ABSTRACT RESULTS CONCERNING COHEN STRONGLY (p, σ)-CONTINUOUS OPERATORS

NAWEL ABDESSELAM, AMAR BOUGOUTAIA*, YOUCEF SEDDIK HAMIDOU, AMAR BELACEL
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University of Laghouat, Algeria
*Corresponding author: amarbou28@gmail.com

Received Jun. 4, 2024

Abstract

In this paper, we introduce an abstract finding that delineates the correspondence between specific sets of linear operators and the class of Cohen strongly (p, σ)-continuous operators. We expand our argument to encompass multilinear operators, consequently establishing alternative descriptions for the class of Cohen strongly (p, σ)-continuous multilinear operators.

2020 Mathematics Subject Classification. 46G25; 47L22; 47B10.
Key words and phrases. Cohen strongly (p, σ)-continuous; Pietsch domination theorem; multilinear operators.

1. Notation and background

Motivated by the observation that the class of p-summing linear operators lacks closure under conjugation, Pietsch [11, p.338] demonstrated that while the identity from ℓ_{1} to ℓ_{2} is absolutely 2summing, its conjugate from ℓ_{2} to ℓ_{∞} is not 2 -summing. Cohen [5] introduced the class \mathcal{D}_{p} of strongly p-summing linear operators, establishing in his work that the conjugate of a strongly p-summing operator is a p^{*}-summing operator, satisfying the condition $1 / p+1 / p^{*}=1$. In [4], Campos presented abstract results, highlighting instances of overlap between Cohen's space and other operator spaces. The interpolated operator ideal $\Pi_{p, \sigma}$, as introduced by Matter [1], is defined for (p, σ)-absolutely continuous operators, where $1 \leq p<\infty$ and $0 \leq \sigma<1$. It serves as an intermediary between the ideal of absolutely p-summing linear operators and the ideal of all continuous operators. Subsequently, Achour et al. in [1] introduced the ideal \mathcal{D}_{p}^{σ} of strongly (p, σ)-continuous linear operators to investigate the adjoints of (p, σ)-absolutely continuous linear operators. They further constructed a new multi-ideal using the composition method from this ideal, demonstrating the corresponding Pietsch domination theorem and presenting a tensorial representation for this multi-ideal. In this paper, we establish an abstract

DOI: 10.28924/APJM/11-74
result derived from the Full General Pietsch Domination Theorem [10, Theorem 4.6], which holds immediate relevance concerning the class of strongly (p, σ)-continuous operators. Furthermore, we extend this result to the multilinear case, enabling the establishment of alternative definitions for Cohen strongly (p, σ)-continuous multilinear operators, drawing inspiration from techniques employed in [4]. We adopt standard Banach space notation, where n and m are positive integers, $E, E_{1}, \ldots, E_{m}, F$ denote Banach spaces over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. E^{*} represents the topological dual of E, and B_{E} denotes the closed unit ball of E. The Banach space of all continuous m-linear operators from $E_{1} \times \cdots \times E_{m}$ into F, equipped with the supremum norm, is denoted by $\mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$. When $F=\mathbb{K}$ and if $E_{1}=\cdots=E_{m}=E$, we respectively write $\mathcal{L}\left(E_{1}, \ldots, E_{m}\right)$ and $\mathcal{L}\left({ }^{m} E ; F\right)$. Let's define the classical sequence spaces we'll be working with:

- $\ell_{p}(E)$: Represents absolutely p-summable E-valued sequences with the usual norm $\|\cdot\|_{p}$.
- $\ell_{p, w}(E)$: Represents weakly p-summable E-valued sequences with the norm

$$
\left\|\left(x_{i}\right)_{i=1}^{\infty}\right\|_{\ell_{p, w}(E)}=\sup _{\varphi \in B_{E^{*}}}\left(\sum_{i=1}^{\infty}\left|\left\langle x_{i}, \varphi\right\rangle\right|^{p}\right)^{\frac{1}{p}}
$$

The space $\ell^{p \sigma}(E)$ of (p, σ)-weakly summable sequences was introduced in [8] in order to provide a characterization of the class of (p, σ)-absolutely continuous operators. Now, let's recall some properties of this space:

For a fixed sequence $\left(x_{i}\right)_{i=1}^{n}$ in E, where $1 \leq p<\infty$ and $0 \leq \sigma<1$, we define

$$
\delta_{p \sigma}\left(\left(x_{i}\right)_{i=1}^{n}\right)=\sup _{x^{*} \in B_{E^{*}}}\left(\sum_{i=1}^{n}\left(\left|\left\langle x_{i}, x^{*}\right\rangle\right|^{1-\sigma}\left\|x_{i}\right\|^{\sigma}\right)^{\frac{p}{1-\sigma}}\right)^{\frac{1-\sigma}{p}}
$$

