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Abstract. This paper studies the optimal asset allocation and risk management issues for insurance
companies in a continuous-time model. The financial market consists of risk-free assets and risky assets.
The surplus process of the insurer is approximated by a drifted Brownian motion. The insurer has to hedge
its exposure to risky assets and insurance operations. Insurance company decision-makers are assumed to
have loss aversion characteristics. Therefore, insurance company needs to obtain optimal investment and
reinsurance strategies under loss aversion. We use the martingale method to derive the explicit solutions
of optimal policy under this optimization criterion. Moreover, sensitivity analysis is presented in the end
to show the economic behaviors of optimal strategies.
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1. Introduction

Mean-variance and expected utilitymaximization are by far the two predominant investment decision
rules in financial portfolio selection. Portfolio theory in the dynamic setting has been established in the
past thirty years, again centering around these two frameworks while employing heavily among others
the martingale theory, convex duality and stochastic control; see Duffie [1], Karatzas and Shreve [2],
and Föllmer and Schied [3] for systematic accounts on dynamic utility maximization, and Li andNg [4],
Zhou and Li [5], and Jin et al. [6] for recent studies on the mean-variance ( including extensions to
mean-risk ) counterpart.

Expected utility theory ( EUT ), developed by von Neumann and Morgenstern [7] based on an
axiomatic system, has an underlying assumption that decision makers are rational and risk averse
when facing uncertainties. In the context of asset allocations, its basic tenets are: Investors evaluate
wealth according to final asset positions; they are uniformly risk averse; and they are able to objectively
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evaluate probabilities. These, however, have long been criticized to be inconsistent with the way people
do decision making in the real world. Substantial experimental evidences and market anomalies have
suggested a systematic violation of the EUT principles, including the Allais paradox, Friedman and
Savage puzzle, Ellesberg paradox, the return reversals and the equity premium puzzle.

Considerable attempts and efforts have been made to address the drawback of EUT, such as Lopes’s
SP/A model [8], Kahneman and Tversky’s Prospect Theory [9], and Quiggin’s Rank-Dependent
Expected Utility [10]. The breakthrough in Kahneman and Tversky [9] has been a cornerstone of
the prospect theory, in which Kahneman and Tversky proposed reference point and distortion of
probability in portfolio theory. These ideas have been proven to be of great use and can result in lowing
risk for an investor. Because the prospect theory describes human behavior better, more and more
literatures study the loss aversion utility and distortion of probability in portfolio selection. Berkelaar
et al. [11] firstly employed the martingale method to derive the optimal investment strategies with two
utility functions under loss aversion in continuous case. Later, Gomes [12] considered the counterpart
discrete model. Furthermore, Jarrow and Zhao [13] introduced a mean-variance framework under
loss aversion. The above works only concerned the loss aversion in prospect theory. The distortion of
probability in portfolio selection can refer to Jin and Zhou [14], Bernard and Ghossoub [15], He and
Zhou [16] and references therein.

In addition, with permission of the insurance companies to invest, purchase reinsurance and acquire
new business in financial markets in practice, the problem of optimal investment and reinsurance for a
general insurance company has attracted more and more attention. Most works on the optimization
problem for an insurer care about maximizing the expected utility of a smooth utility of terminal wealth.
So the decision makers of the insurance company are often assumed to be strictly risk averse towards
the terminal wealth. Browne [17] initiated the study of explicit solution for a firm to maximize the
exponential utility of terminal wealth and minimize the probability of ruin with its surplus process
given by the Lundberg risk model. Wang et al. [18] efficiently applied martingale method to study the
optimal portfolio selection for insurer under themean variance criterion as well as the expected constant
absolute risk aversion (CARA) utility maximization. Under the constraint of no-shorting, Bai and
Guo [19] studied the problem of optimal investment and reinsurance for an insurer under maximizing
the expected exponential utility of terminal wealth as well as minimizing the probability of ruin. The
readers are referred to, for example, Yang and Zhang [20], Xu et al. [21], Liang et al. [22], Guan and
Liang [23], Liu et al. [24] and references therein. In the works mentioned above, the best strategy
for avoiding market risk often includes a large allocation in risky assets (and a large percentage of
insurance business). However, some people are reluctant to take risks from risky assets and insurance
operations. In addition, some may seek out risk, thereby investing more in risky assets and retaining
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more of their insurance business. As a result, many of the optimal terminal wealth criteria in the
literature may pose significant risks to insurers .

As far as we know, few works are devoted to the study of optimization problem for insurance
companies under loss aversion, Guo [25] first investigated the optimal portfolio choice for an insurer
under loss aversion, where a specific two-piece utility function is considered. Based on Guo [25], Chen
andYang [26] studied optimal reinsurance and investment strategies for an insurer in a stochasticmarket
by considering the insurer’s preference is represented by a two-piece utility function. Recently, Ma et
al. [27] investigated optimal reinsurance and investment strategies with the assumption that the insurers
can purchase proportional reinsurance contracts and invest their wealth in a financial market under an
S-shaped utility. Since the existing works on the problem of optimal investment and reinsurance mainly
care about the complexity in the market, we introduce here one different optimization criterion that is
different from the smooth utility case. In this paper, we intend to investigate the optimal investment
and reinsurance strategies for insurance companies under loss aversion. The financial market consists
of both risk-free assets and risky assets whose price precess is modeled by a Geometric Brownian
motion. The surplus process of the insurer is approximated by a drifted Brownian motion. As a result,
the insurer has to manage risks from risky assets and insurance operations. The goal is to maximize the
expected utility of terminal wealth. The utility function under loss aversion we adopt is firstly studied
in Kahneman and Tversky [9]. The utility function is convex under a reference point while concave
above the point. This leads to a risk-seeking attitude towards losses. Since the optimization problem is
not a concave maximization problem, the optimal terminal wealth is a discontinuous function and so
it seems that the stochastic programming method does not work here. We will apply the martingale
method to derive the optimal investment and reinsurance strategies under loss aversion. Moreover,
the sensitivity analysis in the end shows the economic behaviors of the optimal strategies. When the
reference point is high, the loss-averse insurer becomes more concerned about volatilities that may
cause the account of wealth to underperform the reference level, and thus, the lower wealth allocated
in the risky asset and the less insurance business kept.

