries

Sij =

∫
Ω
∇φj .∇φi dx, bi =

∫
Ω
fφi dx.

Step 3: Solve the linear system of equations

Aξ = b

Step 4: Write the finite element solution uh as a linear combination of hat basis functions

uh =

ni∑
j=1

ξj φj

2.2. Well-posedness and Regularity.

Lemma 2.1. (Lax-Milgram) Let V be a Hilbert space, let a(·, ·) : V ×V −→ R be a continuous V elliptic bilinear

form, and f : V −→ R be a continuous linear form. Then the abstract variational problem: Find u such that

u ∈ V and v ∈ V a(u, v) = f(v) (2.4)
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has one and only one solution.

For a function u ∈ H1
0 (Ω), applying the Poincaré-type inequality [23], it follows

a(u, u) = ‖∇u‖2 = |u|2H1(Ω) ≥ C‖u|
2
H1(Ω).

Thus, for any f ∈ H−1(Ω), we have by the Lax-Milgram Theorem that Equation (2.2) admits a
unique solution u ∈ H1

0 (Ω).

The regularity of the solution u depends on the given data f and the domain geometry [25], [26].
Let β = mini(π/αi, 1) where αi are interior angles of the polygonal domain Ω. By the regularity theory,
the solution u is in H1+β(Ω). Thus the Poisson Equation (2.1) holds the following regularity estimate

‖u‖H1+β(Ω) ≤ C‖f‖H−1+β(Ω). (2.5)

2.3. Error Estimates. Suppose that the mesh Tn consists of quasi-uniform triangles with size h. The
interpolation error estimate on Tn (see e.g., [24]) for any v ∈ Hs(Ω), s > 1,

‖v − vI‖Hl(Ω) ≤ Chs−l‖v‖Hs(Ω), (2.6)

where l = 0, 1 and vI ∈ V k
n represents the nodal interpolation of v.

Lemma 2.2. For a given f ∈ H−1(Ω), let u be the solution of the Poisson problem (2.1), and un be the linear

finite element approximation (2.3) on a convex polygonal domain with quasi-uniform meshes. Then it follows

||u− un‖[H1(Ω)] ≤ Ch. (2.7)

Proof. We first derive an important orthogonality result for projections. Let u and uh be the solution of
continuous and discrete equations respectively i.e.

a(u, v) = 〈f, v〉 ∀v ∈ H1
0 (Ω),

a(uh, v) = 〈f, v〉 ∀v ∈ Vh.

Choosing v ∈ Vh in both equations and subtracting them, we then get an important orthogonality

a(u− uh, vh) = 0 ∀vh ∈ Vh, (2.8)

which implies the following optimality of the finite element approximation

‖ ∇(u− uh) ‖= inf
vh∈Vh

‖ ∇(u− vh) ‖ (2.9)

Now we replace vh by the linear nodal interpolation uI in the equation (2.9) which is well defined
by the embedding theorems. By (2.9), we have

‖u− un‖[H1(Ω)] ≤ C ‖ ∇(u− uh) ‖ ≤ C ‖ ∇(u− uI) ‖ . Ch ‖ u ‖2 . Ch ‖ f ‖−1≤ Ch.
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Here the third inequality is true due to the interpolation error estimate while the fourth inequality is
due to the regularity estimate. �

Lemma 2.3. For a given f ∈ H−1(Ω), let u be the solution of the Poisson problem (2.1), and un be the linear

finite element approximation (2.3) on a convex polygonal domain with quasi-uniform meshes. Then it follows

‖u− un‖[L2(Ω)] ≤ Ch2. (2.10)

Now we estimate ‖ u− uh ‖. The main technical is the combination of the duality argument and the
regularity result. It is known as the Aubin-Nitsche duality argument or simply “Nitsche’s trick”.

Proof. By the H2 regularity result, there exist w ∈ H2(Ω) ∩H1
0 (Ω) such that

a(w, v) = (u− uh, v), for all v ∈ H1
0 (Ω), (2.11)

and ‖ w ‖2 ≤ C ‖ u− uh ‖ . choosing v = u− uh in (2.11), we get

‖ u− uh ‖2 = a(w, u− uh)

= a(w − wI , u− uh)

≤‖ ∇(w − wI) ‖ ‖ ∇(u− uh) ‖ (Orthogonality)

. h ‖ w ‖2 ‖ ∇(u− uh) ‖

. h ‖ u− uh ‖‖ ∇(u− uh) ‖ (regularity).