It is clear that

$$
\begin{equation*}
\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{\frac{p}{1-\sigma}, w} \leq \delta_{p \sigma}\left(\left(x_{i}\right)_{i=1}^{n}\right) \leq\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{\left(\frac{p}{1-\sigma}\right)}, \tag{1.1}
\end{equation*}
$$

for all $\left(x_{i}\right)_{i=1}^{n} \in \ell_{\left(\frac{p}{1-\sigma}\right)}(E)$.
We start by introducing various classes of operator ideals. Let $\left(\Pi_{p}, \pi_{p}\right)$ be the ideal of p-absolutely summing operators for $1 \leq p<\infty$. The notion of (p, σ)-absolutely continuous operators was initiated by Matter [9], such that a linear operator $T \in \mathcal{L}(E, F)$ is (p, σ)-absolutely continuous operator if there exist a Banach space G and an operator $S \in \Pi_{p}(E, G)$ such that

$$
\begin{equation*}
\|T x\| \leq\|x\|^{\sigma}\|S x\|^{1-\sigma}, x \in E . \tag{1.2}
\end{equation*}
$$

In such case, we put $\pi_{p, \sigma}=\inf \pi_{p}(S)^{1-\sigma}$, taking the infimum over all Banach spaces G and $S \in \Pi_{p}(E, G)$ such that (1.2) holds. We denote by $\left(\Pi_{p, \sigma}, \pi_{p, \sigma}\right)$ the Banach ideal of (p, σ)-absolutely continuous linear operators [9]. Clearly $\Pi_{p, 0}$ coincides with the ideal Π_{p}. If $0 \leq \sigma \leq 1$ and $1 \leq p \leq \infty$, we put $\Pi_{\infty, \sigma}=\Pi_{p, 1}=\mathcal{L}$.

The following definition of strongly (p, σ)-continuous m-linear operator is due to Achour et al. in [1].

- Let $1 \leq p, r<\infty$ and $0 \leq \sigma<1$ such that $\frac{1}{r}+\frac{1-\sigma}{p^{*}}=1$. An m-linear mapping $T \in \mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$ is strongly (p, σ)-continuous if there is a constant $C>0$ such that for any $x_{1}^{j}, \ldots, x_{n}^{j} \in E_{j}, 1 \leq j \leq m$ and any $y_{1}^{*}, \ldots, y_{n}^{*} \in F^{*}$, we have

$$
\begin{equation*}
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{n}\right\|_{1} \leq C\left(\sum_{i=1}^{n} \prod_{j=1}^{m}\left\|x_{i}^{j}\right\|^{r}\right)^{\frac{1}{r}} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{n}\right) . \tag{1.3}
\end{equation*}
$$

The collection of all strongly (p, σ)-continuous m-linear maps $E_{1} \times \cdots \times E_{m}$ to F will be denoted $\mathcal{D}_{p}^{m, \sigma}\left(E_{1}, \ldots, E_{m} ; F\right)$, that is readily seen to be a subspace of $\mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$. The least C for which (1.3) holds will be written $\|T\|_{\mathcal{D}_{p}^{m, \sigma}}$. This define a norm on the space $\mathcal{D}_{p}^{m, \sigma}\left(E_{1}, \ldots, E_{m} ; F\right)$. Clearly $\mathcal{D}_{p}^{m, 0}$ coincides with the ideal \mathcal{D}_{p}^{m}, where $\left(\mathcal{D}_{p}^{m}, d_{p}^{m}\right)$ be the ideal of Cohen strongly p-summing m-linear operators (see [2]).

Definition 1.1. [6] Let $1<p, q<\infty$ and $0 \leq \sigma<1$ be such that $\frac{1}{p}+\frac{1-\sigma}{q}=1$. They define the space $\ell^{q \sigma}\langle E\rangle$ to be the space of all sequences $\left(x_{i}\right)_{i=1}^{\infty}$ in E such that $\left|\sum_{i=1}^{\infty}\right| \phi_{i}\left(x_{i}\right)| |<\infty$ for all $\phi_{i} \in \ell^{q \sigma}\left(E^{*}\right)$. In this case we say that $\left(x_{i}\right)_{i=1}^{\infty}$ is strongly (p, q, σ)-summable. In addition, we have by [6, Theorem 1] the inclusions

$$
\ell_{p}\langle E\rangle \subset \ell^{q \sigma}\left\langle E^{*}\right\rangle \subset \ell_{p}(E) .
$$

Where $\ell_{p}\langle E\rangle$ the space of Cohen strongly p-summing sequences in E (See [5]).

As in the classical cases, the natural way of presenting the summability properties of the strongly (p, σ)-continuous operators is by defining the corresponding operator between adequate sequence spaces.

Theorem 1.1. [6, Theorem 3] Let $1<r, p<\infty$ and $0 \leq \sigma<1$ be such that $\frac{1}{r}+\frac{1-\sigma}{p^{*}}=1$. Then, an operator $T \in \mathcal{L}(E, F)$ is strongly (p, σ)-continuous if and only if $\widehat{T}\left(\ell_{r}(X)\right) \subset \ell_{r}^{p^{*} \sigma}\langle F\rangle$.where the operator \widehat{T} is defined by $\widehat{T}\left(\left(x_{i}\right)_{i=1}^{n}\right)=T\left(x_{i}\right)_{i=1}^{n}$ for all $\left(x_{i}\right)_{i=1}^{n} \in \ell^{p \sigma}(E)$.