The organization of this paper is as follows. In section 2, the assumptions and model are described.
Section 3 formulates the optimization problem we are going to consider under loss aversion. Section
4 solves the optimization problem and derives explicitly the corresponding optimal investment and
proportional reinsurance strategies and the optimal wealth process by a martingale approach. Section 5
presents a sensitivity analysis to show the impact of the optimization criterion on the optimal strategies.
Finally, Section 6 concludes this paper.



Asia Pac. J. Math. 2024 11:73 4 of 20

2. Assumptions and Model

Let (Ω,F , P ) be a given complete probability space with a filtration (Ft), t ∈ [0, T ] satisfying the
usual conditions, i.e. the filtration contains all P -null sets and is right continuous, where T ∈ (0,+∞)

is a finite constant and represents the time horizon; (Ft) stands for the information available up to time
t and any decision made at time t is based on this information. All stochastic processes in this paper
are assumed to be well defined and adapted processes in this probability space.

2.1. Financial market.

We assume that the insurer can invest in the capital market where two types of assets are traded
continuously on a finite horizon [0, T ]. For simplicity, we assume that the financial market consists of a
risk-free asset and a risky asset. The price of risk-free asset P0(t) is given by

dP0(t) = P0(t)rdt, P0(0) = 1, (1)

and the price of risky asset P1(t) satisfying

dP1(t) = P1(t) [µdt+ σ1dW1(t)] , P1(0) > 0, (2)

where r is the risk-free interest rate, µ is the appreciation rate. σ1 > 0 is the volatility, andW1(t) is a
1-dimensional standard Brownian motion on the filtered complete probability space (Ω,F , (Ft), P ). In
general, we assume that µ > r ≥ 0.

2.2. Surplus process.
We consider an insurer whose surplus process is modeled by a diffusion approximation model. To

understand the diffusion approximation model better, it is advantageous to start from the classical
Cramér-Lundbergmodel. In the Cramér-Lundbergmodel the claims arrive according to a homogeneous
Poisson process {K(t)} with intensity λ; the individual claim sizes are Yi, i = 1, 2, 3..., which are
assumed to be independent of {K(t)} and be independent and identically distributed (i.i.d.) positive
random variables with finite first and second-order moments given by µ0 = EY =

∫∞
0 ydF (y) <∞

and σ2
0 = E(Y 2) =

∫∞
0 y2dF (y) < ∞, respectively. Then the surplus process of the insurer without

reinsurance and investment follows

U(t) = x0 + c0t−R(t) = x+ c0t−
∑K(t)

i=1
Yi, (3)

where x0 > 0 is the initial reserve of an insurance company; c0 is the premium rate which is assumed
to be calculated according to the expected value principle, i.e., c0 = (1 + θ)λµ0, where θ is the safety
loading of the insurer. R(t) =

∑K(t)
i=1 Yi is a compound Poisson process defined on (Ω,F , (Ft), P ),

which represents the cumulative amount of claims in time interval [0, t].
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By Grandll [28], the Cramér-Lundberg model can be approximated by the following diffusion model

dU(t) = θλµ0dt+ σ2dW2(t), (4)

where θλµ0 can be regarded as the premium return rate of the insurer, σ2
2 = λσ0

2 measures the
volatility of the insurer’s surplus,W2(t) is a standard Brownian motion, which is independent ofW1(t).
It is worth pointing out that the diffusion approximation model (4) works well for the large insurance
portfolios, where an individual claim is relatively small compared to the size of surplus. The diffusion
approximation model has been used in much existing literature, for example, Browne [17], Promislow
and Young [29], Gerber and Shiu [30], Bai and Guo [19], Cao and Wan [31], Chen et al. [32], Zeng and
Li [33], and so on.

In addition, the insurer is allowed to purchase proportional reinsurance or acquire new business (for
example, acting as a reinsurer of other insurers, see Bäuerle [34]) at each moment in order to control
insurance business risk. The proportional reinsurance or new business level is associated with the
value of risk exposure q(t) ∈ [0,+∞) at any time t ∈ [0, T ]. q(t) ∈ [0, 1] corresponds to a proportional
reinsurance cover and shows that the cedent should divert part of the premium to the reinsurer at
the rate of (1 − q(t))(1 + η)λµ0, where η is the safety loading of the reinsurer satisfying η ≥ θ > 0.
In return, for each claim occurring at time t, the reinsurer pays 100(1− q(t))% of the claim, and the
cedent pays the rest. q(t) ∈ (1,+∞) corresponds to acquiring new business (acting as a reinsurer for
other insurers). When a reinsurance policy {q(t) : t ∈ [0, T ]} is adopted, the corresponding diffusion
approximation dynamics for the surplus process becomes

dU(t) = [θλµ0 − (1− q(t))(1 + η)λµ0] dt+ σ2q(t)dW2(t). (5)

2.3. Wealth process.

Assume that the insurer can dynamically purchase proportional reinsurance, acquire new business
and invest in the financial market over the time interval [0, T ] and there is no transaction coat in the
financial market and the insurance market. A trading policy is donated by a pair of stochastic processes
h = {π(t), q(t)}t∈[0,T ], where q(t) and π(t) are the value of the risk exposure and the dollar amount
invested in the risky asset at time t, respectively. The dollar amount invested in the risk-free asset at
time t is X(t)− π(t), where X(t) is the wealth process associated with strategy h. Then the evolution
of X(t) can be described as

dX(t) = [X(t)r + π(t)(µ− r) + θλµ0 − (1− q(t))(1 + η)λµ0] dt+ σ1π(t)dW1(t)

+ σ2q(t)dW2(t)

X(0) = x0.

(6)

Definition 2.1. (Admissible strategy) Let ϑ := [0, T ] × R. For any fixed t ∈ [0, T ], a trading policy
h = {π(t), q(t)}t∈[0,T ] is said to be admissible if it satisfies that
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(1) π(t) and q(t) are predictable mappings with respect to Ft;
(2) for all t ∈ [0, T ], q(t) ≥ 0 and E

[∫ T
t (π(s)2 + q(s)2)ds

]
< +∞;

(3) (X(t), h) is the unique solution to the stochastic differential equation (6).
In addition, let ∏(t, x) denote the set of all admissible strategies with respect to initial condition
(t, x) ∈ ϑ.

