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Abstract. We give a matrix method for the recognition of N -free posets. Since the exact enumeration
of N -free posets depends mainly on the constructions of the pairwise nonisomorphic connected posets,
several methods for the recognition of N -free posets were considered in the literature. But providing an
efficient recognition method for the N -free posets is still an open problem. Here, we introduce the notion
of quasi-ordinal sum of poset matrices. We show that the quasi-ordinal sum of poset matrices represents
the quasi-ordinal sum of posets. Consequently, this result gives a matrix recognition of the N -free posets.
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1. Introduction

A poset (partially ordered set) is said to be N -free if its Hasse diagram does not contain exactly the
N -shaped (4-element zigzag) poset as a sub-diagram. The recognition and enumeration of N -free
posets have significant importances in the combinatorics of posets, because they play a vital role in the
theory of decompositions and linear extensions of posets. The class of series-parallel posets is closed
under the direct sum and ordinal sum of posets, that is, any series-parallel poset can be constructed
from the singleton poset by using only the direct sum and ordinal sum. Habib and Jegou [5] showed
that the class of N -free posets is closed under the direct sum and quasi-ordinal sum of posets. Thus,
like series-parallel posets, any N -free poset can be constructed from the singleton poset by using only
the direct sum and quasi-ordinal sum. Since the quasi-ordinal sum of posets generalizes the ordinal
sum of posets, the class of N -free posets gives a generalization of the class of series-parallel posets.
As a result, the class of N -free posets preserves most of the computational tractability properties
hold for series-parallel posets. Therefore, several methods for the recognition and enumeration of
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the N -free posets were considered by numerous authors, see [1,4, 8, 13]. Until today, the numbers of
unlabeled (pair-wise nonisomorphic) connected N -free posets are known up to 14 elements, see [8],
and disconnected N -free posets are known up to 15 elements, see [13]. See also the integer sequences
A202180, A202182, A349367, and A350783 in OEIS by Sloane and Plouffe [16].

On the other hand, several incidence matrices were chosen repeatedly in recognizing various classes
of posets and graphs, see [2,11,15]. Since the incidence matrices have many computational aspects and
hence have classical applications in the adjacent areas, special operations on the incidence matrices
were considered in the literature, see [9, 10, 12]. Mohammad et al. [11, 12, 14] introduced the notions of
ordinal sum, ordinal product, and a composition of square matrices, and described the interpretations
of these matrix operations in the case of poset matrices. Recently, poset matrices have gained much
attention in the recognitions of several classes of posets and graphs, see [2,12,14]. In this paper, we
introduce the notion of quasi-ordinal sum of poset matrices and give an interpretation of this matrix
operation in the algebra of posets. Mohammad et al. [11] defined the properties of block of 0s, block of
1s, and complete block of 1s in a poset matrix, and obtained the matrix recognitions of the P -graphs,
P -series, and series-parallel posets. Also, Mohammad et al. [12, 14] defined the properties of transitive
blocks of 1s and transitive blocks of poset matrices in a block poset matrix, and obtained the matrix
recognitions of the composite posets, factorable posets, and more generally, decomposable posets.
These classical results motivated us to define the property of block of quasi-transitive 1s in a poset
matrix, and to obtain the matrix recognition of N -free posets.

In Section 2, we recall some basic terminologies related to the N -free posets and describe the quasi-
ordinal sumof the posets. We also recall the definition of posetmatrix and briefly describe its association
to posets. In Section 3, we define the quasi-ordinal sum of poset matrices and give its interpretation
in posets. We mainly show that the quasi-ordinal sum of poset matrices is also a poset matrix, and it
represents the poset obtained by the quasi-ordinal sum of the posets represented by the corresponding
poset matrices. Here, we also show by using the poset matrix that the class of N -free posets gives a
generalization of the class of series-parallel posets. In Section 4, we define the property of block of
quasi-transitive 1s in a poset matrix and give the matrix recognition of the N -free posets. We show
that a poset matrix represents an N -free poset if and only if it satisfies the block of quasi-transitive 1s
property.

