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Abstract. In this paper, we introduce an abstract finding that delineates the correspondence between
specific sets of linear operators and the class of Cohen strongly (p, σ)-continuous operators. We expand
our argument to encompass multilinear operators, consequently establishing alternative descriptions for
the class of Cohen strongly(p, σ)-continuous multilinear operators.
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1. Notation and background

Motivated by the observation that the class of p-summing linear operators lacks closure under
conjugation, Pietsch [11, p.338] demonstrated that while the identity from `1 to `2 is absolutely 2-
summing, its conjugate from `2 to `∞ is not 2-summing. Cohen [5] introduced the class Dp of strongly
p-summing linear operators, establishing in his work that the conjugate of a strongly p-summing
operator is a p∗-summing operator, satisfying the condition 1/p+ 1/p∗ = 1. In [4], Campos presented
abstract results, highlighting instances of overlap between Cohen’s space and other operator spaces. The
interpolated operator ideal Πp,σ, as introduced byMatter [1], is defined for (p, σ)-absolutely continuous
operators, where 1 ≤ p <∞ and 0 ≤ σ < 1. It serves as an intermediary between the ideal of absolutely
p-summing linear operators and the ideal of all continuous operators. Subsequently, Achour et al.
in [1] introduced the ideal Dσp of strongly (p, σ)-continuous linear operators to investigate the adjoints
of (p, σ)-absolutely continuous linear operators. They further constructed a new multi-ideal using the
composition method from this ideal, demonstrating the corresponding Pietsch domination theorem
and presenting a tensorial representation for this multi-ideal. In this paper, we establish an abstract
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result derived from the Full General Pietsch Domination Theorem [10, Theorem 4.6], which holds
immediate relevance concerning the class of strongly (p, σ)-continuous operators. Furthermore, we
extend this result to the multilinear case, enabling the establishment of alternative definitions for Cohen
strongly (p, σ)-continuous multilinear operators, drawing inspiration from techniques employed in [4].
We adopt standard Banach space notation, where n andm are positive integers, E,E1, ..., Em, F denote
Banach spaces overK = R orC. E∗ represents the topological dual ofE, andBE denotes the closed unit
ball of E. The Banach space of all continuousm-linear operators from E1 × · · · × Em into F, equipped
with the supremum norm, is denoted by L (E1, ..., Em;F ). When F = K and if E1 = · · · = Em = E,
we respectively write L(E1, ..., Em) and L(mE;F ). Let’s define the classical sequence spaces we’ll be
working with:

- `p(E): Represents absolutely p-summable E-valued sequences with the usual norm ‖ · ‖p.
- `p,w (E): Represents weakly p-summable E-valued sequences with the norm

‖(xi)∞i=1‖`p,w(E) = sup
ϕ∈BE∗

( ∞∑
i=1

|〈xi, ϕ〉|p
) 1

p

;

The space `pσ (E) of (p, σ)-weakly summable sequences was introduced in [8] in order to provide a
characterization of the class of (p, σ)-absolutely continuous operators. Now, let’s recall some properties
of this space:

For a fixed sequence (xi)
n
i=1 in E, where 1 ≤ p <∞ and 0 ≤ σ < 1, we define

δpσ ((xi)
n
i=1) = sup

x∗∈BE∗

(
n∑
i=1

(
|〈xi, x∗〉|1−σ ‖xi‖σ

) p
1−σ
) 1−σ

p

,

It is clear that

‖(xi)ni=1‖ p
1−σ ,w

≤ δpσ ((xi)
n
i=1) ≤ ‖(xi)ni=1‖( p

1−σ ) , (1.1)

for all (xi)
n
i=1 ∈ `( p

1−σ )(E).

We start by introducing various classes of operator ideals. Let (Πp, πp) be the ideal of p-absolutely
summing operators for 1 ≤ p <∞. The notion of (p, σ)-absolutely continuous operators was initiated
by Matter [9], such that a linear operator T ∈ L(E,F ) is (p, σ)-absolutely continuous operator if there
exist a Banach space G and an operator S ∈ Πp (E,G) such that

‖Tx‖ ≤ ‖x‖σ ‖Sx‖1−σ , x ∈ E. (1.2)

In such case, we put πp,σ = inf πp (S)1−σ , taking the infimum over all Banach spaces G and
S ∈ Πp (E,G) such that (1.2) holds. We denote by (Πp,σ, πp,σ) the Banach ideal of (p, σ)-absolutely
continuous linear operators [9]. Clearly Πp,0 coincides with the ideal Πp. If 0 ≤ σ ≤ 1 and 1 ≤ p ≤ ∞,

we put Π∞,σ = Πp,1 = L.
The following definition of strongly (p, σ)-continuousm-linear operator is due to Achour et al. in [1].