3. Formulation of the Problem

Most works on the optimization problem for insurer care about maximizing the expectation of a
smooth utility of terminal wealth, in order to find the optimal strategies within [0, T ]. However, in the
real world, some individuals are unwilling to take the risks from risky assets and insurance business.
They may be more interested to allocate money in the risk-free asset and keep less insurance business.
Besides, others may be risk seeking and invest more in risky assets and keep more insurance business.
The general optimization problem only characterizes a risk averse investor and cannot reflect others’
behavior towards risk. In this section, we formulate one different optimization problem, which better
manage the risks for the insurer.

This section formulates the optimization problem under loss aversion. Kahneman and Tversky
(1979) [9] firstly established the theory of prospect theory. They stated that people always make
decisions relative to some reference levels. The reference levels may be different for different people.
They judge the account of the wealth over (under) the reference as gains (losses). People often act
differently towards gains and losses. In fact, people are more sensitive to losses than gains. They also
demonstrated their idea based on the following utility function:

U(X(T )) =

A(X(T )− ξ)γ1 , X(T ) > ξ;

−B(ξ −X(T ))γ2 , X(T ) ≤ ξ.
(7)

where A and B are positive constants, 0 < γ1 ≤ 1, 0 < γ2 ≤ 1. Statistics are showed in Kahneman and
Tversky (1979) [9] to support the above utility function. The investor is risk-averse towards gains while
risk-seeking towards losses. The reference point ξ is chosen in advance. For the insurer, the reference
point ξ can be chosen to be connected with the premium rate and initial wealth. The utility function is
convex when the wealth is less than ξ and concave when the wealth is bigger than ξ.

Following the utility maximization criterion, the problem of optimal investment and reinsurance
strategies for an insurer can be formulated as follows:

max
h∈Π

E{U [X(T )]}

s.t. X(t) satisfies (6)

X(t) ≥ 0. ∀t ∈ [0, T ].

(8)
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where X(t) ≥ 0, ∀t ∈ [0, T ] reflects that the insurance company is not bankrupt throughout the
investment period [0, T ].

4. Solution to the Optimization Problem

In this section, we use martingale algorithm to solve (8). The previous section allows us to change
dynamic maximization problem (8) with the mean constraint into a static problem. We are thus led to
a constrained optimization problem which is solved by standard Lagrange multipliers methods.

Define

H(t) = exp

{
−rt+

∫ t

0
θ1(s)dW1(s) +

∫ t

0
θ2(s)dW2(s)− 1

2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
, (9)

where θ1(t) = −µ−r
σ1

and θ2(t) = − (1+η)λµ0
σ2

. Then, We have the following conclusion.

Proposition 4.1. If H(t) is defined by (9) for t ∈ [0, T ], then H(t)X(t) +
∫ t

0 H(s)c2ds is a martingale
under the probability measure P , where c2 = (1 + η − θ)λµ0.

Proof. We write H(t) in the following differential form:

dH(t) = H(t)[−rdt+ θ1(t)dW1(t) + θ2(t)dW2(t)]. (10)

By Ito’s formula, we have

d [H(t)X(t)] = H(t)dX(t) +X(t)dH(t) + d [H(t), X(t)]

= −H(t)c2dt+H(t) [X(t)θ1(t) + σ1π(t)] dW1(t)

+ H(t) [X(t)θ2(t) + σ2q(t)] dW2(t) (11)

where [H(t), X(t)] denotes the quadratic co-variation of H(t) and X(t). We pray for integration on
both sides of (11) and get

H(t)X(t) +

∫ t

0
H(s)c2ds = x0 +

∫ t

0
H(s) [X(s)θ1(s) + σ1π(s)] dW1(t)

+

∫ t

0
H(s) [X(s)θ2(s) + σ2q(s)] dW2(t). (12)

This shows that H(t)X(t) +
∫ t

0 H(s)c2ds can be represented as an Ito integral with respect to the
Brownian motionsW1(t) andW2(t), and therefore is a Martingale under P . �

Of course, a martingale must be super-martingale under P . The super-martingale property applied
to (12) implies the following constraint for the optimization problem:

E[H(T )X(T ) +

∫ T

0
H(s)c2ds] ≤ x0. (13)

As in Guo [25], we now show that this constraint plays a decisive role in the optimization problem.
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Theorem 4.1. Let ψ ≥ 0 be an Ft-measurable random variable, then for a given initial wealth x0 satisfying

E[H(T )ψ+
∫ T

0 H(s)c2ds] = x0, there exists a policy h = [π(t), q(t)], such that h = [π(t), q(t)] ∈ Π, t ∈ [0, T ],

and Xh(T ) = ψ.

Proof. Define a martingale
M(t) = E[H(T )ψ +

∫ T

0
H(s)c2ds|Ft].

According to the Martingale representation theorem (e.g., Cont and Tankov [35], Proposition 9.4),
there exist two predictable processes ϕ1 : Ω× [0, T ] 7→ R and ϕ2 : Ω× [0, T ] 7→ R satisfying∫ T

0
ϕ1(s)2ds <∞, a.s.,

∫ T

0
ϕ2(s)2ds <∞, a.s.

such that

M(t) = E

[
H(T )ψ +

∫ T

0
H(s)c2ds

]
+

∫ t

0
ϕ1(s)dW1(s) +

∫ t

0
ϕ2(s)dW2(s)

= x0 +

∫ t

0
ϕ1(s)dW1(s) +

∫ t

0
ϕ2(s)dW2(s). (14)

Thus, it is easy to see that

H(T )ψ +

∫ T

0
H(s)c2ds = x0 +

∫ T

0
ϕ1(s)dW1(s) +

∫ T

0
ϕ2(s)dW2(s). (15)

Comparing dW1(t)-term and dW2(t)-term respectively in (15) with those in (12) taking t = T , it is
reasonable to conjecture 

π(t) =
1

σ1H(t)
[ϕ1(t)−H(t)X(t)θ1(t)] ,

q(t) =
1

σ2H(t)
[ϕ2(t)−H(t)X(t)θ2(t)] .