Cancelling one ‖ u− uh ‖, from both sides we get

‖ u− uh ‖≤ Ch ‖ ∇(u− uh) ‖. h2 ‖ u ‖2 .

�

For the estimate inH1 norm, when u is smooth enough, we can obtain the optimal first-order estimate.
But for L2 norm, the duality argument requires H2 elliptic regularity, which in turn requires that the
polygonal domain be convex. In fact, for a non-convex polygonal domain, it will usually not be true
that ‖ u− uh ‖= O(h2) even if the solution u is smooth.

We are interested in the case when Ω ⊂ R2 is concave, and thus the solution of Equation (2.1)
possesses corner singularities at vertices of Ω where some of the interior angles are greater than π. It is
easy to see that when the maximum angle is larger than π, i.e., Ω is concave, u 6∈ H2(Ω), and thus the
finite element approximation based on quasi-uniform grids will not produce the optimal convergence
rate. Thus we introduce graded meshes near the singular vertices to recover the optimal convergence
rate.
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θ = 0

θ = ω

Ω

•
Q

Figure 2. Domain Ω containing one re-entrant corner.

3. Finite Element Method For Non-Convex Polygonal Domains

In this section, we shall introduce the weighted Sobolev space Kma (G) and provide preliminary
results to carry out analysis on graded meshes. On details of weighted Sobolev spaces used here, we
refer readers to [16], [4], [7]. Then we use the graded mesh algorithm to improve the convergence
rates. To this end, we start with the definition of the weighted Sobolev space.

3.1. Weighted Sobolev Spaces. Let, Qi, i = 1, · · · , N are the vertices of domain Ω. Let ri = ri(x,Qi)

be the distance from x to Qi and let

ρ(x) = Π1≤i≤Nri(x,Qi). (3.1)

Let a = (a1, · · · , ai, · · · , aN ) be a vector with ith component associated with Qi. We denote t + a =

(t+ a1, · · · , t+ aN ), so we have

ρ(x)(t+a) = Π1≤i≤Nr
(t+a)
i (x,Qi) = Π1≤i≤Nr

t
i(x,Qi)Π1≤i≤Nr

a
i (x,Qi) = ρ(x)tρ(x)a.

Then, we introduce the Kondratiev-typeweighted Sobolev spaces for the analysis of the Poisson problem
(1.1).

Definition 3.1. (Weighted Sobolev spaces) For a ∈ R, m ≥ 0, and G ⊂ Ω, we define the weighted Sobolev

space

Kma (G) := {v| ρ|ν|−a∂νv ∈ L2(G),∀ |ν| ≤ m},

where the multi-index ν = (ν1, ν2) ∈ Z2
≥0, |ν| = ν1 + ν2, and ∂ν = ∂ν1x ∂

ν2
y . The Kma (G) norm for v is defined

by

‖v‖Kma (G) =
( ∑
|ν|≤m

∫∫
G
|ρ|ν|−a∂αv|2dxdy

) 1
2 .

Remark 3.2. According to Definition 3.1, in the region that is away from the corners, the weighted space Kma
is equivalent to the Sobolev space Hm. In the neighborhood of Qi, the space Kma (Bi) is the equivalent to the

Kondratiev space [16], [17], [18],

Kmai(Bi) := {v| r|ν|−aii ∂αv ∈ L2(Bi), ∀ |ν| ≤ m},
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where Bi ⊂ Ω represents the neighborhood of Qi satisfying Bi ∩Bj = ∅ for i 6= j.

3.2. GradedMesh. Following [7], [4], we now construct a class of suitable gradedmeshes to obtain the
optimal convergence rate of the finite element solution in the presence of the corner singularity in the
solution of (1.1). Starting from an initial triangulation of Ω, we divide each triangle into four triangles
to construct such a sequence of triangulations, which is similar to the regular midpoint refinement.
The difference is, in order to attack the corner singularity when we perform the refinement, we move
the middle points of edges towards the singular vertex of Ω. Here a singular vertex vi means Qi > π.
We now present the construction of graded meshes to improve the convergence rate of the numerical
approximation.