Asia Pac. J. Math. 2024 11:74 3 of 10

• Let 1 ≤ p, r <∞ and 0 ≤ σ < 1 such that 1
r + 1−σ

p∗ = 1. Anm-linear mapping T ∈ L(E1, ..., Em;F )

is strongly (p, σ)-continuous if there is a constant C > 0 such that for any xj1, ..., xjn ∈ Ej , 1 ≤ j ≤ m

and any y∗1, ..., y∗n ∈ F ∗,we have

∥∥∥(〈T (xj1, ..., xjn) ; y∗i

〉)n
i=1

∥∥∥
1
≤ C

 n∑
i=1

m∏
j=1

∥∥∥xji∥∥∥r
 1

r

δp∗σ ((y∗i )
n
i=1) . (1.3)

The collection of all strongly (p, σ)-continuousm-linear maps E1 × · · · ×Em to F will be denoted
Dm,σp (E1, ..., Em;F ), that is readily seen to be a subspace of L(E1, ..., Em;F ). The least C for which
(1.3) holds will be written ‖T‖Dm,σp

. This define a norm on the space Dm,σp (E1, ..., Em;F ). Clearly Dm,0p

coincides with the ideal Dmp , where (Dmp , dmp ) be the ideal of Cohen strongly p-summing m-linear
operators (see [2]).

Definition 1.1. [6] Let 1 < p, q <∞ and 0 ≤ σ < 1 be such that 1
p + 1−σ

q = 1. They define the space `qσ 〈E〉

to be the space of all sequences (xi)
∞
i=1 in E such that

∣∣∣∣ ∞∑
i=1
|φi (xi)|

∣∣∣∣ <∞ for all φi ∈ `qσ (E∗) . In this case we

say that (xi)
∞
i=1 is strongly (p, q, σ)-summable. In addition, we have by [6, Theorem 1] the inclusions

`p 〈E〉 ⊂ `qσ 〈E∗〉 ⊂ `p (E) .

Where `p 〈E〉 the space of Cohen strongly p-summing sequences in E (See [5]) .

As in the classical cases, the natural way of presenting the summability properties of the strongly
(p, σ)-continuous operators is by defining the corresponding operator between adequate sequence
spaces.

Theorem 1.1. [6, Theorem 3] Let 1 < r, p <∞ and 0 ≤ σ < 1 be such that 1
r + 1−σ

p∗ = 1. Then, an operator

T ∈ L(E,F ) is strongly (p, σ)-continuous if and only if T̂ (`r (X)) ⊂ `p
∗σ
r 〈F 〉 .where the operator T̂ is defined

by T̂ ((xi)
n
i=1) = T (xi)

n
i=1 for all (xi)

n
i=1 ∈ `pσ (E) .

Abstract findings regarding strongly (p, σ)-continuous operators

1.1. The linear case. In this section, we show that the class of strongly (p, σ)-continuous operators can
be delineated through various inequalities. Consequently, we derive several coincidental and inclusive
outcomes between specific classes of linear operators.

Let 1 ≤ q0, q1, p, r <∞ and 0 ≤ σ < 1 be such that 1/r+(1− σ) /p∗ = 1. We denote by Cσ(q0,q1;p)(E,F )

the class of all operators T ∈ L (E,F ) such that there exists a constant C > 0 satisfying(
n∑
i=1

|φi (T (xi))|q0
) 1

q0

≤ C ‖(xi)ni=1‖q1 δp∗σ ((φi)
n
i=1) (1.4)

for all positive integers n, and all (xi)
n
i=1 ⊂ E and (φi)

n
i=1 ⊂ F ∗.
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Let
Γσp =

{
(q0, q1) ∈ [1,∞)× (1,∞) :

1

q0
=

1

q1
+

1− σ
p∗

}
.

According to Definition 1.1, it is evident that

Dσp (E,F ) ⊂
⋃

(q0,q1)∈Γσp

Cσ(q0,q1;p)(E,F ).