2. Preliminaries

A poset is a structure S = 〈S,6S〉 consisting of the nonempty set S with the order relation 6S on S.
For x, y ∈ S, we say that the elements x and y are incomparable in S and we write x||y if neither x 6S y

nor y 6S x. Also, for x, y ∈ S, we say that the element x is covered by y (equivalently, y covers x) in S

and we write x ≺ y if x 6S y and for some z ∈ S, x 6S z 6S y implies either x = z or z = y. A poset S
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is said to be finite if the underlying set S is finite. From now on, every poset is assumed to be finite.
Throughout the paper, we use the notations 1 for the singleton poset, Cn (n ≥ 2) for the n-element
chain posets, In (n ≥ 2) for the n-element antichain posets, Zn (n ≥ 4) for the n-element zigzag posets,
and Bm,n (m ≥ 1, n ≥ 1) for the complete bipartite posets withmminimal elements and nmaximal
elements. For any posets R and S, we write R + S and R ⊕ S to denote the direct sum and ordinal
sum, respectively. Also, we write briefly nR for the n-times direct sum R + R + · · ·+ R and ⊕nR for
the n-times ordinal sum R ⊕R ⊕ · · · ⊕R. In general, for any posets Si, 1 ≤ i ≤ n, we write briefly∑n

i=1 Si for S1 + S2 + · · ·+ Sn and⊕n
i=1 Si for S1 ⊕ S2 ⊕ · · · ⊕ Sn. A poset is said to be series-parallel if

it can be decomposed into singletons by using only the direct sum and ordinal sum of posets. All the
posets up to 4 elements except Z4 (the 4-element zigzag poset shown in Figure 1) are series-parallel.

x y

z w

Figure 1. Hasse diagram of Z4, the 4-element zigzag or N -shaped poset.

We also writeR ∼= Swhenever the posetsR and S are order isomorphic. For further basics of posets,
we refer the readers to the classical book by Davey and Priestley [3].

2.1. N -free posets. A poset is calledN -free if it does not contain any subset {x, y, z, w} such that x ≺ z,
y ≺ z, y ≺ w, x||y, x||w, and z||w. In other words, a poset is said to be N -free if its Hasse diagram
does not contain exactly the N -shaped poset (the 4-element zigzag poset shown in Figure 1) as a
sub-diagram. Every series-parallel poset is N -free. The five-element poset, as shown in Figure 2, with
the underlying set {a, b, c, d, e} and the relations a ≺ d, b ≺ c, b ≺ e, c ≺ d, a||b, a||c, a||e, c||e, and d||e,
is the least-element N -free poset that is not series-parallel.

a b

d e

c

Figure 2. Hasse diagram of the least-element N -free poset that is not series-parallel.

The notion of the quasi-ordinal sum (quasi-series composition) was introduced by Habib and Jegou [5].
Later on, Habib and Möhring [6] studied the complexity properties of some classes of posets induced
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by the quasi-ordinal sum of posets. We recall the definition of quasi-ordinal sum of posets in the
following.

Let R = 〈R,6R〉 and S = 〈S,6S〉 be two posets with R ∩ S = ∅. Also, let A ⊆ max(R) and
B ⊆ min(S) such that A 6= ∅ and B 6= ∅. Then, the quasi-ordinal sum of the posetsR by A and S by B,
denoted by (R, A)	 (S, B), is defined to be the poset 〈R ∪ S,6	〉 such that for r, s ∈ P ∪Q, we have
r 6	 s if and only if one of the following conditions holds.

(1) r, s ∈ R and r 6R s,
(2) r, s ∈ S and r 6S s,
(3) r ∈ R, s ∈ S, and there exist a ∈ A, b ∈ B such that r 6R a and b 6S s.

For example, all the pairwise nonisomorphic quasi-ordinal sums of the posets B1,2 and B2,1 are the
posets P, Q,R, and S that are shown in Figure 3 by their Hasse diagrams.

P Q R S

Figure 3. Hasse diagrams of all the pairwise nonisomorphic quasi-ordinal sums of the
posets B1,2 and B2,1.

Habib and Jegou [5] showed that the class of N -free posets is closed under the direct sum and
quasi-ordinal sum of posets including the singleton poset. The authors obtained the following result.

Theorem 2.1. [5] A poset is N -free if and only if it can be decomposed into the singletons by using only the

direct sum and quasi-ordinal sum of posets.

The above result shows that every direct term and quasi-ordinal term of an N -free poset is N -free.
Note that when A = max(R) and B = min(S) in the definition of quasi-ordinal sum of posets, then
this definition agrees the definition of usual ordinal sum of posets. Since the class of series-parallel
posets is closed under the direct sum and ordinal sum of posets including the singleton poset, the class
of N -free posets gives a natural generalization of the class of series-parallel posets.

