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Abstract. This paper introduces novel findings in the field of fixed-point theory for S-metric spaces that
make use of the tri-simulation function. In addition, we offer real-world implementations of integral
equations to improve outcomes. Our findings represent advancements and improvements over earlier
scholars’ writings.
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1. Introduction

A subfield of mathematics known as fixed-point results focuses on the study of specific points at
which functions become fixed. A fixed point of a function is a point at which the output of the function
is identical to the input. This is a straightforward definition of the term. The public first heard about
fixed-point theory in the latter half of the 19th and early 20 th centuries. It is several mathematicians
contributed to the generalization of the concept of metric spaces when they first introduced it in 1992 [1].
Dhage, British Columbia, developed a generalized metric space and mapping with a fixed point. In
1950 E. Michael, a pioneer in the field of quasi-metric spaces, relaxed the triangle inequality constraint
that is present in metric spaces, which made it possible to construct distance measures that were more
flexible. In 1960, Lotfi A. Zadeh presented fuzzy metric spaces, which are an extension of the concept
of a metric space that allows for degrees of membership rather than rigid distances [13]. Around the
same time, others developed fuzzy metric spaces. George A. Hunt, Bruce J. Pettis, and others developed
probabilistic metric spaces in the middle of the 20th century. These spaces include probability measures
in the framework of metric spaces in order to model uncertainty. Felix Hausdorff first introduced
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S-metric spaces as a generalization of metric spaces in the early 20 th century. They are distinguish by
the substitution of an S-metric for the metric function, which enables them to satisfy a modified set of
axioms. S. Sedghi and N. Shobe presented the idea of S-metric spaces in 2007 [9]. S-metric spaces are a
generalization of metric spaces. Sedghi’s research laid the foundation for subsequent investigations in
this field. In 2012 [10], S. Sedghi and N. Shobe extended the theory of S-metric spaces by investigating
a variety of features and applications. Their combined efforts led to a deeper understanding of this
mathematical framework and its potential applications in various sectors. Generally, a wide range
of disciplines can use the fixed-point theory as a powerful tool to prove the existence and stability of
solutions. We have established generalizations and provided a fixed-point theorem for self-mapping
on complete S-metric spaces. These generalizations have found applications in a variety of branches of
mathematics and computer science, as well as in engineering and physics.

2. Preliminaries

This section will delve into a variety of definitions and outcomes previously explored by other
authors. This section will benefit the reader because it will help them understand the primary findings
of this research.

Definition 2.1. [11] Assume that the set X 6= ∅ and S : X3 → [0,∞) to be a function that meets all of the

criteria for any µ, v, ω, a ∈ X .

1- S(µ, v, ω) ≥ 0

2- S(µ, v, ω) = 0 if and only if µ = v = ω;

3- S(µ, v, ω) ≤ S(µ, µ, a) + S(v, v, a) + S(ω, ω, a).

Then, S is called an S-metric function on X and the pair (X,S) is called on S-metric space.

Lemma 2.1. [11] A S-metric space is considered symmetric if S(µ, µ, v) = S(v, v, µ).

Definition 2.2. [11] Consider the (X,S) be S-metric space, A sequence {µn} of X is defined as follows;

1. If for any µ ∈ A, there is r > 0 in which Bs(µ, r) ⊂ A, then the set A is said an open set of X ;

2. A set A of X is called to be S-bounded if there is r > 0 in which S(µ, µ, v) < r for any µ, v ∈ A;

3. A sequence {µn} in X converges to X if and only if S (µn, µn, µ)→ 0 as n→∞, for any ε > 0, there

is n0 ∈ N in which S (µn, µn, µ) < ε for all n ≥ n0 and we denote this by limn→∞ µn = µ;

4. A sequence {µn} inX is called a Cauchy sequence if ∀ε > 0, there is n0 ∈ N in which S (µn, µnµm) <

ε for any n,m ≥ n0;

5. If every Cauchy sequence is convergent in S-metric space, then it is termed the complete space.

Definition 2.3. [5] Consider that ζ : [0,∞)× [0,∞)→ R be mapping then ζ called a simulation function if

while fulfilling the following requirements;
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1. ζ(0, 0) = 0;

2. ζ(x, y) ≤ 0, for all x, y > 0;

3. If {xn} , {yn} are sequences in (0,∞) inwhich limn→∞ xn = limn→∞ yn > 0 then limn→∞ sup ζ (xn, yn) <

0.