(16)

Then we need to check whether the policy defined in (16) is admissible.
To check π(t) is admissible, we only need to check that ∫ T0 |π(t)|dt < ∞, a.s. We define some

notations:
||f(t)||∞ = max

0≤t≤T
|f(t)|, ||f(t)||2 = [

∫ T

0
|f(t)|2dt]

1
2 .

According to (16), we have∫ T

0
|π(t)|dt =

∫ T

0
|σ1
−1H(t)−1ϕ1(t) +X(t)(µ− r)σ1

−2|dt

≤
∫ T

0
|σ1
−1||H(t)−1||∞ϕ1(t) + ||X(t)||∞(µ− r)σ1

−2|dt

≤ σ1
−1||H(t)−1||∞

∫ T

0
ϕ1(t)dt+ ||X(t)||∞(µ− r)σ1

−2T

≤ σ1
−1||H(t)−1||∞||ϕ1(t)||2 + ||X(t)||∞(µ− r)σ1

−2T

<∞, a.s.

The last inequality follows from the uniformly bounded conditions.
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Due to the non-negativity constraints of admissible reinsurance strategy, we define two regions:

D1 :=
{

(t, x) ∈ [0, T ]×R+|x < A1(t)
}
,

D2 :=
{

(t, x) ∈ [0, T ]×R+|x ≥ A1(t)
}
.

where A1(t) = ϕ2(t)
H(t)θ2

.
Firstly, we consider region D1. It is obvious that [ϕ2(t)−H(t)X(t)θ2(t)] < 0. Hence, we take the

value q(t) ≡ 0, which satisfies the admissibility. In a word, in region D1, we conjecture the form of
trading strategy as follows: 

π(t) =
1

σ1H(t)
[ϕ1(t)−H(t)X(t)θ1(t)] ,

q(t) = 0.

(17)

Then, we consider region D2. In this region, it is easy to find that the policy defined in (16) is
admissible. Hence, in region D2, the conjecture of trading strategy is given by (16). �

According to Theorem4.1, anyFt-measurable randomvariableψ ≥ 0withE[H(T )ψ+
∫ T

0 H(s)c2ds] =

x0 can be financed via trading an admissible policy h such thatXh(T ) = ψ. So to determine the optimal
policy h∗ in the dynamicmaximization problem (8), which depends on the time variable t, it is sufficient
to maximize over all possible random variable ψ′s . That is to say, the dynamic maximization problem
(8) is equivalent to the following static optimization problem:

max
ψ≥0

E[U(ψ)]

s.t. E

[
H(T )ψ +

∫ T

0
H(s)c2ds

]
≤ x0.

(18)

Theorem 4.2 characterizes the optimal solutions of the optimization problem (18).

Theorem 4.2. The optimal terminal wealth of a loss averse insurer with 0 < γ1 < 1 and 0 < γ2 < 1 is given by

ψ∗ =


ξ +

{
x0 − E[H(T )ξ +

∫ T
0 H(s)c2ds]

}
H(T )

1
γ1−1

E(H(T )
γ1
γ1−1 )

, ξ ≤ x0e
rT − c2

erT−1
r ;

0, ξ > x0e
rT − c2

erT−1
r .

(19)

Proof. Denote u1(x) = A(x− ξ)γ1 , u2(x) = −B(ξ − x)γ2 . To solve the problem (18), firstly, we assume
that

E

[
H(T )ξ +

∫ T

0
H(s)c2ds

]
≤ x0.

If ψ > ξ, the Lagrangian function L(ψ, y) of problem (18) can be written as

L(ψ, y) = E

{
u1(ψ) + y[x0 −H(T )ψ −

∫ T

0
H(s)c2ds]

}
. (20)



Asia Pac. J. Math. 2024 11:73 10 of 20

where y is the Lagrangian multiplier. Equating the derivatives of Lagrangian function (20) with respect
to ψ and y respectively to zero, we obtain

∂L

∂ψ
= E

[
u1
′(ψ)− yH(T )

]
= 0,

∂L

∂y
= x0 −H(T )ψ −

∫ T

0
H(s)c2ds = 0.

(21)

Solving equation (21), we have

ψ∗1 = ξ +

[
Aγ1

yH(T )

] 1
1−γ1

. (22)

While, the Lagrangian multiplier y is determined by the constraint

E[H(T )ψ∗1 +

∫ T

0
H(s)c2ds] = E[H(T )ξ + (αγ1)

1
1−γ1 y

1
γ1−1H(T )

γ1
γ1−1 +

∫ T

0
H(s)c2ds]

= x0

which is satisfied by setting

y
1

γ1−1 =
x0 − E[H(T )ξ +

∫ T
0 H(s)c2ds]

(Aγ1)
1

1−γ1E[H(T )
γ1
γ1−1 ]

Substitution of y
1

γ1−1 in (22) gives us the optimal solution of (20) via the following formula:

ψ∗1 = ξ +

{
x0 − E[H(T )ξ +

∫ T

0
H(s)c2ds]

}
H(T )

1
γ1−1

E[H(T )
γ1
γ1−1 ]

. (23)

If ψ ≤ ξ, the utility function u2(ψ) is continuous and convex in the closed interval [0, ξ]. Therefore the
local optimal solution ψ∗2 is located at one of the boundaries ψ∗2 = 0 or ψ∗2 = ξ. Furthermore it is easy to
check ψ∗2 = 0 and ψ∗2 = ξ satisfy the constraint condition

E

[
H(T )ψ +

∫ T

0
H(s)c2ds

]
≤ x0.