2.2. Poset matrix. Throughout this paper, we use the notations Mm,n to denote an m-by-n matrix
andMm to denote a square matrix of orderm. We use particularly the notations In for the n-th order
identity matrix, Om,n for the matrix with all entries 1s, and Zm,n for the matrix with all entries 0s. Also,
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we use the notation Cn to denote the matrix [cij ], 1 ≤ i, j ≤ n, defined as cij = 1 for all i ≤ j and cij = 0,
otherwise. Note here that I1 = C1 = 1.

Mohammad and Talukder [11] introduced the notion of poset matrix. An upper triangular (0, 1)-
matrix Mn = [aij ], 1 ≤ i, j ≤ n, with all entries 1s in the main diagonal is called a poset matrix if and
only if Mn is transitive, that is, aij = 1 and ajk = 1 imply aik = 1. For every n ≥ 1, both the matrices In
and Cn, as defined above, are trivially poset matrices. The matrices R and S in the following example
are two nontrivial poset matrices.

Example 2.1.

R =

 1 1 1
0 1 0
0 0 1

 S =

 1 0 1
0 1 1
0 0 1


Let Mn = [aij ], 1 ≤ i, j ≤ n, be any poset matrix. A poset R = 〈R,6〉, where R = {x1, x2, . . . , xn}

and xi corresponds the i-th row (or column) of Mn, is associated to Mn by defining the order relation
6 on R such that for all 1 ≤ i, j ≤ n, we have xi 6 xj if and only if aij = 1. Then we say that the poset
matrix Mn represents the poset R and vice versa. Trivially, both the poset matrices I1 and C1 represent
the singleton poset 1. The poset matrices R and S, as given in Example 2.1, represent the posets B1,2

and B2,1, respectively. Also, for every n ≥ 2, the poset matrices In and Cn represent the posets In and
Cn, respectively. For some 1 ≤ i, j ≤ n, interchanges of i-th and j-th rows along with the interchanges
of i-th and j-th columns in a poset matrixMn is called the (i,j)-relabeling ofMn. The following result
gives an interpretation of the relabeling of poset matrices in posets.

Theorem 2.2. [11] Any relabeling of a poset matrix is a poset matrix, and it represents the same poset up to

isomorphism.

We now recall the interpretations of direct sum and ordinal sum of matrices in the case of poset
matrices. The direct sum and ordinal sum of the matricesMm,r andNn,s are denoted byMm,r ⊕Nn,s and
Mm,r �Nn,s, respectively, and defined as the (m + n)-by-(r + s) block matrices as follows:

Mm,r ⊕Nn,s =

 Mm,r | Zm,s

−− . −−
Zn,r | Nn,s

 andMm,r �Nn,s =

 Mm,r | Om,s

−− . −−
Zn,r | Nn,s

 .

Here, the termsMm,r andNn,s are called the direct terms of the sumMm,r⊕Nn,s and ordinal terms of the
sum Mm,r �Nn,s. The notion of the aforesaid ordinal sum of matrices was introduced by Mohammad
and Talukder [11]. The authors then gave the interpretations of the direct sum and ordinal sum of
poset matrices in posets. They obtained the following results.

Theorem 2.3. [11] Let Mm represent the poset R and Nn represent the poset S. Then the matrix Mm ⊕Nn is

a poset matrix and it represents the posetR + S.
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Theorem 2.4. [11] Let Mm represent the poset R and Nn represent the poset S. Then the matrix Mm �Nn is

a poset matrix and it represents the posetR⊕ S.

3. Quasi-ordinal Sum of Poset Matrices

In this section, we introduce the notion of quasi-ordinal sum of posetmatrices and give its interpretation
in posets. This result gives a generalization of the aforementioned result (Theorem 2.4) obtained for
the ordinal sum of poset matrices. In the following, we begin with defining the diagonal submatrix of a
square matrix.

Definition 3.1. A matrix Mp:q = [bij ], 1 ≤ i, j ≤ q − p + 1, is said to be a diagonal submatrix of the
matrix Mn = [aij ], 1 ≤ i, j ≤ n, where 1 ≤ p ≤ q ≤ n, if and only if bij = a(p+i−1)(p+j−1) for all
1 ≤ i, j ≤ q − p + 1.