Proposition 1.1. If 1 ≤ q0, q1, p <∞ and 0 ≤ σ < 1, and if p < q1, then Cσ(1,q1;p)(E,F ) = {0} .

Proof. The statement is clear if either E or F = {0}. We proceed assuming E 6= {0} and F 6= {0}. Let

(λi)
∞
i=1 = (αiβi)

∞
i=1 /∈ `1 (1.5)

with (αi)
∞
i=1 ∈ `( p∗

1−σ

) and (βi)
∞
i=1 ∈ `q1 .We have

n∑
i=1

|ϕ (T (λix))| =

n∑
i=1

|ϕ (T (αiβix))|

=

n∑
i=1

|αiϕ (T (βix))|

By (1.4), we have
n∑
i=1

|ϕ (T (λix))| ≤ C ‖(βix)ni=1‖q1 δp∗σ ((αiϕ)ni=1) .

Thus by (1.1)

|ϕ (T (x))|
n∑
i=1

|λi| ≤ C ‖x‖ ‖(βi)ni=1‖q1 δp∗σ ((αiϕ)ni=1)

≤ C ‖x‖ ‖(βi)ni=1‖q1 ‖(αiϕ)ni=1‖( p∗
1−σ

)
≤ C ‖x‖ ‖(βi)ni=1‖q1 ‖ϕ‖ ‖(αi)

n
i=1‖( p∗

1−σ

) .
Taking the supremum thereafter, it follows that

‖T‖
n∑
i=1

|λi| ≤ C ‖(βi)ni=1‖q1 ‖(αi)
n
i=1‖ p∗

1−σ
.

Therefore, we conclude that if T 6= 0 then (λi)
∞
i=1 ∈ `1, which contradicts assertion (1.5). �

To obtain the main result of this section, we require a brief review of the Pietsch Domination Theorem
as presented by Pellegrino et al. [10].

LetE1, ..., Em, F andF1, ..., Fk be non-empty sets, and letH be a family ofmappings fromE1×···×Em
to F. Additionally, letK1, ..,Kt be compact Hausdorff topological spaces, G1, ..., Gt be Banach spaces,
and suppose that the mappings Rj : Kj × F1 × · · · × Fk ×Gj → [0,+∞) , j = 1, ..., t

S : H× F1 × · · · × Fk ×G1 × ...×Gt → [0,+∞)
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satisfy

(1) For each xl ∈ Fl and b ∈ Gj ,where (j, l) ∈ {1, ..., t} × {1, ..., k} , the mapping

(Rj)x1,...,xk,b : Kj −→ [0,+∞)

ϕ 7−→ Rj
(
ϕ, x1, ..., xk, b

)
is continuous.

(2) The following inequalities holds

 Rj
(
ϕ, x1, ..., xk, ηjb

j
)
≤ ηjRj

(
ϕ, x1, ..., xk, bj

)
S
(
f, x1, ..., xk, α1b1, ..., αtbt

)
≥ α1 · · · α1S

(
f, x1, ..., xk, b1, ..., bt

)
Definition 1.2. If 0 ≤ p1, ..., pt, q <∞, with 1

q = 1
p1

+ · · ·+ 1
pt
, a mapping f : E1 × · · · ×Em → F inH is

said to be R1, ..., Rt-S-abstract (p1, ..., pt)-summing if there is a constant C > 0 so that(
n∑
i=1

S(f, x1
i , ..., x

k
i , b

1
i , ..., b

t
i)
q

) 1
q

≤ C
t∏

j=1

sup
ϕ∈Kj

(
n∑
i=1

Rj

(
ϕ, x1

i , ..., x
k
i , b

j
i

)pj) 1
pj

, (1.6)

for all (xsi )
n
i=1 ⊂ Fs,

(
bji

)n
i=1
⊂ Gj , n ∈ N and (s, j) ∈ {1, ..., k} × {1, ..., t} .

Theorem 1.2. [10, Theorem 4.6] A map f ∈ H is R1, ..., Rt-S-abstract (p1, ..., pt)-summing if, and only if

there is a constant C > 0 and Borel probability measures µj onKj with the weak star topology such that

S(f, x1, ..., xk, b1, ..., bt) ≤ C
t∏

j=1

(∫
Kj

Rj

(
ϕ, x1, ..., xk, bj

)pj
dµj

) 1
pj

, (1.7)

for all xl ∈ El, l ∈ {1, ..., k} and bj ∈ Gj with j = 1, ..., t.