Abstract findings regarding strongly (p, σ)-continuous operators
1.1. The linear case. In this section, we show that the class of strongly (p, σ)-continuous operators can be delineated through various inequalities. Consequently, we derive several coincidental and inclusive outcomes between specific classes of linear operators.

Let $1 \leq q_{0}, q_{1}, p, r<\infty$ and $0 \leq \sigma<1$ be such that $1 / r+(1-\sigma) / p^{*}=1$. We denote by $\mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)$ the class of all operators $T \in \mathcal{L}(E, F)$ such that there exists a constant $C>0$ satisfying

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left|\phi_{i}\left(T\left(x_{i}\right)\right)\right|^{q_{0}}\right)^{\frac{1}{q_{0}}} \leq C\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{q_{1}} \delta_{p^{*} \sigma}\left(\left(\phi_{i}\right)_{i=1}^{n}\right) \tag{1.4}
\end{equation*}
$$

for all positive integers n, and all $\left(x_{i}\right)_{i=1}^{n} \subset E$ and $\left(\phi_{i}\right)_{i=1}^{n} \subset F^{*}$.

Let

$$
\Gamma_{p}^{\sigma}=\left\{\left(q_{0}, q_{1}\right) \in[1, \infty) \times(1, \infty): \frac{1}{q_{0}}=\frac{1}{q_{1}}+\frac{1-\sigma}{p^{*}}\right\}
$$

According to Definition 1.1, it is evident that

$$
\mathcal{D}_{p}^{\sigma}(E, F) \subset \bigcup_{\left(q_{0}, q_{1}\right) \in \Gamma_{p}^{\sigma}} \mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)
$$

Proposition 1.1. If $1 \leq q_{0}, q_{1}, p<\infty$ and $0 \leq \sigma<1$, and if $p<q_{1}$, then $\mathcal{C}_{\left(1, q_{1} ; p\right)}^{\sigma}(E, F)=\{0\}$.
Proof. The statement is clear if either E or $F=\{0\}$. We proceed assuming $E \neq\{0\}$ and $F \neq\{0\}$. Let

$$
\begin{equation*}
\left(\lambda_{i}\right)_{i=1}^{\infty}=\left(\alpha_{i} \beta_{i}\right)_{i=1}^{\infty} \notin \ell_{1} \tag{1.5}
\end{equation*}
$$

with $\left(\alpha_{i}\right)_{i=1}^{\infty} \in \ell_{\left(\frac{p^{*}}{1-\sigma}\right)}$ and $\left(\beta_{i}\right)_{i=1}^{\infty} \in \ell_{q_{1}}$. We have

$$
\begin{aligned}
\sum_{i=1}^{n}\left|\varphi\left(T\left(\lambda_{i} x\right)\right)\right| & =\sum_{i=1}^{n}\left|\varphi\left(T\left(\alpha_{i} \beta_{i} x\right)\right)\right| \\
& =\sum_{i=1}^{n}\left|\alpha_{i} \varphi\left(T\left(\beta_{i} x\right)\right)\right|
\end{aligned}
$$

By (1.4), we have

$$
\sum_{i=1}^{n}\left|\varphi\left(T\left(\lambda_{i} x\right)\right)\right| \leq C\left\|\left(\beta_{i} x\right)_{i=1}^{n}\right\|_{q_{1}} \delta_{p^{*} \sigma}\left(\left(\alpha_{i} \varphi\right)_{i=1}^{n}\right)
$$

Thus by (1.1)

$$
\begin{aligned}
|\varphi(T(x))| \sum_{i=1}^{n}\left|\lambda_{i}\right| & \leq C\|x\|\left\|\left(\beta_{i}\right)_{i=1}^{n}\right\|_{q_{1}} \delta_{p^{*} \sigma}\left(\left(\alpha_{i} \varphi\right)_{i=1}^{n}\right) \\
& \leq C\|x\|\left\|\left(\beta_{i}\right)_{i=1}^{n}\right\|_{q_{1}}\left\|\left(\alpha_{i} \varphi\right)_{i=1}^{n}\right\|_{\left(\frac{p^{*}}{1-\sigma}\right)} \\
& \leq C\|x\|\left\|\left(\beta_{i}\right)_{i=1}^{n}\right\|_{q_{1}}\|\varphi\|\left\|\left(\alpha_{i}\right)_{i=1}^{n}\right\|_{\left(\frac{p^{*}}{1-\sigma}\right)}
\end{aligned}
$$

Taking the supremum thereafter, it follows that

$$
\|T\| \sum_{i=1}^{n}\left|\lambda_{i}\right| \leq C\left\|\left(\beta_{i}\right)_{i=1}^{n}\right\|_{q_{1}}\left\|\left(\alpha_{i}\right)_{i=1}^{n}\right\|_{\frac{p^{*}}{1-\sigma}} .
$$

Therefore, we conclude that if $T \neq 0$ then $\left(\lambda_{i}\right)_{i=1}^{\infty} \in \ell_{1}$, which contradicts assertion (1.5).
To obtain the main result of this section, we require a brief review of the Pietsch Domination Theorem as presented by Pellegrino et al. [10].