Note that from now on, by a submatrix we mean a diagonal submatrix. Note also that by a poset
matrix we mean a poset matrix in upper triangular form. We now define the top antichain form and
bottom antichain form of poset matrices.

Definition 3.2. A poset matrixMn is said to be in top (analogously, bottom) antichain form of length r,
where r ≤ n, if and only if the submatrixM1:r is equal to Ir (analogously,Mn−r+1:n = Ir) and for every
relabeling ofMn, the equalityM1:s = Is (analogously,Mm−s+1:m = Is) for some s ≤ n implies s ≤ r.

Example 3.1. In the following, the poset matrix A is in top antichain form and A
′ is in bottom antichain

form of the same length 3.

A =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

 A
′

=


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


Trivially, for any labeling, the poset matrices In and Cn are in both top and bottom antichain forms
of lengths n and 1, respectively. We see that the following poset matrix B is in top antichain form of
length 1, and it is not in bottom antichain form because B5:5 = I1 but B̄4:5 = I2, where B̄ is obtained by
taking the (3, 4)-relabeling of B.

B =


1 1 1 1 1
0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 (3,4)-relabeling
−−−−−−−−−−→


1 1 1 1 1
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

 = B̄

On the other hand, in the case of the poset matrix B̄, since B̄4:5 = I2, and for any B̃ that can be obtained
by some relabeling of B, the equality B̃5−s+1:5 = Is for some s ≤ 5 implies s ≤ 2. This shows that the
poset matrix B̄ is in bottom antichain form of length 2.
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Note that if a poset matrixMn is in the top (analogously, bottom) antichain form of length r, then
the submatrix M1:r (analogously, Mn−r+1:n) of Mn represents the subposet that consists of exactly the
minimal (analogously, maximal) elements of the poset represented by Mn. To define the quasi-ordinal
sum of poset matrices, we need one more definition namely the quasi-transitive closure for two poset
matrices as given in the following.

Definition 3.3. Let the poset matrix Mm be in bottom antichain form of length p and Nn be in top
antichain form of length q. Then anm-by-n (0, 1)-matrix Tm,n is said to be a quasi-transitive closure of
the matricesMm and Nn if and only if the following conditions hold.

(1) There exist p < p1 < p2 < · · · < pr ≤ m and 1 ≤ q1 < q2 < · · · < qs ≤ q, such that T (pi, qj) = 1

for all 1 ≤ i ≤ r, 1 ≤ j ≤ s.
(2) For every 1 ≤ k ≤ p and 1 ≤ i ≤ r, by (1), M(k, pi) = 1 implies T (k, qj) = 1 for all 1 ≤ j ≤ s.
(3) For every 1 ≤ j ≤ s and q < t ≤ n, by (1), N(qj , t) = 1 implies T (pi, t) = 1 for all 1 ≤ i ≤ r,

and by (2), N(qj , t) = 1 implies T (k, t) = 1 for all 1 ≤ k ≤ p.

Example 3.2. Consider the poset matrices R and S from Example 2.1. Here, the matrices R = 1� I2

and S = I2 � 1 are respectively in bottom antichain form and top antichain form of the same length 2.

R =

 1 1 1
0 1 0
0 0 1

 S =

 1 0 1
0 1 1
0 0 1


We see that any one of the following matrices T , T̄ , T̃ , and T

′ , can be a quasi-transitive closure of the
matrices R and S.

T =

 1 0 1
0 0 0
1 0 1

 T̄ =

 1 1 1
0 0 0
1 1 1

 T̃ =

 1 0 1
1 0 1
1 0 1

 T
′

=

 1 1 1
1 1 1
1 1 1


In the case of the matrix T , we have p1 = 3 and q1 = 1. Then for T (p1, q1) = 1,

R(1, p1) = 1 implies T (1, q1) = 1,

S(q1, 3) = 1 implies T (p1, 3) = 1, and then

T (1, q1) = S(q1, 3) = 1 implies T (1, 3) = 1.

In the case of T̄ , we have p1 = 3, q1 = 1, and q2 = 2. Then for T̄ (p1, q1) = T̄ (p1, q2) = 1,

R(1, p1) = 1 implies T̄ (1, q1) = T̄ (1, q2) = 1,

S(q1, 3) = 1 or S(q2, 3) = 1 implies T̄ (p1, 3) = 1, and finally,

T̄ (1, q1) = S(q1, 3) = 1 or T̄ (1, q2) = S(q2, 3) = 1 implies T (1, 3) = 1.