Definition 2.4. [2] Consider that T : R3
+ → R then T said to be a tri-simulation function if which fulfills a

requirements listed below:

T1)T (z, y, x) < x− yz ∀x, y > 0, z ≥ 0;

T2 ) If {xn} , {yn} and {zn} are sequence in (0,∞) in which yn < xn for any n ∈ N

limn→∞ zn ≥ 1 and limn→∞ yn = limn→∞ xn > 0 then limn→∞ supT (xn, yn, zn) < 0.

Example 2.1. M = R and the function S : M3 → [0,∞) be defined as : S(a, b, c) = |a − c| + |a + c − 2b|

∀a, b, c ∈ R, then the pair (M,S) is an S-metric space.

Example 2.2. Let X = Rn and ‖.‖benormonX then S(a, b, c) = ‖a− c‖+ ‖b− c‖ is an S-metric on X . In

the case when X = R · S(a, b, c) = |a− c|+ |b− c| is called the an usual S-metric on X .

Definition 2.5. [5] Consider that metric space (M,d), a mapping T :M →M . Then, T is an Z-contractive

mapping in relates ζ ∈ Z if

ζ(d(Tµ, Tv), d(µ, v)) ≥ 0,∀µ, v ∈M.

Theorem 2.1. [8] Consider a space (M,d) is metric space and the mapping T :M →M , take into consideration

the next set of circumstances:

1. α(µ, v)d(Tµ, Tv) ≤ ψ(d(µ, v)) for any µ, v ∈M , such that ψ : R+ → R+is non-decreasing function

in which
∑∞

n=1 ψ
n(t) <∞, ∀t > 0 and α :M ×M → R+;

2. There is µ0 ∈M in which α (µ0, Tµ0) ≥ 1;

3. T is α-admissible, That is, α(µ, v) ≥ 1 then α(Tµ, Tv) ≥ 1,∀µ, v ∈M .

Consequently, there is a fixed point for T .

Definition 2.6. [2] Consider that a metric space (M,d) and the mapping f : M → M is said to be a

αZ-contraction in relates T ∈ z if ∀µ, v ∈M

T (α(µ, v), d(fµ, fv), d(µ, v)) ≥ 0, where α :M ×M → R+.

Definition 2.7. [2] Consider that (M,d) is ametric space and themapping f :M →M andα :M×M → R+is

called α-permissible if ∀m ≤ n ≤ 1 and µ, v ∈M .

α(µ, v) ≥ 1, then α (fnµ, fmv) ≥ 1.
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Definition 2.8. [2] Consider that a metric space (M, d) and f :M →M and α :M ×M → R+is said to be

α-orbital permissible if

∀m ≤ n ≤ 1, µ ∈M, α(µ, fµ) ≥ 1 then α (fnµ, fmµ) ≥ 1.

Definition 2.9. [12] Consider thatM is a nonempty set, f :M →M is a mapping. Then, α :M×M → R+is

called α -admissible if for any µ, v ∈M such that

α(µ, v) ≥ 1 then α(fµ, fv) ≥ 1.

Theorem 2.2. [7] On a complete metric space, any Z - contraction has a single fixed point.

Theorem 2.3. [4] Consider that (X, d) be a metric space and let T : X → X be an αZ-contraction in relates ζ .

Consider that.

i. T is α-admissible ;

ii. there is µ0 ∈ X in which α (µ0, Tµ0) ≥ 1;

iii. T is continuous.