Let E_{1}, \ldots, E_{m}, F and F_{1}, \ldots, F_{k} be non-empty sets, and let \mathcal{H} be a family of mappings from $E_{1} \times \cdots \times E_{m}$ to F. Additionally, let $K_{1}, . ., K_{t}$ be compact Hausdorff topological spaces, G_{1}, \ldots, G_{t} be Banach spaces, and suppose that the mappings

$$
\left\{\begin{array}{l}
R_{j}: K_{j} \times F_{1} \times \cdots \times F_{k} \times G_{j} \rightarrow[0,+\infty), j=1, \ldots, t \\
S: \mathcal{H} \times F_{1} \times \cdots \times F_{k} \times G_{1} \times \ldots \times G_{t} \rightarrow[0,+\infty)
\end{array}\right.
$$

satisfy

(1) For each $x^{l} \in F_{l}$ and $b \in G_{j}$, where $(j, l) \in\{1, \ldots, t\} \times\{1, \ldots, k\}$, the mapping

$$
\begin{aligned}
\left(R_{j}\right)_{x^{1}, \ldots, x^{k}, b}: K_{j} & \longrightarrow[0,+\infty) \\
\varphi & \longmapsto R_{j}\left(\varphi, x^{1}, \ldots, x^{k}, b\right)
\end{aligned}
$$

is continuous.
(2) The following inequalities holds

$$
\left\{\begin{array}{l}
R_{j}\left(\varphi, x^{1}, \ldots, x^{k}, \eta_{j} b^{j}\right) \leq \eta_{j} R_{j}\left(\varphi, x^{1}, \ldots, x^{k}, b^{j}\right) \\
S\left(f, x^{1}, \ldots, x^{k}, \alpha^{1} b^{1}, \ldots, \alpha^{t} b^{t}\right) \geq \alpha^{1} \cdots \alpha^{1} S\left(f, x^{1}, \ldots, x^{k}, b^{1}, \ldots, b^{t}\right)
\end{array}\right.
$$

Definition 1.2. If $0 \leq p_{1}, \ldots, p_{t}, q<\infty$, with $\frac{1}{q}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{t}}$, a mapping $f: E_{1} \times \cdots \times E_{m} \rightarrow F$ in \mathcal{H} is said to be R_{1}, \ldots, R_{t}-S-abstract $\left(p_{1}, \ldots, p_{t}\right)$-summing if there is a constant $C>0$ so that

$$
\begin{equation*}
\left(\sum_{i=1}^{n} S\left(f, x_{i}^{1}, \ldots, x_{i}^{k}, b_{i}^{1}, \ldots, b_{i}^{t}\right)^{q}\right)^{\frac{1}{q}} \leq C \prod_{j=1}^{t} \sup _{\varphi \in K_{j}}\left(\sum_{i=1}^{n} R_{j}\left(\varphi, x_{i}^{1}, \ldots, x_{i}^{k}, b_{i}^{j}\right)^{p_{j}}\right)^{\frac{1}{p_{j}}} \tag{1.6}
\end{equation*}
$$

for all $\left(x_{i}^{s}\right)_{i=1}^{n} \subset F_{s},\left(b_{i}^{j}\right)_{i=1}^{n} \subset G_{j}, n \in \mathbb{N}$ and $(s, j) \in\{1, \ldots, k\} \times\{1, \ldots, t\}$.
Theorem 1.2. [10, Theorem 4.6] A map $f \in \mathcal{H}$ is R_{1}, \ldots, R_{t}-S-abstract $\left(p_{1}, \ldots, p_{t}\right)$-summing if, and only if there is a constant $C>0$ and Borel probability measures μ_{j} on K_{j} with the weak star topology such that

$$
\begin{equation*}
S\left(f, x^{1}, \ldots, x^{k}, b^{1}, \ldots, b^{t}\right) \leq C \prod_{j=1}^{t}\left(\int_{K_{j}} R_{j}\left(\varphi, x^{1}, \ldots, x^{k}, b^{j}\right)^{p_{j}} d \mu_{j}\right)^{\frac{1}{p_{j}}} \tag{1.7}
\end{equation*}
$$

for all $x^{l} \in E_{l}, l \in\{1, \ldots, k\}$ and $b^{j} \in G_{j}$ with $j=1, \ldots, t$.

Given all the conditions and notations mentioned above, we will prove the following theorem. It will be sufficient to consider $k=1$ and $t=2$ in Definition 1.2 and Theorem 1.2.

Theorem 1.3. Let $f: X \rightarrow Y$ be a mapping belonging to \mathcal{H}, and let $0<q_{0}, q_{1}, p_{0}, p_{1}, p<\infty$ and $0 \leq \sigma<1$ be such that $\frac{1}{q_{0}}=\frac{1}{q_{1}}+\frac{1-\sigma}{p^{*}}$ and $\frac{1}{p_{0}}=\frac{1}{p_{1}}+\frac{1-\sigma}{p^{*}}$. If $\left(R_{1}\right)_{(x, b)}($.$) is constant for each x$ and for each b, then the following statements are equivalent
(1) f is $R_{1}, R_{2}-S$-abstract $\left(q_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing;
(2) f is $R_{1}, R_{2}-S$-abstract $\left(p_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing.