Algorithm 2 Graded Mesh Algorithm
Let T be a triangulation of Ω with shape-regular triangles. Recall that Qi, i = 1, ..., N are the
vertices of Ω. Let AB be an edge in the triangulation T with A and B as the endpoints.Then, in a
graded refinement, a new node D on AB is produced according to the following conditions:

(1) (Neither A nor B coincides with Qi.) We choose D as the midpoint (|AD| = |BD|).
(2) (A coincides with Qi.). We choose r such that |AD| = κQi |AB|, where κQi ∈ (0, 0.5) is a

parameter that will be specified later. See Figure 4 for example.
Then, the graded refinement, denoted by κ(T ), proceeds as follows. For each triangle T ∈ T , a new
node is generated on each edge of T as described above. Then, T is decomposed into four small
triangles by connecting these new nodes. Given an initial mesh T0 satisfying the condition above,
the associated family of graded meshes Tn, n ≥ 0 is defined recursively Tn+1 = κ(Tn).

x2

x0

x1 x2

x0

x1 x12

x01 x02

x2

x0

x1 x12

x01 x02

x2

x0

x1 x12

x01 x02

Figure 3. First row: the initial triangle and themidpoint refinement; second row: graded
refinements (κQi < 0.5).

Given a grading parameter κQi , Algorithm 2 produces smaller elements nearQi for better approxima-
tion of singular solution. It is an explicit construction of graded meshes based on recursive refinements.
See also [19], [4], [15], [7] and references therein for more discussions on the graded mesh.
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A D B A D B

Figure 4. The new node on an edgeAB. (left): A 6= Qi andB 6= Qi (midpoint); (right):
A = Qi (|AB| = κQi |AB|, κQi < 0.5).

Note that after n refinements, the number of triangles in the mesh Tn is O(4n), so we denote the
mesh size of Tn by

h = 2−n. (3.2)

In Algorithm 2, we choose the parameter κQi for each vertex Qi as follows. Given the degree of
polynomials k, we choose

κQi = 2
− θ
ai

(
≤ 1

2

)
, (3.3)

where ai > 0 and θ could be any possible constants satisfying

ai ≤ θ ≤ min{k,m}. (3.4)

In (3.4), if we take ai = θ, the grading parameter κQi = 1
2 .

Figure 5 shows how the graded mesh refinements work on a domain with four re-entrant corners
with gradient parameter κ = 0.1 for three consecutive mesh refinements for a given initial mesh 4(a)

3.3. Error Estimates.

Lemma 3.3. Let T(0) ∈ T0 be an initial triangle of the triangulation Tn in Algorithm 2 with grading parameters

κQi given by Equation (3.3). Form ≥ 1, k ≥ 1, we denote vI ∈ V k
n the nodal interpolation of v ∈ Km+1

a+1 (Ω). If

T̄(0) does not contain any vertices Qi, i = 1, · · · , N , then

‖v − vI‖H1(T(0))
≤ Chmin{k,m}

where h = 2−n.

Proof. If T̄0 does not contain any vertices Qi of the domain Ω, we have v ∈ Km+1
a+1 (Ω) ⊂ Hm+1(T(0)) (see

Remark 3.2) and the mesh on T(0) is quasi-uniform (Algorithm 2) with size O(2−n). Therefore, based
on the standard interpolation error estimate, we have

‖v − vI‖H1(T(0))
≤ Chmin{k,m}‖v‖Hm+1(T(0))

. (3.5)

�

We now study the interpolation error in the neighborhood Qi, i = 1, · · · , N . In the rest of this
subsection, we assume T(0) ∈ T0 is an initial triangle such that the ith vertex Qi is a vertex of T(0). We
first define mesh layers on T(0) which are collections of triangles in Tn.
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(a) (b)

(c) (d)

Figure 5. (a) Initial mesh; (b) one refinement; (c) two refinements; (d) three refinements.

Definition 3.4. (Mesh layers) Let T(t) ⊂ T(0) be the triangle in Tt, 0 ≤ t ≤ n, that is attached to the singular

vertex Qi of T(0). For 0 ≤ t < n, we define the tth mesh layer of Tn on T(0) to be the region Lt := T(t) \ T(t+1);

and for t = n, the nth layer is Ln := T(n). See Figure 6 for example.

Qi Qi

L0

L1

Qi

L0

L1
L2

Figure 6. The initial triangle T(0) with singular vertex Qi and mesh layers.