Then there is µ0 ∈ X in which Tµ = µ.

3. Main Results

Here under the context of S-metric space, we introduce new definition about be αZ - contraction, α -
admissible, triangular α-admissible and α-permissible. Moreover, the uniqueness of the fixed point is
studies.

Definition 3.1. Consider thatM is self mapping on S-metric space (X,S) thenM is called to be αZ - contraction

in relates T ∈ Z if ∀µ, v ∈ X

T (α(µ, µ, v), S (Mµ,Mµ,Mv) , S(µ, µ, v)) ≥ 0 (3.1)

where α : X ×X → [0,∞).

Remark 3.1. IfM is an αZ-contraction for some T ∈ Z then, inview of the condition (T1) we have

α(µ, µ, v) · S (Mµ,Mµ,Mv) < S(µ, µ, v) ∀µ, v ∈ X.

Definition 3.2. Let M 6= ∅ on S-metric space (X,S) and M : X → X be a mapping and it is called α -

admissible if Where α : X ×X → [0,∞),∀µ.v ∈ X .

α(µ, µ, v) ≥ 1 then α(Mµ,Mµ,Mv) ≥ 1.

Definition 3.3. LetM 6= ∅ on S-metric space andM : X → X a mapping is said to be triangular α-admissible

if, α : X×X→ [0,∞), ∀µ, v, ω ∈ X.

1- M is α-admissible;
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2- α(µ, µ, v) ≥ 1 and α(v, v, ω) ≥ 1 then α(µ, µ, ω) ≥ 1.

Definition 3.4. LetM 6= ∅ on S-metric space andM : X ×X a mapping is said to be α-permissible if

∀m ≥ n ≥ 1, µ, v ∈ X, α(µ, µ, v) ≥ 1 then α
(
Mn
µ ,M

n
µ ,M

m
v

)
≥ 1.

Theorem 3.1. Let (X,S) be complete S-metric space and M : X → X be an αZ-contaction under some

conditions of tri-simulation functionM , suppose that

1- M−1 is α-permissible;

2- there is µ0 ∈ X in which α
(
µ0, µ0,M

−1
µ0

)
≥ 1.

3- M is continuous function.

Then,M has fixed point.

Proof. Consider thatµ0 ∈ X inwhichα (µ0, µ0,M−1µ0 ) ≥ 1 byMµn−1 = µn n ∈ N , thenα (µ0, µ0, µ1) ≥

1, SinceM is α-permissible mapping

α (µn, µn, µn+1) ≥ 1,∀n ∈ N. (3.2)

Now µ = µn, v = µn+1 in equation (3.1) we get

T (α (µn, µn, µn+1) , S (Mµn,Mµn,Mµn+1) , S (µn, µn, µn+1) ≥ 0.

By using condition (T1)

0 < (S (µn−1, µn−1, µn)− α (µn, µn, µn+1)S (µn, µn, µn+1)) . (3.3)

Then,
S (µn, µn, µn+1) ≤ α (µn, µn, µn+1)S (µn, µn, µn+1) < S (µn−1, µn−1, µn) .

This implies
The sequence S (µn, µn, µn+1) is a non-negative real decreasing. So, S (µn, µn, µn+1) is converge to Point
say r. Consequently, if r 6= 0, then letting n −→∞ on both side of equation (3.3) and using equation
(3.2) we get limn→∞ α (µn, µn, µn+1) = 1 by (T2)

0 6 lim
n→∞

supT (α (µn, µn, µn+1) , S (µn, µn, µn+1) , S (µn−1, µn−1, µn) < 0

Which is contradiction therefore r = 0

So,
S (µn, µn, µn+1) = 0. (3.4)

We will show that {µn} is bounded sequence. Assume that {µn} is not bounded, then there is a sub
sequence {µnk