Proof. According to [10], f is $R_{1}, R_{2}-S$-abstract $\left(q_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing if and only if, there exists a constant $C>0$ and Borel probability measures μ_{j} on $K_{j}, j=1,2$, such that

$$
S\left(f, x, b^{1}, b^{2}\right) \leq C \prod_{j=1}^{2}\left(\int_{K_{j}} R_{j}\left(\varphi, x, b^{j}\right)^{p_{j}} d \mu_{j}\right)^{\frac{1}{p_{j}}}
$$

Given the hypothesis that for every fixed $\varphi \in K_{1}$:

$$
\left(\int_{K_{1}} R_{1}\left(\varphi, x, b^{1}\right)^{q_{1}} d \mu_{1}\right)^{\frac{1}{q_{1}}}=R_{1}\left(\varphi, x, b^{1}\right),
$$

then, in our case, f is R_{1}, R_{2} - S-abstract $\left(q_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing if and only if, there exists a constant $C>0$ and Borel probability measure μ on K_{2} such that

$$
\begin{equation*}
S\left(f, x, b^{1}, b^{2}\right) \leq C \prod_{j=1}^{2}\left(\int_{K_{j}} R_{j}\left(\varphi, x, b^{j}\right)^{p_{j}} d \mu_{j}\right)^{\frac{1}{p_{j}}}=C R_{1}\left(\varphi, x, b^{1}\right) \cdot\left(\int_{K_{2}} R_{2}\left(\varphi, x, b^{2}\right)^{\frac{p^{*}}{1-\sigma}} d \mu\right)^{\frac{1-\sigma}{p^{*}}} \tag{1.8}
\end{equation*}
$$

On the other hand, using the same reasoning, f is R_{1}, R_{2} - S-abstract ($p_{1}, \frac{p^{*}}{1-\sigma}$) -summing if and only if there exists a constant $C>0$ and a Borel probability measure μ in K_{2} such that

$$
S\left(f, x, b^{1}, b^{2}\right) \leq C R_{1}\left(\varphi, x, b^{1}\right) \cdot\left(\int_{K_{2}} R_{2}\left(\varphi, x, b^{2}\right)^{\frac{p^{*}}{1-\sigma}} d \mu\right)^{\frac{1-\sigma}{p^{*}}}
$$

This expression corresponds exactly to the one given by (1.8).
The theorem above implies the equality $\mathcal{D}_{p}^{\sigma}(E, F)=\mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)$ for all $\left(q_{0}, q_{1}\right) \in \Gamma_{p}^{\sigma}$, which leads to various ways of characterizing the class of strongly (p, σ)-continuous operators. Now, we can establish the following corollary:

Corollary 1.1. For $0 \leq \sigma<1$ and all $\left(q_{0}, q_{1}\right),\left(p_{0}, p_{1}\right) \in \Gamma_{p}^{\sigma}$, where $\frac{1}{q_{0}}=\frac{1}{q_{1}}+\frac{1-\sigma}{p^{*}}$ and $\frac{1}{p_{0}}=\frac{1}{p_{1}}+\frac{1-\sigma}{p^{*}}$, we have

$$
\mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)=\mathcal{C}_{\left(p_{0}, p_{1} ; p\right)}^{\sigma}(E, F)
$$

and

$$
\mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)=\mathcal{C}_{(1, p ; p)}^{\sigma}(E, F)=\mathcal{D}_{p}^{\sigma}(E, F) .
$$

Proof. Let $T \in \mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F)$. Since $\left(q_{0}, q_{1}\right) \in \Gamma_{p}^{\sigma}$, then, $\frac{1}{q_{0}}=\frac{1}{q_{1}}+\frac{1-\sigma}{p^{*}}$. For the parameters

$$
\left\{\begin{array}{l}
t=2, k=1 \\
E_{1}=\{0\}, X_{1}=E, Y=F \\
\mathcal{H}=\mathcal{L}(E, F) \\
p_{0}=q_{0}, p_{1}=q_{1}, p_{2}=\frac{p^{*}}{1-\sigma} \\
G_{1}=E, G_{2}=F^{*} \\
K_{1}=\{0\}, K_{2}=B_{F^{* *}} \\
S(T, 0, x, \varphi)=|\varphi(T(x))| \\
R_{1}(\vartheta, 0, x)=\|x\| \\
R_{2}(\phi, 0, \varphi)=|\phi(\varphi)|^{1-\sigma}\|\varphi\|^{\sigma}
\end{array}\right.
$$