Similarly, we have T̃ and T
′ . Also, we see that there are many more matrices like the aforementioned

matrices T , T̄ , T̃ , and T
′ that can be the quasi-transitive closures of the poset matrices R and S.
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We observe that the quasi-transitive closure T ′ of R and S, as in the above example, equals O3, the
3-by-3 matrix with all entries 1s. Below, we show in general that for any poset matricesMm and Nn,
the matrix Om,n equals a quasi-transitive closure of these matrices.

Lemma 3.1. LetMm and Nn be any poset matrices. Then the matrix Om,n equals a quasi-transitive closure of

Mm and Nn.

Proof. Let Mm be in bottom antichain form of length p and Nn be in top antichain form of length q.
Also, let Tm,n be a quasi-transitive closure of Mm and Nn such that T (i, j) = 1 for all p < i ≤ m and
1 ≤ j ≤ q. Then we have the following.

(1) For every p < i ≤ m, there exists 1 ≤ k ≤ p such thatM(k, i) = 1. This implies T (k, j) = 1 for
all 1 ≤ k ≤ p and 1 ≤ j ≤ q.

(2) Analogously, for every 1 ≤ j ≤ q, there exists q < t ≤ n such that N(j, t) = 1. This implies
T (i, t) = 1 for all p < i ≤ m and q < t ≤ n.

(3) Then for every 1 ≤ k ≤ p, 1 ≤ j ≤ q, and q < t ≤ n, by (1) and (2), T (k, j) = 1 and N(j, t) = 1

imply T (k, t) = 1.
Thus T (i, j) = 1 for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. This shows that T = Om,n is a quasi-transitive closure
of the matrices Mm and Nn of length {p, q}. �

Now we define the quasi-ordinal sum of two poset matrices.

Definition 3.4. Let the poset matrix Mm be in bottom antichain form of length p and Nn be in top
antichain form of length q. Then the quasi-ordinal sum of Mm and Nn, denoted by Mm � Nn, is an
(m + n)-by-(m + n) block matrix defined as follows:

Mm �Nn =

 Mm | Tm,n

−− . −−
Zn,m | Nn

 .

Here, the matrix Tm,n is a quasi-transitive closure of the matricesMm and Nn.

Note that the matricesMm and Nn are called the quasi-ordinal terms of the sumMm �Nn. We can
generalize the above definition for several poset matrices. Let Nni , 1 ≤ i ≤ m, be all poset matrices.
Then, the (i, j)-th blockQij of the quasi-ordinal sumQr =Nn1 �Nn2 � · · · �Nnm = [Qij ], 1 ≤ i, j ≤ m,
where r =

∑m
i=1 ni, can be expressed as follows:

Qij =


Nni , if i = j,

Tni,nj , if i < j,

Znj ,ni , if i > j.

(1)

Here, for every 1 ≤ i, j ≤ m, the matrix Tni,nj is a quasi-transitive closure of the matrices Nni and Nnj .
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Example 3.3. We have the following four different matrices A, B, C, and D each of which gives a
quasi-ordinal sum of the poset matrices R and S given in Example 3.2.

A =



1 1 1 | 1 0 1
0 1 0 | 0 0 0
0 0 1 | 1 0 1
− − − . − − −
0 0 0 | 1 0 1
0 0 0 | 0 1 1
0 0 0 | 0 0 1


B =



1 1 1 | 1 1 1
0 1 0 | 0 0 0
0 0 1 | 1 1 1
− − − . − − −
0 0 0 | 1 0 1
0 0 0 | 0 1 1
0 0 0 | 0 0 1



C =



1 1 1 | 1 0 1
0 1 0 | 1 0 1
0 0 1 | 1 0 1
− − − . − − −
0 0 0 | 1 0 1
0 0 0 | 0 1 1
0 0 0 | 0 0 1


D =



1 1 1 | 1 1 1
0 1 0 | 1 1 1
0 0 1 | 1 1 1
− − − . − − −
0 0 0 | 1 0 1
0 0 0 | 0 1 1
0 0 0 | 0 0 1


We see that any other matrix giving a quasi-ordinal sum of the poset matrices R and S can be obtained
by some relabeling of one of the matrices A, B, C, and D.