Since U(·) is not concave, we need to compare the local maxima ψ∗1 and ψ∗2 to determine the global
maximum. Firstly we compare ψ∗1 to ψ∗2 = ξ:

U [ψ∗1]− U [ξ] = u1(ψ∗1)− u2(ξ)

= A[ψ∗1 − ξ]γ1

= A

[
Aγ1

yH(T )

] γ1
1−γ1

> 0.
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Hence ψ∗2 = ξ is never the optimal level of terminal wealth. Similarly by comparing ψ∗1 to ψ∗2 = 0, we
find

U [ψ∗1]− U [ξ] = u1(ψ∗1)− u2(0)

= A[ψ∗1 − ξ]γ1 +Bξγ2

= A

[
Aγ1

yH(T )

] γ1
1−γ1

+Bξγ2 > 0.

So ψ∗2 = 0 is not the optimal level of terminal wealth too. We conclude that ψ∗1 is the optimal solution
of the static problem (18), when

E

[
H(T )ξ +

∫ T

0
H(s)c2ds

]
≤ x0.

Then, we assume that
E

[
H(T )ξ +

∫ T

0
H(s)c2ds

]
> x0.

If ψ > ξ, the Lagrangian function (18) has no optimal solution; If ψ ≤ ξ, similarly according to the
continuity and convexity of the utility function u2(ψ), the local optimal solution ψ∗2 is located at one of
the boundaries ψ∗2 = 0 or ψ∗2 = ξ. But ψ∗2 = ξ does not satisfy the constraint

E

[
H(T )ψ +

∫ T

0
H(s)c2ds

]
≤ x0.

So we conclude that ψ∗2 = 0 is the optimal solution of the static problem (20) when

E

[
H(T )ξ +

∫ T

0
H(s)c2ds

]
> x0.

It is easy to calculate
E

[
H(T )ξ +

∫ T

0
H(s)c2ds

]
= ξe−rT + c2

1− e−rT

r
.

Let ψ∗ be the optimal solution of the problem (18). Then ψ∗ can be written as

ψ∗ =


ξ +

{
x0 − E[H(T )ξ +

∫ T
0 H(s)c2ds]

}
H(T )

1
γ1−1

E(H(T )
γ1
γ1−1 )

, ξ ≤ x0e
rT − c2

erT−1
r ;

0, ξ > x0e
rT − c2

erT−1
r .

(24)

�

Note that the optimal terminalwealth is a discontinuous function. In good states (ξ ≤ x0e
rT−c2

erT−1
r )

the loss-averse agent behaves like the CRRA agent and obtains wealth above the reference level; In
bad states (ξ > x0e

rT − c2
erT−1
r ), the insurer ends up with zero wealth. Since the insurer is mostly

concerned with small changes in wealth relative to the threshold the gambling behavior below the
threshold causes the insurer to incur large losses in these bad states.



Asia Pac. J. Math. 2024 11:73 12 of 20

In the previous section, we characterized the optimal terminal wealth of a loss-averse insurer. In
what follows, we derive closed-form solutions for the optimal policies when the price process of risky
asset follows a geometric Brownian motion. When applying the martingale methodology the optimal
strategies are derived not given in feedback form as with stochastic dynamic programming. Instead,
the optimal strategies are derived as a function of the wealth process. Theorem 4.3 presents closed-form
expressions of the optimal policy, the optimal wealth process and the optimal expected utility of
terminal wealth.

Theorem 4.3. Consider the optimal investment and reinsurance problem for an insurance company and the

decision makers are assumed to be loss averse. Then:

(i) The optimal trading policy h∗ = [π∗(t), q∗(t)] is given by
π∗(t) =

1

(1− γ1)σ1
2

[
X∗(t)− (ξ − 1

r
c2)e−r(T−t) − 1

r
c2

]
(µ− r),

q∗(t) =
1

(1− γ1)σ2
2

[
X∗(t)− (ξ − 1

r
c2)e−r(T−t) − 1

r
c2

]
(1 + η)λµ0.

(25)

where π∗(t) and q∗(t) denote the optimal investment strategy and the optimal reinsurance strategy respectively.

(ii) The corresponding optimal wealth process X∗(t), t ∈ [0, T ] is given by

X∗(t) = (ξ − 1

r
c2)e−r(T−t) +

1

r
c2 + (x0 − ξe−rT − c2

1− e−rT

r
)
Z(t)

H(t)

= (ξ − 1

r
c2)e−r(T−t) +

1

r
c2 + (x0 − ξe−rT − c2

1− e−rT

r
)

× exp

{
rt+

1

γ1 − 1

∫ t

0
θ1(s)dW1(s) +

1

γ1 − 1

∫ t

0
θ2(s)dW2(s)

+
1− 2γ1

2(γ1 − 1)2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
. (26)

(iii) The insurer’s optimal expected utility of terminal wealth is given by

E[U(X∗(T ))] = A[x0 − ξe−rT + c2
1− e−rT

r
]γ1

× exp

{
γ1rT +

1

2

γ1

1− γ1

∫ T

0
[θ1(s)2 + θ2(s)2]ds

}
. (27)

Proof. We derive the optimal policy h∗ = {π∗(t), q∗(t)}t∈[0,T ] in the dynamic problem (8) with the
corresponding optimal terminal wealth ψ∗1 satisfying

X∗(T ) = Xh∗(T ) = ψ∗1.

Multiplying by H(T ) and then taking conditional expectation on both sides gives

E

[
H(T )X∗(T ) +

∫ T

0
H(s)c2ds|Ft

]
= E

[
H(T )ψ∗1 +

∫ T

0
H(s)c2ds|Ft

]
. (28)
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According to Proportion 4.1, (28) can be rewritten as

H(t)X∗(t) +

∫ t

0
H(s)c2ds = H(t)ξe−r(T−t) +

∫ t

0
H(s)c2ds−

1

r
c2(e−r(T−t) − 1)H(t)

+

[
x0 − E(H(T )ξ +

∫ T

0
H(s)c2ds)

]
E(H(T )

γ1
γ1−1 |Ft)

E(H(T )
γ1
γ1−1 )

. (29)

Then we obtain

H(t)X∗(t) = H(t)[ξe−r(T−t) − 1

r
c2(e−r(T−t) − 1)]

+

[
x0 − E(H(T )ξ +

∫ T

0
H(s)c2ds)

]
E(H(T )

γ1
γ1−1 |Ft)