} in which n1 = 1. ∀k ∈ N,nk+1 is the minimum integer in which

S
(
µnk

, µnk
, µnk+1

)
> 1. (3.5)
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And for nk ≤ m ≤ nk+1 − 1 we have S (µnk
, µnk

, µm) ≤ 1.
Utilizing the triangular inequality, (3.5) we get

1 < S
(
µnk

, µnk
, µnk+1

)
≤ S

(
µnk

, µnk
, µnk+1−1

)
+ S

(
µnk

, µnk
, µnk+1−1

)
+ S

(
µnk+1

, µnk+1
, µnk+1−1

)
≤ 2S

(
µnk

, µnk
, µnk+1−1

)
+ S

(
µnk+1

, µnk+1
, µnk+1−1

)
≤ 2S

(
µnk

, µnk
, µnk+1−1

)
+ 1.

Letting k →∞we get

lim
n→∞

S
(
µnk

, µnk
, µnk+1

)
= 1. (3.6)

By remark (3.1) taking µ = µnk−1
, v = µnk−1−1 we have

α
(
µnk

, µnk
, µnk+1

)
S
(
µnk

, µnk
, µnk+1

)
< S

(
µnk−1

, µnk−1
, µnk+1−1

)
.

Using equation (3.2) and (3.5) we get

1 < α
(
µnk

, µnk
, µnk+1

)
S
(
µnk

, µnk
, µnk+1

))
< S

(
µnk−1

, µnk−1
, µnk+1−1

)
≤ 2 S

(
µnk−1

, µnk−1
, µnk

)
+ S

(
µnk+1−1, µnk+1−1, µnk

)
≤ 2S

(
µnk−1

, µnk−1
, µnk

)
+ 1.

Taking k →∞we get

lim
k→∞

S
(
µnk−1

, µnk−1
, µnk+1−1

)
. (3.7)

By using (T2) equation (3.6) and (3.7) we have

0 ≤ lim
k→∞

supT
(
α
(
µnk

, µnk
, µnk+1

)
, S
(
µnk

, µnk
, µnk+1

)
, S
(
µnk−1

, µnk−1
, µnk+1−1

))
< 0.

This is contradiction.
Consequently {µn} is bounded. Letλn = sup {S (µi, µi, µj) i, j ≥ n}, where {λn} is decreasing sequence
and {µn} is bounded sequence.
Thus λn <∞ ∀n ∈ N , there is λ ≥ 0 in which limn→∞ λn = λ.
If, by definition of λn,∀k ∈ N , there is nk,mk in whichmk > nk ≥ k

λk −
1

k
< S (µmk

, µmk
, µnk

) ≤ λk.

Therefore, we get, taking k →∞

lim
k→∞

S (µmk
, µmk

, µnk
) = λ. (3.8)



Asia Pac. J. Math. 2024 11:68 7 of 11

From equation (3.1) and (3.2) we get

S (µmk
, µmk

, µnk
) ≤ S (µmk

, µmk
, µnk

)

≤ 2S
(
µmk−1

, µmk−1
, µmk

)
+ S

(
µnk−1

, µnk−1
, µmk

)
.

Taking k →∞we get
lim
k→∞

S
(
µmk−1

, µmk−1
, µnk−1

)
= λ. (3.9)

Using the αZ-contraction and equation (3.8) and (3.9) we get

0 ≤ lim
k→∞

supT
(
α (µmk

, µmk
, µnk

) , S (µmk
, µmk

, µnk
) S
(
µmk−1

, µmk−1
, µnk−1

))
< 0.

This indicates that a contradiction, consider that λ = 0, and {µn} is Cauchy sequence and (X,S) is
complete S-metric space, there is a ∈ X .
Letting n → ∞, we obtaing limn→∞ µn = a. By continuity of T, implies that limn→∞ µn−1 =

limn→∞ Tµn, then Ta = a so, a is fixed point �

Corollary 3.1. Assume that Theorem (3.1) is hypothesis is true as well as that if we remove condition (3) and

put this condition in its place:

Consider that {µn} a sequence in X , in which α (µn, µn, µn+1) ≥ 1 ,∀n ∈ N , and {µn} → a ∈ X , as

n→∞. Then there is a Subsequence
{
µn(k)

}
of {µn} in which α

(
µn(k)

, µn(k)
, a
)
≥ 1. Consequently, there is

fixed point for T .