Recall that the poset matrices R and S (Example 3.2) represent the posetsB1,2 andB2,1, respectively.
We observe that for R � S = [Qij ], 1 ≤ i, j ≤ 2, the matrix block Q12 (the block giving the quasi-
transitive closure) equals the matrices T , T̄ , T̃ , and T

′ (Example 3.1) in the cases of the matrices A,
B, C, and D (Example 3.3), respectively. We also observe that A, B, C, and D are all poset matrices,
and each of these matrices equals a quasi-ordinal sum R� S. Here, the poset matrices A, B, C, and D

represent respectively the posetsP,Q,R, and S, as shown in Figure 3, that can be checked immediately
from the Hasse diagrams of these posets. In the following, we establish the above observations in
general that gives an interpretation of the quasi-ordinal sum of poset matrices in posets.

Theorem 3.1. Let Mm represent the poset A and Nn represent the poset B. Then the matrix Mm �Nn is a

poset matrix and it represents the posetA	B.

Proof. Let Mm = [aij ], 1 ≤ i, j ≤ m, Nn = [bij ], 1 ≤ i, j ≤ n, and Mm � Nn = Qm+n = [qij ],
1 ≤ i, j ≤ m + n, with block representation [Qij ], 1 ≤ i, j ≤ 2. Since Qm+n is an upper triangular
matrix with entries 1s in the main diagonal, because Q21 = Zn,m, andMm and Nn are poset matrices,
Qm+n is clearly reflexive and antisymmetric. For transitivity of Qm+n, let qij = qjk = 1 for some i, j,
and k where 1 ≤ i ≤ j ≤ k ≤ m + n. Also let Q12 = Tm,n. By the definition of quasi-ordinal sum of
poset matrices, Tm,n is a quasi-transitive closure of the matricesMm andNn. Then we have the cases as
follows:

(1) k ≤ m. Then i ≤ j ≤ k ≤ m implies qij , qjk, qik ∈Mm. Since Mm is transitive, qik = 1.
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(2) k > m. If j ≤ m, then i ≤ j ≤ m < k implies qij ∈ Mm and qik, qjk ∈ Tm,n. Since Mm is in
bottom antichain form and qjk = 1 in Tm,n, by the definition of quasi-transitive closure, qij = 1

inMm implies qik = 1 in Tm,n.
If j > m, then we have two cases as follows:
(i) i ≤ m. Then i ≤ m < j ≤ k implies qjk ∈ Nn and qij , qik ∈ Tm,n. Since Nn is in top

antichain form and qij = 1 in Tm,n, by the definition of quasi-transitive closure, qjk = 1 in
Mm implies qik = 1 in Tm,n.

(ii) i > m. Thenm < i ≤ j ≤ k implies qij , qjk, qik ∈ Nn and, since Nn is transitive, qik = 1.

Thus Qm+n is transitive, and hence a poset matrix. We now show thatMm �Nn represents the poset
A	B. Let A = 〈A;6A〉, where A = {x1, x2, . . . , xm} and B = 〈B;6B〉, where B = {xm+1, xm+2, . . . ,
xm+n}. We must show that Qm+n represents the posetA	B = 〈A ∪B;6	〉, where A ∪B = {x1, x2,
. . . , xm, xm+1, xm+2, . . . , xm+n}. Let qij = 1 in Qm+n for some i and j where 1 ≤ i, j ≤ m + n. Then
one of the following holds.

(1) qij ∈Mm. Since Mm representsA, we have xi, xj ∈ A and xi 6A xj .
(2) qij ∈ Nn. Since Nn represents B, we have xi, xj ∈ B and xi 6B xj .
(3) qij ∈ Tm,n. Since Tm,n is a quasi-transitive closure of Mm and Nn, there exist k and t, where

i ≤ k, t ≤ j, such that qkt ∈ Tm,n and qkt = qit = qkj = 1. Then the following hold.
(a) qik ∈Mm and qik = 1. Since Mm representsA, we have xi, xk ∈ A and xi 6A xk.
(b) qtj ∈ Nn and qtj = 1. Since Nn represents B, we have xt, xj ∈ B and xt 6B xj .