Remark 3.5. The triangles in Tn constitute n mesh layers on T(0). According to Algorithm 2 and the choice of

grading parameters κQi given by Equation (3.3), the mesh size in the tth layer Lt is

O(κtQi2
t−n). (3.6)
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Meanwhile, the weight function ρ in Equation (3.1) satisfies

ρ = O(κtQi) in Lt (0 ≤ t < n) and ρ ≤ CκnQi in Ln. (3.7)

Although the mesh size varies in different layers, the triangles in Tn are shape regular. In addition,
using the local Cartesian coordinates such that Q is the origin, the mapping

Bt =

κ−tQi 0

0 κ−tQi

 , 0 ≤ t ≤ n (3.8)

is a bijection between Lt and L0 for 0 ≤ t < n and a bijection between Ln and T(0). We call L0 (resp.
T(0)) the reference region associated to Lt for 0 ≤ t < n (resp. Ln).

With the mapping (3.8), we have that for any point (x, y) ∈ Lt, 0 ≤ t ≤ n, the image point
(x̂, ŷ) := Bt(x, y) is in its reference region. We then introduce the following result from [20, Lemma
4.5].

Remark 3.6. For 0 ≤ t ≤ n, given a function v(x, y) ∈ Kla(Lt), the function v̂(x̂, ŷ) := v(x, y) belongs to

Kla(L̂), where (x̂, ŷ) := Bt(x, y), L̂ = L0 for 0 ≤ t < n, and L̂ = T(0) for t = n. Then, it follows

‖v̂(x̂, ŷ)‖Kla(L̂) = κ
t(a−1)
Qi

‖v(x, y)‖Kla(Li).

We then derive the interpolation error estimate in each layer.

Lemma 3.7. For k ≥ 1,m ≥ 1, set κQi in Equation (3.3) with θ satisfying (3.4) for the graded mesh on T(0).

Let h := 2−n, then in the tth layer Lt on T(0), 0 ≤ t < n, if vI ∈ V k
n be the nodal interpolation of v ∈ Km+1

a+1 (Ω),

it follows

|v − vI |H1(Lt) ≤ Ch
θ‖v‖Km+1

ai+1(Lt)
(3.9)

Proof. For Lt associated with Qi, 0 ≤ t < n, the space Km+1
ai+1(Lt) is equivalent to Hm+1(Lt). Therefore,

v is a continuous function in Lt. For any point (x, y) ∈ Lt, let (x̂, ŷ) = Bt(x, y) ∈ L0. For v(x, y) in Lt,
we define v̂(x̂, ŷ) := v(x, y) in L0.

Using the standard interpolation error estimate, the scaling argument, the estimate in (3.6), and the
mapping in (3.8), we have

|v − vI |H1(Lt) = |v̂ − v̂I |H1(L0) ≤ C2(t−n)µ‖v̂‖Km+1
ai+1(L0) ≤ C2(t−n)µκaitQi ‖v‖Km+1

ai+1(Lt)
,

where we have used Lemma 3.6 in the last inequality. Since κQi = 2
− θ
ai , so we have κaitQi = 2−θt. Set

µ = min{k,m}, by θ ≤ µ from (3.4) and t < n, we have 2(n−t)(θ−µ) < 20 = 1. Therefore, we have the
estimate

|v − vI |H1(Lt) ≤ C2(t−n)µ−θt‖v‖Km+1
ai+1(Lt)

= C2−nθ2(n−t)(θ−µ)‖v‖Km+1
ai+1(Lt)

≤ C2−nθ‖v‖Km+1
ai+1(Lt)

≤ Chθ‖v‖Km+1
ai+1(Lt)

.
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�

Before deriving the interpolation error estimate in the last layer Ln on T(0), we first introduce the
following results.

Remark 3.8. For ∀v ∈ Kla(Ln), if 0 ≤ l′ ≤ l and a′ ≤ a, then it follows

‖v‖Kl′
a′ (Ln)

≤ Cκn(a−a′)
Qi

‖v‖Kla(Ln). (3.10)

Remark 3.9. For ∀v ∈ Kla(Ln) , if a ≥ l, then it follows that

‖v‖Hl(Ln) ≤ Cκ
n(a−l)
Qi

‖v‖Kla(Ln). (3.11)

Lemma 3.10. For k ≥ 1,m ≥ 1, set κQi in (3.3) with θ satisfying (3.4) for the graded mesh on T(0). Let

h := 2−n, then in the nth layer Ln on T(0) for n sufficiently large, if vI ∈ V k
n be the nodal interpolation of

v ∈ Km+1
a+1 (Ω), it follows

|v − vI |H1(Ln) ≤ Chθ‖v‖Km+1
ai+1(Ln) (3.12)