we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left(S\left(f, x_{i}, b_{i}^{1}, b_{i}^{2}\right)\right)^{p_{0}}\right)^{1 / p_{0}} & =\left(\sum_{i=1}^{n}\left(S\left(f, x_{i}, b_{i}^{1}, b_{i}^{2}\right)\right)^{q_{0}}\right)^{1 / q_{0}} \\
& =\left(\sum_{i=1}^{n}\left|\varphi_{i}\left(T\left(x_{i}\right)\right)\right|^{q_{0}}\right)^{1 / q_{0}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \prod_{j=1}^{2} \sup _{\varphi \in K_{j}}\left(\sum_{i=1}^{n} R_{j}\left(\varphi, x_{i}, b_{i}^{j}\right)^{p_{j}}\right)^{\frac{1}{p_{j}}} \\
= & \sup _{\vartheta \in K_{1}}\left(\sum_{i=1}^{n} R_{1}\left(\vartheta, 0, x_{i}\right)^{q_{1}}\right)^{\frac{1}{q_{1}}} \cdot \sup _{\phi \in K_{j}}\left(\sum_{i=1}^{n} R_{2}\left(\phi, 0, \varphi_{i}\right)^{p^{*} /(1-\sigma)}\right)^{(1-\sigma) / p^{*}} \\
= & \left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q_{1}}\right)^{\frac{1}{q_{1}}} \cdot \sup _{\phi \in B_{F^{* *}}}\left(\sum_{i=1}^{n}\left(\left|\phi\left(\varphi_{i}\right)\right|^{1-\sigma}\left\|\varphi_{i}\right\|^{\sigma}\right)^{p^{*} /(1-\sigma)}\right)^{(1-\sigma) / p^{*}} \\
= & \left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{q_{1}} \delta_{p^{*} \sigma}\left(\left(\varphi_{i}\right)_{i=1}^{n}\right) .
\end{aligned}
$$

Thus, by [10, Definition 4.4], it follows that T is R_{1}, R_{2} - S-abstract ($\left.q_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing and, by Theorem 2.4, T is R_{1}, R_{2} - S-abstract ($\left.p_{1}, \frac{p^{*}}{1-\sigma}\right)$-summing. Therefore, exists a constant $C>0$ such that

$$
\left(\sum_{i=1}^{n}\left|\varphi_{i}\left(T\left(x_{i}\right)\right)\right|^{p_{0}}\right)^{\frac{1}{p_{0}}} \leq C\left\|\left(x_{i}\right)_{i=1}^{n}\right\|_{p_{1}} \delta_{p^{*} \sigma}\left(\left(\phi_{i}\right)_{i=1}^{n}\right)
$$

for all positive integers n and for all $\left(x_{i}\right)_{i=1}^{n} \subset E$ and $\left(\phi_{i}\right)_{i=1}^{n} \subset F^{* *}$, so $T \in \mathcal{C}_{\left(p_{0}, p_{1} ; p\right)}^{\sigma}(E, F)$, we find that

$$
\mathcal{C}_{\left(q_{0}, q_{1} ; p\right)}^{\sigma}(E, F) \subset \mathcal{C}_{\left(p_{0}, p_{1} ; p\right)}^{\sigma}(E, F) .
$$

The other inclusion is obtained by the same argument.
1.2. The multilinear case. Here's an alternative definition for the concept of Cohen strongly (p, σ) continuous multilinear operators as established by Achour et al. [1, Definition 4.1]. Let $1<p, r<\infty$ and $0 \leq \sigma<1$ be such that $1 / r+(1-\sigma) / p^{*}=1$.

Theorem 1.4. For $T \in \mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$, the following statements are equivalent:
(1) There exists a constant $C>0$ such that

$$
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{n}\right\|_{1} \leq C\left(\sum_{i=1}^{n} \prod_{j=1}^{m}\left\|x_{i}^{j}\right\|^{r}\right)^{1 / r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{n}\right),
$$

for all $x_{i}^{j} \in E_{j}$ and $y_{i}^{*} \in F^{*}$ such that $i=1, \ldots, n$ and $j=1, \ldots, m$.
(2) There exists a constant $C>0$ such that

$$
\begin{equation*}
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{\infty}\right\|_{1} \leq C\left(\sum_{i=1}^{\infty}\left\|x_{i}^{1}\right\|^{m r}\right)^{1 / m r} \ldots\left(\sum_{i=1}^{\infty}\left\|x_{i}^{m}\right\|^{m r}\right)^{1 / m r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{\infty}\right) \tag{1.9}
\end{equation*}
$$

whenever $\left(x_{i}^{j}\right)_{i=1}^{\infty} \in \ell_{p}^{m}\left(E_{j}\right), j=1, \ldots, m$ and $\left(y_{i}^{*}\right)_{i=1}^{\infty} \in \ell_{\left(\frac{p^{*}}{1-\sigma}\right)}\left(F^{*}\right)$.
(3) There is a constant $C>0$ such that

$$
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{n}\right\|_{1} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}^{1}\right\|^{m r}\right)^{1 / m r} \cdots\left(\sum_{i=1}^{n}\left\|x_{i}^{m}\right\|^{m r}\right)^{1 / m r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{n}\right)
$$

for all $x_{i}^{j} \in E_{j}$ and $y_{i}^{*} \in F^{*}$ such that $i=1, \ldots, n$ and $j=1, \ldots, m$.
This theorem provides an alternative characterization for Cohen strongly (p, σ)-continuous multilinear operators.