Proof. From theorem (3.1). We obtain that {µn} is convergent sequence. There is a subsequence based
on the newly specified criteria described above.

{
µn(k)

}
of {µn} in which α

(
µn(k)

, µn(k)
, a
)
≥ 1, for

any k, from equation (3.1)

0 ≤ T
(
α
(
µn(k)

, µn(k)
, a
)
, S
(
µn(k)

, µn(k)
, a
)
, S
(
µn(k)−1

, µn(k)−1
, Ta

))
.

Then,

α
(
µn(k)

, µn(k)
, a
)
.S
(
µn(k)

, µn(k)
, a
)
≤ S

(
µn(k)−1

, µn(k)−1
, Ta

)
Then so

S
(
µn(k)

, µn(k)
, a
)
≤ α

(
µn(k)), un(k)

, a
)
S
(
µn(k)

, µn(k)
a
)

≤ S
(
µn(k)−1

, µn(k)−1
, Ta

)
.

Taking k →∞we get S(a, a, Ta) = 0. So, Ta = a, this concludes the proof �

Corollary 3.2. For the fixed point of T that theorem (3.1) obtains to remain unique, one of the following

requirements must be satisfied.

1. α(µ, µ, v) ≥ 1,∀µ, v ∈ fix (T ) = (x ∈ X : Tx = X);
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2. T is α-permissible and ∀µ, v ∈ X there is a ∈ X ,In which α(µ, µ, a) ≥ 1 and α(v, v, a) ≥ 1.

Proof. Consider that µ and v are two district fixed points of T. Consider the condition (1) is true, then

0 ≤ T (α(µ, µ, v), S(µ, µ, v), S(Tµ, Tµ, Tv))

= T (α(µ, µ, v), S(µ, µ, v), S(µ, µ, v))

< S(µ, µ, v)− α(µ, µ, v).S(µ, µ, v).

Which is contradiction so that µ = v. Alternately if requirement two holds, one can get α ∈ X , in
which α(µ, µ, a) ≥ 1 and α(v, v, a) ≥ 1. If one of two fixed points (say µ ) is same as a then one can
prove that a = v. This brings about a contradiction. As a result, we assume that µ and v are separate
points because the function α permissible. It means that α (µ, µ, an) ≥ 1 and α (v, v, an) ≥ 1 ∀n ≥ 1.
Here, we will to show that limn→∞ an = µ. If an = µ for somem ∈ N and immediately following that
is the assertion. Else, assume that S (µ, µ, an) > 0,∀n ∈ N.

0 ≤ T (α (µn, µn, an) , S (µn, µ1, an)S (Tµn1, Tµn, Tan))

≤ S (µn−1, µn−1, an−1)− α (µ, µ, an) .S (µ, µ, an) .

So {S (µ, µ, an)} is decreasing sequence of non-negative real so convergent to r ≥ 0. If r 6= 0 then by
(T2)we have

0 ≤ lim
n→∞

supT (α (µ, µ, an) , S (µ, µ, an−1) , S (µ, µ, an)) < 0.

This is contradiction.
We can show that limn→∞ an = v Now, the uniqueness of the limit point i.e, µ = v �

4. Applications of Integral Equations

Fixed-point theorems acquire their most intriguing applications when the underlyingmetric spaces is
a function space. It’s theorems for integral equations in S-metric spaces extend classical results to more
general settings. These theorems provide powerful tools for proving the existence and uniqueness of
solutions to integral equations, significantly broadening the scope of applicable mathematical analysis.
the existence and uniqueness of solutions to the Fredholm and Volterra equations are the topics of
discussion. In the same metric space in this chapter.