Proof. Recall the mapping Bn in (3.8). For any point (x, y) ∈ Ln, let (x̂, ŷ) = Bn(x, y) ∈ T(0).
Let η : T(0) → [0, 1] be a smooth function that is equal to 0 in a neighborhood of Qi, but is equal to 1

at all the other nodal points in T0. For a function v(x, y) in Ln, we define v̂(x̂, ŷ) := v(x, y) in T(0). We
take w = ηv̂ in T(0). Consequently, we have for l ≥ 0

‖w‖2Kl1(T(0))
= ‖ηv̂‖2Kl1(T(0))

≤ C‖v̂‖2Kl1(T(0))
, (3.13)

where C depends on l and the smooth function η. Moreover, the condition v̂ ∈ Km+1
ai+1

(T(0)) with and
m ≥ 2 implies v̂(Q) = 0 (see, e.g., [15, Lemma 4.7]). Let wÎ be the nodal interpolation of w associated
with the mesh T0 on T(0). Therefore, by the definition of w, we have

wÎ = v̂Î = v̂I in T(0). (3.14)

Note that theKl1 norm and theH l norm are equivalent forw on T(0), sincew = 0 in the neighborhood
of the vertexQi. Let r be the distance from (x, y) toQi, and r̂ be the distance from (x̂, ŷ) toQi. Then, by
the definition of the weighted space, the scaling argument, Equations (3.13), (3.14), and (3.7), we have

|v − vI |2H1(Ln) ≤ C‖v − vI‖
2
K1

1(Ln)

≤ C
∑
|ν|≤1

‖r(x, y)|ν|−1∂ν(v − vI)‖2L2(Ln)

≤ C
∑
|ν|≤1

‖r̂(x̂, ŷ)|ν|−1∂ν(v̂ − v̂I)‖2L2(T(0))
≤ C‖v̂ − w + w − v̂I‖2K1

1(T(0))

≤ C
(
‖v̂ − w‖2K1

1(T(0))
+ ‖w − v̂I‖2K1

1(T(0))

)
= C

(
‖v̂ − w‖2K1

1(T(0))
+ ‖w − wÎ‖

2
K1

1(T(0))

)
≤ C

(
‖v̂‖2K1

1(T(0))
+ ‖w‖2Km+1

1 (T(0))

)
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≤ C
(
‖v̂‖2K1

1(T(0))
+ ‖v̂‖2Km+1

1 (T(0))

)
= C

(
‖v‖2K1

1(Ln) + ‖v‖2Km+1
1 (Ln)

)
≤ Cκ2nai

Qi
‖v‖2Km+1

ai+1(Ln)

≤ C2−2nθ‖v‖2Km+1
ai+1(Ln)

≤ Ch2θ‖v‖2Km+1
ai+1(Ln)

,

where the ninth and tenth relationships are based on Remark 3.6 and Remark 3.8, respectively. This
completes the proof of (3.9).

�

Lemma 3.11. [21] Let T0 be an initial triangle of the triangulation Tn in Algorithm 2 with grading parameters

κQi in (3.3). For k ≥ 1,m ≥ 1, if vI ∈ V k
n be the nodal interpolation of v ∈ Km+1

a+1 (Ω) . Then, it follows the

following interpolation error

‖v − vI‖H1(Ω) ≤ Chθ‖v‖Km+1
a+1 (Ω) (3.15)

where h := 2−n, and θ satisfying (3.4).

Proof. By summing the estimates in Lemmas 3.3, 3.7, and 3.10, we have

‖v − vI‖2H1(Ω) =
∑

T(0)∈T0

‖v − vI‖2H1(T(0))
≤ Ch2θ‖v‖2Km+1

a+1 (Ω)

�

Recall that the threshold of grading parameter κQi in obtaining the optimal convergence rates, we
always assume 1 ≤ k ≤ m in the following discussions, otherwise we just replace k by min{k,m}. In
this section, we assume that f ∈ Km−1

a−1 (Ω) with 0 < a < β0, where β0 = ( πω1
, · · · , π

ωN
). The regularity

estimate [4] for the Poisson problem (1.1) on weighted Sobolev space, follows that

‖u‖Km+1
b+1 (Ω) ≤ C‖f‖Km−1

b−1 (Ω), (3.16)

Since the bilinear functional of the Poisson equation (1.1) is coercive and continuous on V k
n , so we

have by Céa’s Theorem,
‖u− un‖H1(Ω) ≤ C inf

v∈V kn
‖u− v‖H1(Ω). (3.17)

Recall that β0 = mini{βi0} = π
ω are the thresholds corresponding to the largest interior angle ω, then we

have the following result.