Proof. (1) $\Rightarrow(2)$ Given T is Cohen strongly (p, σ)-continuous, the mapping

$$
\begin{aligned}
\widetilde{T}: \quad \ell^{p^{*} \sigma}\left(Y^{*}\right) \times \ell_{p}^{m}\left(E_{1}\right) \times \cdots \times \ell_{p}^{m}\left(E_{m}\right) & \rightarrow \ell_{1} \\
\left(\left(y_{i}^{*}\right)_{i=1}^{\infty},\left(x_{i}^{1}\right)_{i=1}^{\infty}, \ldots,\left(x_{i}^{m}\right)_{i=1}^{\infty}\right) & \rightarrow\left(y_{i}^{*}\left(T\left(x_{i}^{1}, \ldots, x_{i}^{m}\right)\right)\right)_{i=1}^{\infty}
\end{aligned}
$$

is well-defined and $(m+1)$-linear. A straightforward calculation shows that \widetilde{T} has closed graph and hence is continuous. Therefore,

$$
\begin{aligned}
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{\infty}\right\|_{1} & =\left\|\widetilde{T}\left(\left(y_{i}^{*}\right)_{i=1}^{\infty},\left(x_{i}^{1}\right)_{i=1}^{\infty}, \ldots,\left(x_{i}^{m}\right)_{i=1}^{\infty}\right)\right\|_{1} \\
& \leq\|\widetilde{T}\|\left\|\left(x_{i}^{1}\right)_{i=1}^{\infty}\right\|_{m p} \cdots\left\|\left(x_{i}^{m}\right)_{i=1}^{\infty}\right\|_{m p} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{\infty}\right) .
\end{aligned}
$$

$(2) \Rightarrow(1)$ and $(2) \Rightarrow(3)$ are immediate.
$(3) \Rightarrow(2) \operatorname{Let}\left(x_{i}^{j}\right)_{i=1}^{\infty} \in \ell_{p}^{m}\left(E_{j}\right), j=1, \ldots, m$ and $\left(y_{i}^{*}\right)_{i=1}^{\infty} \in \ell_{\left(\frac{p^{*}}{1-\sigma}\right)}\left(F^{*}\right)$. Then

$$
\begin{aligned}
\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{\infty}\right\|_{1} & =\sup _{n}\left\|\left(\left\langle T\left(x_{1}^{j}, \ldots, x_{n}^{j}\right) ; y_{i}^{*}\right\rangle\right)_{i=1}^{n}\right\|_{1} \\
& \leq \sup _{n}\left(C \prod_{j=1}^{m} \sum_{i=1}^{n}\left\|x_{i}^{j}\right\|^{m r}\right)^{1 / m r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{\infty}\right) \\
& =C\left(\prod_{j=1}^{m} \sum_{i=1}^{\infty}\left\|x_{i}^{j}\right\|^{m r}\right)^{1 / m r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{\infty}\right) \\
& <\infty .
\end{aligned}
$$

The smallest C such that (1.9) is satisfied, denoted by $\|T\|_{\mathcal{D}_{p}^{m, \sigma}}$, defines a norm on $\mathcal{D}_{p}^{m, \sigma}\left(E_{1}, \ldots, E_{m} ; F\right)$.

As a result of Theorem 1.4 and the subsequent theorem, akin to the linear scenario, we can delineate the category of Cohen strongly (p, σ)-continuous multilinear operators through several inequalities. To achieve this, we must broaden the abstract outcome of Theorem 1.3.

Theorem 1.5. Let $f: E_{1} \times \cdots \times E_{m} \rightarrow F$ be a mapping belonging to \mathcal{H}, and let

$$
0<p, p_{0}, q_{0}, p_{1}, \ldots, p_{t-1}, q_{1}, \ldots, q_{t-1}<\infty
$$

and $0 \leq \sigma<1$, be such that

$$
\frac{1}{p_{0}}=\frac{1}{p_{1}}+\cdots+\frac{1}{p_{t-1}}+\frac{1-\sigma}{p^{*}}
$$

and

$$
\frac{1}{q_{0}}=\frac{1}{q_{1}}+\cdots+\frac{1}{q_{t-1}}+\frac{1-\sigma}{p^{*}} .
$$

If $\left(R_{j}\right)_{x_{1}, \ldots, x_{k}, b}($.$) is constant for all x_{1}, \ldots, x_{k}$, b and for all $1 \leq j \leq t-1$, then the following statements are equivalent
(1) f is R_{1}, \ldots, R_{t}-S-abstract $\left(p_{1}, \ldots, p_{t-1}, \frac{p^{*}}{1-\sigma}\right)$-summing,
(2) f is R_{1}, \ldots, R_{t}-S-abstract $\left(q_{1}, \ldots, q_{t-1}, \frac{p^{*}}{1-\sigma}\right)$-summing.