E(H(T )
γ1
γ1−1 )

. (30)

Introduce an exponential martingale

Z(t) = exp

{
γ1

γ1 − 1

∫ t

0
θ1(s)dW1(s) +

γ1

γ1 − 1

∫ t

0
θ2(s)dW2(s)

−1

2

(γ1)2

(γ1 − 1)2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
. (31)

According to Z(t), H(t)
γ1
γ1−1 can be rewritten as

H(t)
γ1
γ1−1 = Z(t) exp

{
− γ1

γ1 − 1
rt+

1

2

γ1

(γ1 − 1)2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
. (32)

Denote

f(t) = exp

{
− γ1

γ1 − 1
rt+

1

2

γ1

(γ1 − 1)2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
,

then the fraction of (29) on the right-hand side can be rewritten as

E[H(T )
γ1
γ1−1 |Ft]

E[H(T )
γ1
γ1−1 ]

=
E[f(T )Z(T )|Ft]
E[f(T )Z(T )]

=
f(T )E[Z(T )|Ft]
f(T )E[Z(T )]

=
Z(t)

Z(0)
= Z(t).

The last equality holds because Z(0) = 1. Substituting back into (29), and since

E[H(T )ξ +

∫ T

0
H(s)c2ds] = ξe−rT + c2

1− e−rT

r
,

we obtain

H(t)X∗(t) = H(t)[(ξ − 1

r
c2)e−r(T−t) +

1

r
c2] + (x0 − ξe−rT − c2

1− e−rT

r
)Z(t). (33)
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Taking differential on both sides of (33), we get

d[H(t)X∗(t)] = [(ξ − 1

r
c2)e−r(T−t) +

1

r
c2]dH(t)

+ H(t)d[(ξ − 1

r
c2)e−r(T−t) +

1

r
c2] + [x0 − ξe−rT − c2

1− e−rT

r
]dZ(t)

= H(t)[(ξ − 1

r
c2)e−r(T−t)r]dt

+ H(t)[(ξ − 1

r
c2)e−r(T−t) +

1

r
c2][−rdt+ θ1(t)dW1(t) + θ2(t)dW2(t)]

+
γ1

γ1 − 1
H(t)[X∗(t)− (ξ − 1

r
c2)e−r(T−t) − 1

r
c2][θ1(t)dW1(t) + θ2(t)dW2(t)]

= −c2H(t)dt+
1

γ1 − 1
H(t)θ1(t)[X∗(t)γ1 − (ξ − 1

r
c2)e−r(T−t) − 1

r
c2]dW1(t)

+
1

γ1 − 1
H(t)θ2(t)[X∗(t)γ1 − (ξ − 1

r
c2)e−r(T−t) − 1

r
c2]dW2(t) . (34)

Since H(t)X∗(t) also satisfies (11), we have

d [H(t)X∗(t)] = H(t)dX∗(t) +X∗(t)dH(t) + d [H(t), X∗(t)]

= −H(t)c2dt+H(t) [X∗(t)θ1(t) + σ1π(t)] dW1(t)

+ H(t) [X∗(t)θ2(t) + σ2q(t)] dW2(t). (35)

Comparing dW1(t)-term and dW2(t)-term of equation (34) with those of equation (35), the optimal
policy is given by


π∗(t) =

1

(1− γ1)σ1
2

[
X∗(t)− (ξ − 1

r
c2)e−r(T−t) − 1

r
c2

]
(µ− r),

q∗(t) =
1

(1− γ1)σ2
2

[
X∗(t)− (ξ − 1

r
c2)e−r(T−t) − 1

r
c2

]
(1 + η)λµ0.

(36)

Finally, it is easy to prove that the policy in Equation (36) is admissible. So, it is the optimal policy of
the optimization problem (8). From (33), we easily derive the optimal wealth process:

X∗(t) = (ξ − 1

r
c2)e−r(T−t) +

1

r
c2 + (x0 − ξe−rT − c2

1− e−rT

r
)
Z(t)

H(t)

= (ξ − 1

r
c2)e−r(T−t) +

1

r
c2 + (x0 − ξe−rT − c2

1− e−rT

r
)

× exp

{
rt+

1

γ1 − 1

∫ t

0
θ1(s)dW1(s) +

1

γ1 − 1

∫ t

0
θ2(s)dW2(s)

+
1− 2γ1

2(γ1 − 1)2

∫ t

0
[θ1(s)2 + θ2(s)2]ds

}
. (37)
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Substituting ψ∗1 into the value function in the maximization problem (18), we can derive the optimal
expected utility:

E[U(X∗(T ))] = E[U(ψ∗1)]

= E[u1(ψ∗1)]

= A[x0 − ξe−rT + c2
1− e−rT

r
]γ1E

(
H(T )

1
γ1−1

E[H(T )
γ1
γ1−1 ]

)γ1

= A[x0 − ξe−rT + c2
1− e−rT

r
]γ1E

(
H(T )

1
γ1−1

f(T )E[Z(T )]

)γ1

= A[x0 − ξe−rT + c2
1− e−rT

r
]γ1f(T )1−γ1 .

The last equality holds becauseE[Z(T )] = 1. Substituting the expression of f(t) into the above formula,
the insurer’s optimal expected utility of terminal wealth is given by

E[U(X∗(T ))] = A[x0 − ξe−rT + c2
1− e−rT

r
]γ1

× exp

{
γ1rT +

1

2

γ1

1− γ1

∫ T

0
[θ1(s)2 + θ2(s)2]ds

}
. (38)

�

Note that (1) the optimal policy depends on the wealth process, which is a realistic and important
conclusion, however, a lot of literature could not have such results; the parameters of the capital market
and the insurance market have impact on the optimal policy; the reference level of the insurer has
impact on the optimal policy; from the above results, we find that the optimal dollar amount invested
in the risky asset and the optimal reinsurance proportion both decrease with respect to the reference
level, that is to say, the higher aspiration level to determine gains and losses, the less amount the insurer
invests in the risky asset and the less insurance business the insurer keeps. (2) The optimal expected
utility of terminal wealth decreases with respect to the reference level, which implies that the higher
reference level of the insurer, the smaller the optimal utilities.