Theorem 3.12. [22] [27] Set the grading parameters κQi = 2
− θ
ai with 0 < ai < βi0, θ being any constant

satisfying ai ≤ θ ≤ k, and θ′ = min {max{θ, β0}, k} satisfying ai ≤ θ′ ≤ k. Let un ∈ V k
n be the solution of

finite element solution of Equation (2.3), and u is the solution of the Poisson problem (1.1), then it follows

‖u− un‖H1(Ω) ≤ Chθ
′ (3.18)
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where h := 2−n.

Proof. : By Equation (3.17) and the interpolation error estimates in Lemma 3.11 under the regularity
result in Equation (3.16) and κQi = 2

− θ
ai , we have the estimate

‖u− un‖H1(Ω) ≤ C‖u− uI‖H1(Ω) ≤ Chθ
′
.

�

Theorem 3.13. [22] Set the grading parameters κQi = 2
− θ
ai with 0 < ai < βi0, θ being any constant satisfying

ai ≤ θ ≤ k, and θ′ = min {max{θ, β0}, k} satisfying ai ≤ θ′ ≤ k. Let un ∈ V k
n be the solution of finite

element solution of Equation (2.3), and u is the solution of the Poisson problem (1.1), then it follows

‖u− un‖ ≤ Chmin{2θ′,θ′+1}, (3.19)

where h := 2−n.

Proof. Consider the Poisson problem

−∆v = u− un in Ω, v = 0 on ∂Ω. (3.20)

Then we have

‖u− un‖2 = (∇(u− un),∇v). (3.21)

Subtract Equation (2.3) from weak formulation of Equation (1.1), we have the Galerkin orthogonality,

(∇(u− un),∇φ) = 0, ∀φ ∈ V k
n . (3.22)

Setting φ = vI ∈ V k
n the nodal interpolation of v and subtract Equation (3.22) from Equation (3.21), we

have

‖u− un‖2 = (∇(u− un),∇(v − vI)) ≤ ‖u− un‖H1(Ω)‖v − vI‖H1(Ω). (3.23)

Similarly, the solution v ∈ K2
b′+1(Ω) satisfies the regularity estimate

‖v‖K2
a′+1

(Ω) ≤ C‖u− un‖K0
a′−1

(Ω) ≤ C‖u− un‖, (3.24)

where the ith entry of a′ satisfying a′i = min {ai, 1}. By Lemma 3.11 with grading parameter κQi = 2
− θ
′
ai

again, we have the interpolation error

‖v − vI‖H1(Ω) ≤ Chmin{θ′,1}‖v‖K2
b′+1

(Ω). (3.25)

The L2 error estimate in Equation (3.18) can be obtained by combining Equations (3.23), (3.24), and
(3.25). �
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4. Numerical Results

In this section, we present numerical tests to validate our theoretical predictions for the proposed
finite element algorithm solving the Poisson problem under uniform and graded meshes. If an exact
solution (or vector) v is unknown, we use the following numerical convergence rate

R = log2

|vj − vj−1|[Hl(Ω)]

|vj+1 − vj |[Hl(Ω)]

, (4.1)

l = 0, 1 as an indicator of the actual convergence rate. Here vj denotes the finite element solution on
the mesh Tj obtained after j refinements of the initial triangulation T0. All the numerical examples are
tested on MATLAB R2022a in MacBook Air (M1, 2020) with 8 GB memory by adapting iFEMMATLAB
package [1].

Example 4.1. In this example, we solve the Poisson equation (1.1) using linear finite elements. We consider a

convex polygonal domain as illustrated in figure (7a) and apply a Dirichlet boundary condition u = 0 on ∂Ω, with

f = 2. As we increase the number of uniform mesh refinements, both theH1 and L2 errors gradually decrease.

We have numerically obtained the H1 convergent rate R = 0.9941 and the L2 convergent rate R = 1.9919,

which are very close to the theoretical convergent rates R = 1 and R = 2, respectively, as expected based on

Lemma 2.2 and Lemma 2.3. Figures (7b) and (7c) depict two consecutive uniform mesh refinements starting

from the initial mesh shown in figure (7a). Finally, figure (8) displays the numerical solution after seven mesh

refinements, observed from two different view angles.