Corollary 1.2. For $T \in \mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$ and $0 \leq \sigma<1$ with $\frac{1}{q_{0}}=\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}}+\frac{1-\sigma}{p^{*}}$, the following statements are equivalent:
(1) There exists a constant $C>0$ such that

$$
\sum_{i=1}^{n}\left|\left\langle T\left(x_{i}^{1}, \ldots, x_{i}^{m}\right), y_{i}^{*}\right\rangle\right| \leq C\left(\sum_{i=1}^{n}\left\|x_{i}^{1}\right\|^{m r}\right)^{1 / m r} \cdots\left(\sum_{i=1}^{n}\left\|x_{i}^{m}\right\|^{m r}\right)^{1 / m r} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{n}\right),
$$

for all $x_{i}^{j} \in E_{j}$ and $y_{i}^{*} \in F^{*}$ such that $i=1, \ldots, n$ and $j=1, \ldots, m$.
(2) There exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left|\left\langle T\left(x_{i}^{1}, \ldots, x_{i}^{m}\right), y_{i}^{*}\right\rangle\right|^{q_{0}}\right)^{1 / q_{0}} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}^{1}\right\|^{q_{1}}\right)^{1 / q_{1}} \cdots\left(\sum_{i=1}^{n}\left\|x_{i}^{m}\right\|^{q_{m}}\right)^{1 / q_{m}} \delta_{p^{*} \sigma}\left(\left(y_{i}^{*}\right)_{i=1}^{n}\right), \tag{1.10}
\end{equation*}
$$

for all $x_{i}^{j} \in E_{j}$ and $y_{i}^{*} \in F^{*}$ such that $i=1, \ldots, n$ and $j=1, \ldots, m$.

From Corollary 1.2, it's feasible to derive further characterizations for the class of Cohen strongly (p, σ)-continuous multilinear operators using sequences. Equivalently, one can establish an inequality akin to that presented by (1.10), albeit with infinite sums:

For $1 \leq p \leq \infty$ and $0 \leq \sigma<1$, with $\frac{1}{q_{0}}=\frac{1}{q_{1}}+\cdots+\frac{1}{q_{m}}+\frac{1-\sigma}{p^{*}}$, an operator $T \in \mathcal{L}\left(E_{1}, \ldots, E_{m} ; F\right)$ is Cohen strongly (p, σ)-continuous if $\left(\left\langle T\left(x_{i}^{1}, \ldots, x_{i}^{m}\right), y_{i}^{*}\right\rangle\right)_{i=1}^{\infty} \in \ell_{q_{0}}$ whenever $\left(x_{i}^{j}\right)_{i=1}^{\infty} \in \ell_{q_{j}}\left(E_{j}\right), j=1, \ldots, m$, and $\left(y_{i}^{*}\right)_{i=1}^{\infty} \in \ell_{\left(\frac{p^{*}}{1-\sigma}\right)}\left(F^{*}\right)$.

Acknowledgement

The authors acknowledges with thanks the support of the General Direction of Scientific Research and Technological Development (DGRSDT), Algeria.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

[1] A. Achour, E. Dahia, P. Rueda, E.A. Sànchez Pèrez, Factorization of strongly (p, σ)-continuous multilinear operators, Linear Multilinear Algebra 62 (2013), 1649-1670. https://doi.org/10.1080/03081087.2013.839677.
[2] D. Achour, L. Mezrag, On the Cohen strongly p-summing multilinear operators, J. Math. Anal. Appl. 327 (2007), 550-563. https://doi.org/10.1016/j.jmaa.2006.04.065.
[3] G. Botelho, D. Pellegrino, P. Rueda, A unified Pietsch domination theorem, J. Math. Anal. Appl. 365 (2010), 269-276. https://doi.org/10.1016/j.jmaa.2009.10.025.
[4] J.R. Campos, An abstract result on Cohen strongly summing operators, Linear Algebra Appl. 439 (2013), 4047-4055. https://doi.org/10.1016/j.laa.2013.09.047.
[5] J.S. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann. 201 (1973), 177-200.
[6] E. Dahia, R. Soualmia, D. Achour, Banach space of strongly (p, q, σ)-summable sequences and applications, Rend. Circ. Mat. Palermo, II. Ser 71 (2021), 793-806. https: //doi.org/10.1007/s12215-021-00647-1.
[7] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press, Cambridge, 1995.
[8] J.A. L'opez Molina, E.A. Sànchez-Pèrez, Ideals of absolutely continuous operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Madr. 87 (1993), 349-378.
[9] U. Matter, Absolutely continuous operators and super-reflexivity, Math. Nachr. 130 (1987), 193-216. https://doi. org/ 10.1002/mana. 19871300118.
[10] D. Pellegrino, J. Santos, J.B. Seoane-Sepúlveda, Some techniques on nonlinear analysis and applications, Adv. Math. 229 (2012), 1235-1265. https://doi.org/10.1016/j.aim.2011.09.014.
[11] A. Pietsch, Absolut p-summierende Abbildungenin normierten Raumen, Stud. Math. 28 (1967), 333-353. https: //cir.nii.ac.jp/crid/1571135650455805696.
[12] A. Pietsch, Ideals of multilinear functionals (designs of a theory), in: Proceedings of the second international conference on operator algebras, ideals, and their applications in theoretical physics (Leipzig, 1983), Teubner-Texte Math, vol. 67, pp. 185-199, 1984.