4.1. Integral equation of Fredholm. An application of Corollary 3..1 shown in this section. Considering
the set X = C([0, 1],R) and the following Fredholm type integral equation:

f(t) = ϕ(t) + λ

∫ 1

0
K(t, s, f(s))ds, t ∈ [0, 1]. (4.1)

Where, ϕ : [0, 1]→ R, andK : [0, 1]2 × R→ R are continuous function on [0, 1],



Asia Pac. J. Math. 2024 11:68 9 of 11

Define S : X3 → R+,S(α, β, µ) = sup0≤t≤1 | max{α(t).β(t)} − µ(t)
)
|2.

So, (X,S) is complete S-metric space. And explain the transformation T : X → X as follows:

Tf(t) = ϕ(t) + λ

∫ 1

0
K(t, s, f(s))d(s), t ∈ [0, 1]. (4.2)

Now, the Fredholm equation becomes f(t) = Tf(t). So, suppose that the next inequality is satisfied:

|K(t, s, f(s))−K(t, s, Tf(s))| ≤ 1

2
|f(s)− Tf(s)|.

For s, t ∈ [0, 1] and f ∈ X , then the solution of the Fredholm integral equation

S(Tf(t), T (f(t))), T (Tf(t)) = |Tf(t)− T (Tf(t))|2

≤
(∫ 1

0
|K(t, s, f(s))−K(t, s, Tf(s))|

)2

ds

≤ 1

4
S(f, f, Tf).

Consequently, the Fixed point f ∈ X has been proven to exist and unique as Corollary 3..1 is
applicable to T .

4.2. Integral equation of Volterra. An application of Corollary 3..1, we consider the X = C([0, 1],R)

and following Volterra integral equation:

f(t) = ϕ(t) + λ

∫ t

0
K(t, s, f(s))ds. (4.3)

Where, t ∈ I = [0, 1] and ϕ : [0, 1]→ R andK : [0, 1]× [0, 1]× R→ R are continouous functions.
So, (X, S) is a complete S-metric space. Explain the transformation T : X → X as follows .

Tf(t) = ϕ(t) + λ

∫ t

0
K(t, s, f(s))ds. (4.4)

Where, t ∈ I = [0, 1]. Assume that the following conditions are satisfied:
1. K : [0, 1]× [0, 1]× R→ R, ϕ : [0, 1]→ R, f : R→ R are continuous
2. K : [0, 1]× [0, 1]→ R where |K(t, s, x)−K(t, s, y)| ≤ θ|x− y|

3. S(x, x, y) = supt∈[0,1] |x(t)− y(t)|

4. supt∈[0,1]
∫ t
0 θds < β, β ∈ (θ, 1)

Then the integral equation has fixed point

Proof. Let X = C([0, 1],R)

|Tf(t)− Tg(t)| =| λ
(∫ t

0
k (t, s, f(s)) ds−

∫ t

0
k(t, s, g(s))ds

)
|

6 |λ| |
∫ t

0
(k (t, s, f(s))− k (t, s, g(s)) ds |

6 |λ|
∫ t

0
θ|f(s)− g(s)|ds



Asia Pac. J. Math. 2024 11:68 10 of 11

6 |λ|
∫ t

0
θds|f(s)− g(s)|

6 |λ| β S(f, f, g)

This implies that

|Tf(t)− Tg(t)| 6| λ | β S(f, f, g)

Consequently, the fixed point f ∈ X has been proven to unique as corollary 3..1 �

5. Conclusions

This study presents new discoveries in fixed-point theory for S-metric spaces that make use of the
tri-simulation function. Our paper presents these discoveries. In addition, the existence of solutions
to the Fredholm and Volterra equations, as well as the uniqueness of those solutions, are the subjects
of discussion in S-metric spaces, respectively. When compared to the writings of earlier experts. Our
findings represent developments and improvements for the field (see [6] and [3]).
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