(a) (b) (c)

Figure 7. (a) Initial mesh; (b) First mesh refinement; (c) Second mesh refinement.
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Table 1. Errors and convergent rates under octagon domain on quasi-uniform meshes.

j H1 error H1 rate L2 error L2 rate

2 2.9515 - 1.4257 -

3 2.4415 0.2737 0.7706 0.8876

4 1.4404 0.7613 0.2491 1.6291

5 0.7853 0.8751 0.0714 1.8027

6 0.4123 0.9294 0.0192 1.8917

7 0.2122 0.9585 0.0050 1.9381

8 0.1080 0.9749 0.0013 1.9636

9 0.0546 0.9846 3.2681e-04 1.9782

10 0.0275 0.9905 8.2455e-05 1.9868

11 0.0138 0.9941 2.0729e-05 1.9919

(a) (b)

Figure 8. Numerical solution after 7 uniform mesh refinements.

Example 4.2. In this example, we solve the Poisson equation on a non-convex domain (see figure 9a) with seven

re-entrant corners. with f = 1
2 for a sequence of grading parameters κ = 0.1, 0.2, 0.3, 0.4, 0.5 where κ = 0.5 is

the uniform mesh refinements. In the presence of re-entrant corners uniform mesh refinements (i.e. κ = 0.5 )

won’t be able to capture the singular behavior of the solution. Thus as you can see from Tables 2 and 3, after 10

mesh refinements L2 convergent rate is 1.2989 and the H1 convergent rate is 0.6842 which is not the optimal

convergent rate. However, with the graded mesh refinements we were able to obtain the optimal convergent rate

as you can see from tables 3 and 4. For examples, in table 2, numerical L2 convergent rate R = 1.9868 for

κ = 0.1 after 10 mesh refinements. This is in strong agreement with the Theorem 3.12 where the theoretical L2
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convergent rate isR = 2 under L2 norm. Moreover, in table 4, numerical H1 convergent rate isR = 0.9943 for

κ = 0.1 after 10 mesh refinements. This is also in strong agreement with the Theorem 3.13 where the theoretical

H1 convergent rate isR = 1. Finally, figure (4) displays the numerical solution after seven mesh refinements,

observed from two different view angles.

(a) (b) (c)

Figure 9. Initial mesh (a) with two consecutive graded mesh refinements (b) and (c)
for κ = 0.1.

Table 2. L2 convergent rates for different gradient parameters κ for consecutive mesh
levels j.

j κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

3 1.1870 1.4085 1.5756 1.6989 1.7470

4 1.7042 1.7933 1.8129 1.7709 1.7035

5 1.8423 1.8951 1.8884 1.7925 1.6070

6 1.9167 1.9433 1.9199 1.7856 1.4985

7 1.9587 1.9677 1.9371 1.7695 1.4104

8 1.9793 1.9790 1.9474 1.7514 1.3523

9 1.9865 1.9827 1.9537 1.7346 1.3182

10 1.9868 1.9818 1.9568 1.7204 1.2989
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Table 3. H1 convergent rates for different gradient parameters κ for consecutive mesh
levels j.

j κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5

3 0.7343 0.5992 0.7016 0.8333 0.8501

4 0.9190 0.9052 0.8728 0.8742 0.8533

5 0.9362 0.9577 0.9375 0.9031 0.8319

6 0.9628 0.9759 0.9594 0.9124 0.7986

7 0.9811 0.9857 0.9693 0.9123 0.7629

8 0.9904 0.9906 0.9747 0.9083 0.7305

9 0.9938 0.9924 0.9779 0.9027 0.7041

10 0.9943 0.9924 0.9797 0.8964 0.6842

(a) (b)

Figure 10. Numerical solution after 8 graded mesh refinements with κ = 0.1.

5. Conclusion

This work lays the groundwork for future research in solving more complex partial differential
equations. It can also be used as a standard for evaluating the effectiveness of other numerical methods.
We anticipate that it may be feasible to expand this method to solve the 3D Poisson equation, especially
when dealing with singular solutions. This is currently the focus of our ongoing research. In summary,
the proposed method offers a promising approach for efficiently and accurately solving elliptic partial
differential equations, even when corner singularities are present.
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