By the definition of quasi-ordinal sum of posets, xi 6	 xj in A ∪B. Hence Qm+n represents the poset
A	B. �

We can generalize the above result as follows:

Theorem 3.2. LetMmi , 1 ≤ i ≤ n, be the poset matrices that represent the posets Pi, 1 ≤ i ≤ n, respectively.

ThenMm1 �Mm2 � · · ·�Mmn is a poset matrix and it represents the poset 	n
i=1Pi.

Proof. The proof follows inductively by Theorem 3.1. �

As an immediate corollary of Theorem 3.1, we prove in the following that the class of N -free posets
generalizes the class of series-parallel posets.

Corollary 3.1. Every series-parallel poset is N -free.

Proof. Let S be a series-parallel poset. Then there exist the posets A and B such that S ∼= A ⊕ B.
Let Mm represent A and Nn represent B. Then, by Theorem 2.4, Mm � Nn is a poset matrix and it
represents the poset A⊕B. Then we have Mm �Nn = [Qij ], 1 ≤ i, j ≤ 2, such that Q12 = Om,n. Since
Om,n is a quasi-transitive closure of Mm and Nn, by Lemma 3.1, Mm �Nn equals a quasi-ordinal sum
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Mm �Nn (say) of the matrices Mm and Nn. By Theorem 3.1, Mm �Nn represents the poset A	B.
ThenMm �Nn = Mm �Nn impliesA	B ∼= A⊕B ∼= S. This shows that S is an N -free poset. �

4. Matrix Recognition of the N -free Posets

Mohammad et al. [11,12,14] defined the properties of block of 0s and block of 1s in the poset matrix,
and transitive blocks of 1s in a block poset matrix. Then they obtained the matrix recognitions of
the series-parallel posets, composite posets, and in general decomposable posets. Let Mm = [aij ],
1 ≤ i, j ≤ m, be a poset matrix. ThenMm has the property of block of 0s of length r, where 1 ≤ r < m,
if and only if aij = 0 for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ m. Then the authors proved the following result.

Theorem 4.1. [11] A poset matrix Mm satisfies the property of block of 0s if and only ifMm = Mm1 ⊕Mm2

⊕ · · · ⊕Mmn for somemi, 1 ≤ i ≤ n.

We now define the property of block of quasi-transitive 1s in a poset matrix.

Definition 4.1. A poset matrix Q is said to have the property of block of quasi-transitive 1s of length
{p, q} if and only if there exists a block representation Q = [Qij ], 1 ≤ i, j ≤ 2, such that the following
conditions hold.

(1) Q11 is a poset matrix in bottom antichain form of length p,
(2) Q22 is a poset matrix in top antichain form of length q,
(3) Q12 is a quasi-transitive closure of Q11 and Q22,
(4) Q21 = Zn,m.

Example 4.1. We see that the following poset matrix F = [Fij ], 1 ≤ i, j ≤ 2, does not satisfy the
property of block of quasi-transitive 1s, because the matrix block F12 is not a quasi-transitive closure in
any of the four cases shown below.

F =



1 | 0 0 0 1
− . − − − −
0 | 1 1 1 1
0 | 0 1 0 1
0 | 0 0 1 0
0 | 0 0 0 1

 =



1 0 | 0 0 1
0 1 | 1 1 1
− − . − − −
0 0 | 1 0 1
0 0 | 0 1 0
0 0 | 0 0 1



=



1 0 0 | 0 1
0 1 1 | 1 1
0 0 1 | 0 1
− − − . − −
0 0 0 | 1 0
0 0 0 | 0 1

 =



1 0 0 0 | 1
0 1 1 1 | 1
0 0 1 0 | 1
0 0 0 1 | 0
− − − − . −
0 0 0 0 | 1
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But, the poset matrix F̄ , obtained by (1, 2)-relabeling of F , satisfies the property of block of quasi-
transitive 1s of length {1, 3} in the first case and length {3, 1} in the other case.

F
(1,2)-relabeling
−−−−−−−−−−→



1 | 0 1 1 1
− . − − − −
0 | 1 0 0 1
0 | 0 1 0 1
0 | 0 0 1 0
0 | 0 0 0 1

 =



1 0 1 1 | 1
0 1 0 0 | 1
0 0 1 0 | 1
0 0 0 1 | 0
− − − − . −
0 0 0 0 | 1

 = F̄

In the following, we obtain a result regarding the poset matrices satisfying the property of block of
quasi-transitive 1s that is analogous to the result obtained in Theorem 4.1.

