

UPPER AND LOWER SLIGHTLY $(\tau_1, \tau_2)\beta$ -CONTINUOUS MULTIFUNCTIONS

CHOKCHAI VIRIYAPONG¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

²Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Received Jun. 24, 2024

ABSTRACT. This paper is concerned with the concepts of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. Furthermore, several characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions are investigated. The relationships between slight $(\tau_1, \tau_2)\beta$ -continuity and other forms of $(\tau_1, \tau_2)\beta$ -continuity are also discussed.

2020 Mathematics Subject Classification. 54C08; 54C60; 54E55.

Key words and phrases. $(\tau_1, \tau_2)\beta$ -open set; upper slightly $(\tau_1, \tau_2)\beta$ -continuous multifunction; lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunction.

1. INTRODUCTION

In 2001, Noiri [37] introduced the notion of slightly β -continuous functions and studied the relationships between slight β -continuity, contra- β -continuity [30] and β -continuity [2]. Duangphui et al. [31] introduced and investigated the notion of $(\mu, \mu')^{(m,n)}$ -continuous functions. Furthermore, several characterizations of strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, (Λ, sp) -continuous functions, \star -continuous functions, θ - \mathscr{I} -continuous functions, pairwise *M*-continuous functions, (g, m)-continuous functions, almost (Λ, p) -continuous functions, (g, m)-continuous functions, almost (Λ, p) -continuous functions, (χ, p) -continuous functions, almost (χ, p) -continuous functions, (χ, p) -contin

DOI: 10.28924/APJM/11-75

In 2005, Ekici [32] introduced and investigated slightly β -continuous multifunctions as a generalization of α -continuous multifunctions [39], γ -continuous multifunctions [1] and β -continuous multifunctions [38]. Laprom et al. [36] introduced and studied the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [50] introduced and investigated the concept of $(\tau_1, \tau_2)\alpha$ continuous multifunctions. Moreover, some characterizations of $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, \star -continuous multifunctions, $\beta(\star)$ -continuous multifunctions, weakly quasi (Λ, sp) -continuous multifunctions, α - \star -continuous multifunctions, almost α - \star -continuous multifunctions, weakly α - \star -continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost ι^* continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, slightly (Λ, sp) -continuous multifunctions, (τ_1, τ_2) -continuous multifunctions, almost $\ell(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions and slightly $(\tau_1, \tau_2)s$ -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions and slightly $(\tau_1, \tau_2)s$ -continuous multifunctions were investigated in [24], [21], [26], [22], [48], [4], [10], [11], [13], [12], [18], [25], [16], [34], [19], [46], [17], [40], [35] and [33], respectively.

In this paper, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. We also investigate several characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i = 1, 2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_2$ -closed [27] if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1 \tau_2$ -closed set is called $\tau_1 \tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1 \tau_2$ -closed sets of X containing A is called the $\tau_1 \tau_2$ -closure [27] of A and is denoted by $\tau_1 \tau_2$ -Cl(A). The union of all $\tau_1 \tau_2$ -open sets of X contained in A is called the $\tau_1 \tau_2$ -interior [27] of A and is denoted by $\tau_1 \tau_2$ -Int(A).

Lemma 1. [27] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2$ -*Cl*(*A*) and $\tau_1 \tau_2$ -*Cl*($\tau_1 \tau_2$ -*Cl*(*A*)) = $\tau_1 \tau_2$ -*Cl*(*A*).
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ - $Cl(A) \subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1 \tau_2$ -closed if and only if $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2$ - $Cl(X A) = X \tau_1 \tau_2$ -Int(A).