5. Numerical Examples

In this section, we present a sensitivity analysis to explore the economic behavior of the optimal
investment and reinsurance strategies. Since the optimal strategies are stochastic, we apply the Monte
CarloMethods (MCM) to show the impacts of economic parameters on the optimal strategies. Through-
out the sensitivity analysis, unless otherwise stated, the basic parameters are given by: µ = 0.2, r = 0.05,
σ0 = 1, σ1 = 2, η = 1.5, µ0 = 0.1, x0 = 10, λ = 0.2, θ = 1, T = 10, ξ = 5, γ1 = 0.2, γ2 = 0.3, A = 1,
B = 2.25. Since the impacts of the economic parameters on the optimal investment and reinsurance
strategies have been studied in many literatures, see Zeng and Li [33], Liang et al. [22] and etc., we
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mainly investigate the influence of the loss aversion on the optimal strategies. Different loss aversion
functions are corresponding to different people. This section in fact describes the optimal strategies for
different people.

Figures 1-4 show that the optimal dollar amount invested in the risky asset and the optimal reinsur-
ance proportion both increase with respect to time t, namely, as time escapes, the insurer should invest
more in the risky asset and keep more insurance business.

The impact of the risk averse level on the optimal investment policy and the optimal reinsurance
policy with respect to time t are shown in Figure 1 and Figure 2 respectively. Three different risk averse
levels are: γ1 = 0.2, γ1 = 0.4, γ1 = 0.6. Specially, Figure 1 illustrates that the optimal investment policy
π∗(t) is increasing with respect to the coefficient of risk aversion γ1, i.e., the more the insurer dislikes
risk, the less amount the insurer invests in the risky asset; Figure 2 tells us that the optimal reinsurance
policy q∗(t) is also increasing with respect to the coefficient of risk aversion γ1, that is to say, the less
risk averse the insurer, the more insurance business the insurer keeps;

The impact of the reference level on the optimal investment policy and the optimal reinsurance
policy with respect to time t are shown in Figure 3 and Figure 4 respectively. Three different reference
levels are: ξ = 1, ξ = 5, ξ = 10. Specially, Figure 3 and Figure 4 show that both the optimal investment
policy π∗(t) and the optimal reinsurance policy q∗(t) are decreasing with respect to the reference level ξ.
When the reference level is increased, the insurer tends to adopt a lower allocation in the risky asset and
keep less insurance business, since the loss aversion insurer becomes more concerned about volatilities
that may cause the account of wealth to underperform the reference level.
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Figure 1. The effect of γ1 on the optimal investment policy.
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Figure 2. The effect of γ1 on the optimal reinsurance policy.
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Figure 3. The effect of ξ on the optimal investment policy.
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6. Conclusions

In this paper, we study the optimal asset allocation and risk management issues for insurance
companies in a continuous-time model. The insurer is allowed to invest in a financial market and
purchase proportional reinsurance and acquire new business. The surplus process of the insurer
is assumed to follow a diffusion approximation model and the financial market consists of risk-free
assets and risky assets. With the help of martingale approach, we change the dynamic maximization
problem into a static optimization problem. The closed-form expressions for the optimal policies and
the optimal wealth process are derived. In the end, we present a sensitivity analysis to show the impact
of parameters on the optimal investment and reinsurance policies.

This paper considers the continuous-time optimal investment and reinsurance problem for an insurer
under loss aversion. Our work is just a basic framework. There are still many works needed to be
investigated in this direction. For example, (1) this paper assumes that the price process of risky asset
and the surplus process are both driven by diffusion processes in order to derive closed-form solutions,
it is noteworthy to extend this work to a jump-diffusion case because the real financial markets are
often of such cases. (2) In our problems, we do not consider the probability distortion, which is one
of the major ingredients of the Prospect Theory, it is also worth investigating the optimal investment
and reinsurance problem under loss aversion and probability distortion. (3) As the insurer updates
its policy continuously in our optimization problem, it may be more interesting to consider a time
coefficient of reference point.
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[3] H. Föllmer, A. Schied, Stochastic finance: An introduction in discrete time, Walter de Gruyter, Berlin, 2002.
[4] D. Li, W. Ng, Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Math. Finance 10 (2000),

387–406. https://doi.org/10.1111/1467-9965.00100.
[5] X.Y. Zhou, D. Li, Continuous time mean-variance portfolio selection: A stochastic LQ framework, Appl. Math. Optim.

42 (2000), 19-33. https://doi.org/10.1007/s002450010003.
[6] H.D. Jin, J.A. Yan, X.Y. Zhou, Continuous-time mean-risk portfolio selection, Ann. Inst. Henri Poincaré Probab. Stat. 41

(2005), 559-580. https://doi.org/10.1016/j.anihpb.2004.09.009.
[7] J. Von Neumann, O. Morgenstern, Theory of games and economic behavior, Princeton University Press, Princeton, 1944.
[8] L.L. Lopes, Between hope and fear: the psychology of risk, Adv. Exp. Soc. Psychol. 20 (1987), 255-295. https://doi.

org/10.1016/S0065-2601(08)60416-5.

https://doi.org/10.1111/1467-9965.00100
https://doi.org/10.1007/s002450010003
https://doi.org/10.1016/j.anihpb.2004.09.009
https://doi.org/10.1016/S0065-2601(08)60416-5
https://doi.org/10.1016/S0065-2601(08)60416-5


Asia Pac. J. Math. 2024 11:73 19 of 20

[9] D. Kahneman, A. Tversky, Prospect theory: An analysis of decision under risk, Econometrica 47 (1979), 263-290.
https://doi.org/10.2307/1914185.

[10] J. Quiggin, A theory of anticipated utility, J. Econ. Behav. Organ. 3 (1982), 323-343. https://doi.org/10.1016/
0167-2681(82)90008-7.

[11] A.B. Berkelaar, R. Kouwenberg, T. Post, Optimal portfolio choice under loss aversion, Rev. Econ. Stat. 86 (2004), 973-987.
https://doi.org/10.1162/0034653043125167.