Theorem 4.2. A poset matrix satisfies the property of block of quasi-transitive 1s if and only if it can be obtained

as the quasi-ordinal sum of two poset matrices.

Proof. Let the matrix Q be obtained as the quasi-ordinal sum of the poset matricesMm and Nn, that
is, Q = Mm 	Nn. By Theorem 3.1, Q is a poset matrix. Then Q is upper triangular and has the block
representationQ = [Qij ], 1 ≤ i, j ≤ 2, such thatQ11 = Mm,Q22 = Nn,Q12 = Tm,n, andQ21 = Zn,m for
some matrix Tm,n. By the definition of quasi-ordinal sum, there exist p and q such thatMm is in bottom
antichain form of length p and Nn is in top antichain form of length q, and Tm,n is a quasi-transitive
closure of the matricesMm andNn of length {p, q}. Thus the matricesMm,Nn, and Tm,n satisfy the first
three conditions in Definition 4.1, respectively. Also, the fourth condition in Definition 4.1 is obvious as
Q21 = Zn,m. Thus Q satisfies the property of block of quasi-transitive 1s.

Conversely, we suppose that the matrix Q satisfies the property of block of quasi-transitive 1s of
length {p, q} for some p and q. Then we similarly show that Q can be obtained as the quasi-ordinal
sum of two poset matrices in bottom and top antichain forms of lengths p and q, respectively. �

We observe that both the poset matrices F and F̄ , as described in Example 4.1, represent the least-
element N -free poset (Figure 2) that is not series-parallel. In the following, we establish this result in
general that gives a matrix recognition of the N -free posets.

Theorem 4.3. Let the matrixMn represent the poset F � 1. Then F isN -free if and only ifMn can be relabeled

in such a form that it satisfies either the block of 0s property or the block of quasi-transitive 1s property, and every

term (direct or quasi-ordinal) ofMn until 1 satisfies either the block of 0s property or the block of quasi-transitive

1s property.

Proof. Let F � 1 be anN -free poset. Then there exist the posets F1 and F2 such that either F ∼= F1 +F2

or F ∼= F1 	 F2. Let Mn11 and Mn12 represent the posets F1 and F2, respectively. Then either
Mn = Mn11⊕Mn12 by Theorem 2.3 orMn = Mn11�Mn12 by Theorem 3.1. There exists either the matrix
Zn11,n12 (as a block of 0s) or the matrix Tn11,n12 (as a block of quasi-transitive 1s) as in the constructions
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of the direct sum (Theorem 4.1) and the quasi-ordinal sum (Theorem 4.2). These imply that Mn

satisfies either the property of block of 0s or the property of block of quasi-transitive 1s. For every
1 ≤ i ≤ 2, if Fi � 1, we similarly show that the poset matrixMn1i satisfies either the block of 0s property
or the block of quasi-transitive 1s property. This is because every direct term and quasi-ordinal term of
an N -free poset is also N -free. We can continue the above process to show that every direct term and
quasi-ordinal term of Mn until 1 satisfies either the block of 0s property or the block of quasi-transitive
1s property.

Conversely, let Mn can be relabeled in such a form that it satisfies either the block 0s property or the
block of quasi-transitive 1s property. Then there existMn1 andMn2 , where n1 +n2 = n, such that either
Mn = Mn1 ⊕Mn2 by Theorem 4.1 or Mn = Mn1 �Mn2 by Theorem 4.2. Then either F ∼= F01 + F02

or F ∼= F01 	 F02, where Mn1 and Mn2 represent the posets F01 and F02, respectively (Theorem 2.3
and Theorem 3.1). Since every term (direct or quasi-ordinal) Mni , 1 ≤ i ≤ 2, until 1 satisfies either the
block of 0s property or the block of quasi-transitive 1s property, we similarly show that there exist the
posets Fi1, Fi2, 1 ≤ i ≤ 2, such that F0i

∼= Fi1 + Fi2, 1 ≤ i ≤ 2, or F0i
∼= Fi1 	 Fi2, 1 ≤ i ≤ 2. We can

continue the above process to show that the poset F can be expressed as the sum of singleton posets
by using only the direct sum and the quasi-ordinal sum of posets. Therefore, by Theorem 2.1, F is an
N -free poset. �
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