Given all the conditions and notations mentioned above, we will prove the following theorem. It
will be sufficient to consider k = 1 and t = 2 in Definition 1.2 and Theorem 1.2.

Theorem 1.3. Let f : X → Y be a mapping belonging toH, and let 0 < q0, q1, p0, p1, p <∞ and 0 ≤ σ < 1

be such that 1
q0

= 1
q1

+ 1−σ
p∗ and 1

p0
= 1

p1
+ 1−σ

p∗ . If (R1)(x,b)(.) is constant for each x and for each b, then the

following statements are equivalent

(1) f is R1, R2 − S-abstract (q1,
p∗

1−σ )-summing;

(2) f is R1, R2 − S-abstract (p1,
p∗

1−σ )-summing.

Proof. According to [10], f is R1, R2-S-abstract (q1,
p∗

1−σ )-summing if and only if, there exists a constant
C > 0 and Borel probability measures µj onKj , j = 1, 2, such that

S(f, x, b1, b2) ≤ C
2∏
j=1

(∫
Kj

Rj
(
ϕ, x, bj

)pj dµj)
1
pj

.
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Given the hypothesis that for every fixed ϕ ∈ K1 :(∫
K1

R1

(
ϕ, x, b1

)q1 dµ1

) 1
q1

= R1

(
ϕ, x, b1

)
,

then, in our case, f is R1, R2-S-abstract (q1,
p∗

1−σ )-summing if and only if, there exists a constant C > 0

and Borel probability measure µ onK2 such that

S(f, x, b1, b2) ≤ C
2∏
j=1

(∫
Kj

Rj
(
ϕ, x, bj

)pj dµj)
1
pj

= CR1

(
ϕ, x, b1

)
.

(∫
K2

R2

(
ϕ, x, b2

) p∗
1−σ dµ

) 1−σ
p∗

.

(1.8)
On the other hand, using the same reasoning, f is R1, R2-S-abstract (p1,

p∗

1−σ )-summing if and only
if there exists a constant C > 0 and a Borel probability measure µ inK2 such that

S(f, x, b1, b2) ≤ CR1

(
ϕ, x, b1

)
.

(∫
K2

R2

(
ϕ, x, b2

) p∗
1−σ dµ

) 1−σ
p∗

.

This expression corresponds exactly to the one given by (1.8) . �

The theorem above implies the equality Dσp (E,F ) = Cσ(q0,q1;p)(E,F ) for all (q0, q1) ∈ Γσp , which
leads to various ways of characterizing the class of strongly (p, σ)-continuous operators. Now, we can
establish the following corollary:

Corollary 1.1. For 0 ≤ σ < 1 and all (q0, q1), (p0, p1) ∈ Γσp , where 1
q0

= 1
q1

+ 1−σ
p∗ and 1

p0
= 1

p1
+ 1−σ

p∗ , we

have

Cσ(q0,q1;p)(E,F ) = Cσ(p0,p1;p)(E,F ).

and

Cσ(q0,q1;p)(E,F ) = Cσ(1,p;p)(E,F ) = Dσp (E,F ).

Proof. Let T ∈ Cσ(q0,q1;p)(E,F ). Since (q0, q1) ∈ Γσp , then, 1
q0

= 1
q1

+ 1−σ
p∗ . For the parameters

t = 2, k = 1

E1 = {0} , X1 = E, Y = F

H = L (E,F )

p0 = q0, p1 = q1, p2 = p∗

1−σ

G1 = E, G2 = F ∗

K1 = {0} , K2 = BF ∗∗

S (T, 0, x, ϕ) = |ϕ (T (x))|

R1 (ϑ, 0, x) = ‖x‖

R2 (φ, 0, ϕ) = |φ (ϕ)|1−σ ‖ϕ‖σ ,
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we have (
n∑
i=1