A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -clopen [27] if *A* is both $\tau_1\tau_2$ -open and $\tau_1\tau_2$ -closed. A subset *A* of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\beta$ -open [24] (resp. $\alpha(\tau_1, \tau_2)$ -open [47]) if $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))) (resp. $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)))). The complement of a $(\tau_1, \tau_2)\beta$ -open (resp. $\alpha(\tau_1, \tau_2)$ -open) set is called $(\tau_1, \tau_2)\beta$ -closed (resp. $\alpha(\tau_1, \tau_2)$ closed). Let *A* be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)\beta$ -closed sets of *X* containing *A* is called the $(\tau_1, \tau_2)\beta$ -closure of *A* and is denoted by $(\tau_1, \tau_2)\beta$ -Cl(A). The union of all $(\tau_1, \tau_2)\beta$ -open sets of *X* contained in *A* is called the $(\tau_1, \tau_2)\beta$ -interior of *A* and is denoted by $(\tau_1, \tau_2)\beta$ -Int(A).

Lemma 2. For subsets A and B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq (\tau_1, \tau_2)\beta$ -Cl(A) and $(\tau_1, \tau_2)\beta$ -Cl $((\tau_1, \tau_2)\beta$ -Cl(A)) = $(\tau_1, \tau_2)\beta$ -Cl(A).
- (2) If $A \subseteq B$, then $(\tau_1, \tau_2)\beta$ - $Cl(A) \subseteq (\tau_1, \tau_2)\beta$ -Cl(B).
- (3) $(\tau_1, \tau_2)\beta$ -Cl(A) is $(\tau_1, \tau_2)\beta$ -closed.
- (4) A is $(\tau_1, \tau_2)\beta$ -closed if and only if $A = (\tau_1, \tau_2)\beta$ -Cl(A).
- (5) $(\tau_1, \tau_2)\beta$ -Cl $(X A) = X (\tau_1, \tau_2)\beta$ -Int(A).

By a multifunction $F : X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [3] we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.$$

In particular, $F^{-}(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions

In this section, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. Furthermore, some characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions are discussed.

Definition 1. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y containing F(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper slightly $(\tau_1, \tau_2)\beta$ -continuous if F has this property at every point of X.

Theorem 1. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper slightly $(\tau_1, \tau_2)\beta$ -continuous;
- (2) $F^+(V)$ is $(\tau_1, \tau_2)\beta$ -open in X for every $\sigma_1\sigma_2$ -clopen set V of Y;

(3) $F^{-}(V)$ is $(\tau_1, \tau_2)\beta$ -closed in X for every $\sigma_1\sigma_2$ -clopen set V of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1\sigma_2$ -clopen set *V* of *Y* and $x \in F^+(V)$. Then, $F(x) \subseteq V$. Since *F* is upper slightly $(\tau_1, \tau_2)\beta$ -continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set *U* of *X* containing *x* such that $F(U) \subseteq V$. Thus, $x \in U \subseteq F^+(V)$ and hence $x \in (\tau_1, \tau_2)\beta$ -Int $(F^+(V))$. Therefore, we have $F^+(V) \subseteq (\tau_1, \tau_2)\beta$ -Int $(F^+(V))$ and so $F^+(V)$ is $(\tau_1, \tau_2)\beta$ -open in *X*.

(2) \Leftrightarrow (3): This follows from the fact that $F^{-}(Y - B) = X - F^{+}(B)$ for every subset B of Y.

(2) \Rightarrow (1): Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set V of Y containing F(x). Then, $x \in F^+(V) = (\tau_1, \tau_2)\beta$ -Int $(F^+(V))$. There exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $U \subseteq F^+(V)$. Thus, $F(U) \subseteq V$ and hence F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous at x. This shows that F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 2. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower slightly $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower slightly $(\tau_1, \tau_2)\beta$ -continuous if F has this property at every point of X.

Theorem 2. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is lower slightly $(\tau_1, \tau_2)\beta$ -continuous;
- (2) $F^{-}(V)$ is $(\tau_1, \tau_2)\beta$ -open in X for every $\sigma_1\sigma_2$ -clopen set V of Y;
- (3) $F^+(V)$ is $(\tau_1, \tau_2)\beta$ -closed in X for every $\sigma_1\sigma_2$ -clopen set V of Y.

Proof. The proof is similar to that of Theorem 1.

Definition 3. A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be slightly $(\tau_1, \tau_2)\beta$ -continuous if for each $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y containing f(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $f(U) \subseteq V$.