[12] F.J. Gomes, Portfolio choice and trading volume with loss-averse investors, J. Bus. 78 (2005), 675-706. https://doi.org/
10.1086/427643.

[13] R. Jarrow, F. Zhao, Downside loss aversion and portfolio management, Manag. Sci. 52 (2006), 558-566. https://doi.
org/10.1287/mnsc.1050.0486.

[14] H.Q. Jin, X.Y. Zhou, Behavioral portfolio selection in continuous time, Math. Finance 18 (2008), 385-426. https://doi.
org/10.1111/j.1467-9965.2008.00339.x.

[15] C. Bernard, M. Ghossoub, Static portfolio choice under cumulative prospect theory, Math. Finance Econ. 2 (2010),
277-306. https://doi.org/10.1007/s11579-009-0021-2.

[16] X.D. He, X.Y. Zhou, Portfolio choice under cumulative prospect theory: an analytical treatment, Manag. Sci. 57 (2011),
315-331. https://doi.org/10.1287/mnsc.1100.1269.

[17] S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the
probability of ruin, Math. Oper. Res. 20 (1995), 937-958. https://doi.org/10.1287/moor.20.4.937.

[18] Z.W. Wang, J.M. Xia, L.H. Zhang, Optimal investment for an insurer: The martingale approach, Insur. Math. Econ. 40
(2007), 322-334. https://doi.org/10.1016/j.insmatheco.2006.05.003.

[19] L.H. Bai, J.Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting
constraint, Insur. Math. Econ. 42 (2008), 968-975. https://doi.org/10.1016/j.insmatheco.2007.11.002.

[20] H.L. Yang, L.H. Zhang, Optimal investment for insurer with jump-diffusion risk process, Insur. Math. Econ. 37 (2005),
617-634. https://doi.org/10.1016/j.insmatheco.2005.06.009.

[21] L. Xu, R.M. Wang, D.J. Yao, On maximizing the expected terminal utility by investment and reinsurance, J. Ind. Manag.
Optim. 4 (2008) 801-815. https://doi.org/10.3934/jimo.2008.4.801.

[22] Z.B. Liang, K.C. Yuen, K.C. Cheung, Optimal reinsurance-investment problem in a constant elasticity of variance stock
market for jump-diffusion risk model, Appl. Stoch. Models. Bus. Ind. 28 (2011), 585-597. https://doi.org/10.1002/
asmb.934.

[23] G.H. Guan, Z.X. Liang, Optimal reinsurance and investment strategies for insurer under interest rate and inflation risks,
Insur. Math. Econ. 55 (2014), 105-115. https://doi.org/10.1016/j.insmatheco.2014.01.007.

[24] S.S. Liu, W.J. Guo, X.L. Tong, Martingale method for optimal investment and proportional reinsurance, Appl. Math. J.
Chinese Univ. 36 (2021), 16-30. https://doi.org/10.1007/s11766-021-3463-8.

[25] W.J. Guo, Optimal portfolio choice for an insurer with loss aversion, Insur. Math. Econ. 58 (2014), 217-222. https:
//doi.org/10.1016/j.insmatheco.2014.07.004.

[26] L. Chen, H.L Yang, Optimal reinsurance and investment strategy with two piece utility function, J. Ind. Manag. Optim.
13 (2017), 737-755. https://doi.org/10.3934/jimo.2016044.

[27] J.T. Ma, Z.Y. Lu, D.S. Chen, Optimal reinsurance-investment with loss aversion under rough Heston model, Quant.
Finance. 23 (2023), 95-109. https://doi.org/10.1080/14697688.2022.2140308.

[28] J. Grandll, Aspects of Risk Theory, Springer, New York, 2008.

https://doi.org/10.2307/1914185
https://doi.org/10.1016/0167-2681(82)90008-7
https://doi.org/10.1016/0167-2681(82)90008-7
https://doi.org/10.1162/0034653043125167
https://doi.org/10.1086/427643
https://doi.org/10.1086/427643
https://doi.org/10.1287/mnsc.1050.0486
https://doi.org/10.1287/mnsc.1050.0486
https://doi.org/10.1111/j.1467-9965.2008.00339.x
https://doi.org/10.1111/j.1467-9965.2008.00339.x
https://doi.org/10.1007/s11579-009-0021-2
https://doi.org/10.1287/mnsc.1100.1269
https://doi.org/10.1287/moor.20.4.937
https://doi.org/10.1016/j.insmatheco.2006.05.003
https://doi.org/10.1016/j.insmatheco.2007.11.002
https://doi.org/10.1016/j.insmatheco.2005.06.009
https://doi.org/10.3934/jimo.2008.4.801
https://doi.org/10.1002/asmb.934
https://doi.org/10.1002/asmb.934
https://doi.org/10.1016/j.insmatheco.2014.01.007
https://doi.org/10.1007/s11766-021-3463-8
https://doi.org/10.1016/j.insmatheco.2014.07.004
https://doi.org/10.1016/j.insmatheco.2014.07.004
https://doi.org/10.3934/jimo.2016044
https://doi.org/10.1080/14697688.2022.2140308


Asia Pac. J. Math. 2024 11:73 20 of 20

[29] D. Promislow, V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, North
Amer. Actuar. J. 9 (2005), 109-128. https://doi.org/10.1080/10920277.2005.10596214.

[30] H.U. Gerber, E.S. Shiu, On optimal dividends: from reflection to refraction, J. Comput. Appl. Math. 186 (2006), 4-22.
http://doi.org/10.1016/j.cam.2005.03.062.

[31] Y.S. Cao, N.Q. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation,
Insur. Math. Econ. 45 (2009), 157-162. https://doi.org/10.1016/j.insmatheco.2009.05.006.

[32] S.M. Chen, Z.F. Li, K.M. Li, Optimal investment-reinsurance for an insurance company with VaR constraint, Insur. Math.
Econ. 47 (2010), 144-153. https://doi.org/10.1016/j.insmatheco.2010.06.002.

[33] Y. Zeng, Z.F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insur. Math.
Econ. 49 (2011), 145-154. https://doi.org/10.1016/j.insmatheco.2011.01.001.
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