(
S(f, xi, b

1
i , b

2
i )
)p0)1/p0

=

(
n∑
i=1

(
S(f, xi, b

1
i , b

2
i )
)q0)1/q0

=

(
n∑
i=1

|ϕi (T (xi))|q0
)1/q0

,

and
2∏
j=1

sup
ϕ∈Kj

(
n∑
i=1

Rj

(
ϕ, xi, b

j
i

)pj) 1
pj

= sup
ϑ∈K1

(
n∑
i=1

R1 (ϑ, 0, xi)
q1

) 1
q1

· sup
φ∈Kj

(
n∑
i=1

R2 (φ, 0, ϕi)
p∗/(1−σ)

)(1−σ)/p∗

=

(
n∑
i=1

‖xi‖q1
) 1

q1

· sup
φ∈BF∗∗

(
n∑
i=1

(
|φ (ϕi)|1−σ ‖ϕi‖σ

)p∗/(1−σ)
)(1−σ)/p∗

= ‖(xi)ni=1‖q1 δp∗σ ((ϕi)
n
i=1) .

Thus, by [10, Definition 4.4], it follows thatT isR1, R2-S-abstract (q1,
p∗

1−σ )-summing and, by Theorem
2.4, T is R1, R2-S-abstract (p1,

p∗

1−σ )-summing. Therefore, exists a constant C > 0 such that(
n∑
i=1

|ϕi (T (xi))|p0
) 1

p0

≤ C ‖(xi)ni=1‖p1 δp∗σ ((φi)
n
i=1)

for all positive integers n and for all (xi)
n
i=1 ⊂ E and (φi)

n
i=1 ⊂ F ∗∗, so T ∈ Cσ(p0,p1;p)(E,F ),we find that

Cσ(q0,q1;p)(E,F ) ⊂ Cσ(p0,p1;p)(E,F ).

The other inclusion is obtained by the same argument. �

1.2. The multilinear case. Here’s an alternative definition for the concept of Cohen strongly (p, σ)-
continuous multilinear operators as established by Achour et al. [1, Definition 4.1]. Let 1 < p, r <∞

and 0 ≤ σ < 1 be such that 1/r + (1− σ) /p∗ = 1.

Theorem 1.4. For T ∈ L (E1, ..., Em;F ), the following statements are equivalent:

(1) There exists a constant C > 0 such that

∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)n
i=1

∥∥∥
1
≤ C

 n∑
i=1

m∏
j=1

∥∥∥xji∥∥∥r
1/r

δp∗σ ((y∗i )
n
i=1) ,

for all xji ∈ Ej and y∗i ∈ F ∗ such that i = 1, ..., n and j = 1, ...,m.

(2) There exists a constant C > 0 such that∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)∞
i=1

∥∥∥
1
≤ C

( ∞∑
i=1

∥∥x1
i

∥∥mr)1/mr

· · ·

( ∞∑
i=1

‖xmi ‖
mr

)1/mr

δp∗σ ((y∗i )
∞
i=1) , (1.9)
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whenever
(
xji

)∞
i=1
∈ `mp (Ej), j = 1, ...,m and (y∗i )

∞
i=1 ∈ `( p∗

1−σ

)(F ∗).

(3) There is a constant C > 0 such that∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)n
i=1

∥∥∥
1
≤ C

(
n∑
i=1

∥∥x1
i

∥∥mr)1/mr

· · ·

(
n∑
i=1

‖xmi ‖
mr

)1/mr

δp∗σ ((y∗i )
n
i=1) ,

for all xji ∈ Ej and y∗i ∈ F ∗ such that i = 1, ..., n and j = 1, ...,m.

This theorem provides an alternative characterization for Cohen strongly (p, σ)-continuous multilin-
ear operators.

Proof. (1)⇒ (2) Given T is Cohen strongly (p, σ)-continuous, the mapping

T̃ : `
p∗σ

(Y ∗)× `mp (E1)× · · · × `mp (Em) → `1(
(y∗i )

∞
i=1 ,

(
x1
i

)∞
i=1

, ..., (xmi )∞i=1

)
→

(
y∗i
(
T
(
x1
i , ..., x

m
i

)))∞
i=1

is well-defined and (m+ 1)-linear. A straightforward calculation shows that T̃ has closed graph and
hence is continuous. Therefore,∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)∞
i=1

∥∥∥
1

=
∥∥∥T̃ ((y∗i )∞i=1 ,

(
x1
i

)∞
i=1

, ..., (xmi )∞i=1

)∥∥∥
1

≤
∥∥∥T̃∥∥∥∥∥(x1

i

)∞
i=1

∥∥
mp
· · · ‖(xmi )∞i=1‖mp δp∗σ ((y∗i )

∞
i=1) .

(2)⇒ (1) and (2)⇒ (3) are immediate.
(3)⇒ (2) Let

(
xji

)∞
i=1
∈ `mp (Ej), j = 1, ...,m and (y∗i )

∞
i=1 ∈ `( p∗

1−σ

)(F ∗). Then∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)∞
i=1

∥∥∥
1

= sup
n

∥∥∥(〈T (xj1, . . . , xjn) ; y∗i

〉)n
i=1

∥∥∥
1

≤ sup
n

C m∏
j=1

n∑
i=1

∥∥∥xji∥∥∥mr
1/mr

δp∗σ ((y∗i )
∞
i=1)

= C

 m∏
j=1

∞∑
i=1

∥∥∥xji∥∥∥mr
1/mr

δp∗σ ((y∗i )
∞
i=1)

< ∞.

The smallestC such that (1.9) is satisfied, denoted by ‖T‖Dm,σp
, defines a normonDm,σp (E1, ..., Em;F ) .

�

As a result of Theorem 1.4 and the subsequent theorem, akin to the linear scenario, we can delineate
the category of Cohen strongly (p, σ)-continuous multilinear operators through several inequalities. To
achieve this, we must broaden the abstract outcome of Theorem 1.3.

Theorem 1.5. Let f : E1 × · · · × Em → F be a mapping belonging toH, and let

0 < p, p0, q0, p1, ..., pt−1, q1, ..., qt−1 <∞
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and 0 ≤ σ < 1, be such that
1

p0
=

1

p1
+ · · ·+ 1

pt−1
+

1− σ
p∗

and
1

q0
=

1

q1
+ · · ·+ 1

qt−1
+

1− σ
p∗

.

If (Rj)x1,...,xk,b (.) is constant for all x1, ..., xk, b and for all 1 ≤ j ≤ t− 1, then the following statements are

equivalent

(1) f is R1, ..., Rt-S-abstract
(
p1, ..., pt−1,

p∗

1−σ

)
-summing,

(2) f is R1, ..., Rt-S-abstract
(
q1, ..., qt−1,

p∗

1−σ

)
-summing.

Corollary 1.2. For T ∈ L (E1, ..., Em;F ) and 0 ≤ σ < 1 with 1
q0

= 1
q1

+ · · · + 1
qm

+ 1−σ
p∗ , the following

statements are equivalent:

(1) There exists a constant C > 0 such that

n∑
i=1

∣∣〈T (x1
i , ..., x

m
i

)
, y∗i
〉∣∣ ≤ C ( n∑

i=1

∥∥x1
i

∥∥mr)1/mr

· · ·

(
n∑
i=1

‖xmi ‖
mr

)1/mr

δp∗σ ((y∗i )
n
i=1) ,

for all xji ∈ Ej and y∗i ∈ F ∗ such that i = 1, ..., n and j = 1, ...,m.

(2) There exists a constant C > 0 such that(
n∑
i=1

∣∣〈T (x1
i , ..., x

m
i

)
, y∗i
〉∣∣q0)1/q0

≤ C

(
n∑
i=1

∥∥x1
i

∥∥q1)1/q1

· · ·

(
n∑
i=1

‖xmi ‖
qm

)1/qm

δp∗σ ((y∗i )
n
i=1) , (1.10)

for all xji ∈ Ej and y∗i ∈ F ∗ such that i = 1, ..., n and j = 1, ...,m.

From Corollary 1.2, it’s feasible to derive further characterizations for the class of Cohen strongly
(p, σ)-continuous multilinear operators using sequences. Equivalently, one can establish an inequality
akin to that presented by (1.10) , albeit with infinite sums:

For 1 ≤ p ≤ ∞ and 0 ≤ σ < 1,with 1
q0

= 1
q1

+···+ 1
qm

+ 1−σ
p∗ , an operator T ∈ L (E1, ..., Em;F ) is Cohen

strongly (p, σ)-continuous if (〈T (x1
i , ..., x

m
i

)
, y∗i
〉)∞
i=1
∈ `q0 whenever

(
xji

)∞
i=1
∈ `qj (Ej) , j = 1, ...,m,

and (y∗i )
∞
i=1 ∈ `( p∗

1−σ

)(F ∗).
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