Corollary 1. For a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *f* is slightly $(\tau_1, \tau_2)\beta$ -continuous;
- (2) $f^{-1}(V)$ is $(\tau_1, \tau_2)\beta$ -open in X for each $\sigma_1\sigma_2$ -clopen set V of Y;
- (3) $f^{-1}(V)$ is $(\tau_1, \tau_2)\beta$ -closed in X for each $\sigma_1\sigma_2$ -clopen set V of Y.

Definition 4. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(U) \subseteq V$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Theorem 3. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper $(\tau_1, \tau_2)\beta$ -continuous, then F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing F(x). Since F is upper $(\tau_1, \tau_2)\beta$ continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq V$. This shows that Fis upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 5. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(z) \cap V \neq \emptyset$ for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Theorem 4. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower $(\tau_1, \tau_2)\beta$ -continuous, then F is lower slightly $(\tau_1, \tau_2)\beta$ -continuous.

Proof. The proof is similar to that of Theorem 3.

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -*extremally disconnected* [47] if the $\tau_1\tau_2$ -closure of every $\tau_1\tau_2$ -open set U of X is $\tau_1\tau_2$ -open.

Lemma 3. [47] For a bitopological space (X, τ_1, τ_2) , the following properties are equivalent:

- (1) (X, τ_1, τ_2) is (τ_1, τ_2) -extremally disconnected.
- (2) Every (τ_1, τ_2) r-open set of X is $\tau_1\tau_2$ -closed.
- (3) Every (τ_1, τ_2) *r*-closed set of X is $\tau_1 \tau_2$ -open.

Definition 6. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)). A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper almost $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Lemma 4. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper almost $(\tau_1, \tau_2)\beta$ -continuous;
- (2) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y containing F(x), there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq V$.

Theorem 5. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper slightly $(\tau_1, \tau_2)\beta$ -continuous and (Y, σ_1, σ_2) is (τ_1, τ_2) -extremally disconnected, then F is upper almost $(\tau_1, \tau_2)\beta$ -continuous.

Proof. Let $x \in X$ and V be any $(\sigma_1, \sigma_2)r$ -open set of Y containing F(x). Then, by Lemma 3 we have V is $\sigma_1\sigma_2$ -clopen in Y. Since F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq V$. By Lemma 4, F is upper almost $(\tau_1, \tau_2)\beta$ -continuous.

Definition 7. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open

set U of X containing x such that $\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl $(V)) \cap F(z) \neq \emptyset$ for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower almost $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Lemma 5. For a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is lower almost $(\tau_1, \tau_2)\beta$ -continuous;
- (2) for each $x \in X$ and each $(\sigma_1, \sigma_2)r$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $U \subseteq F^-(V)$.

Theorem 6. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower slightly $(\tau_1, \tau_2)\beta$ -continuous and (Y, σ_1, σ_2) is (τ_1, τ_2) -extremally disconnected, then F is lower almost $(\tau_1, \tau_2)\beta$ -continuous.

Proof. By utilizing Lemma 5, this can be proved similarly to that of Theorem 5.

Definition 8. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y containing F(x), there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V). A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper weakly $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Theorem 7. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is upper weakly $(\tau_1, \tau_2)\beta$ -continuous, then F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing F(x). Since F is upper weakly $(\tau_1, \tau_2)\beta$ continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V) = V. This
shows that F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 9. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower weakly $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ if for each $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $\sigma_1 \sigma_2$ - $Cl(V) \cap F(z) \neq \emptyset$ for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be lower weakly $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Theorem 8. If a multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is lower weakly $(\tau_1, \tau_2)\beta$ -continuous, then F is lower slightly $(\tau_1, \tau_2)\beta$ -continuous.

Proof. The proof is similar to that of Theorem 7.

Acknowledgements

This research project was financially supported by Mahasarakham University.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- M.E. Abd El-Monsef, A.A. Nasef, On multifunctions, Chaos Solitons Fractals 12 (2001), 2387–2394. https://doi.org/ 10.1016/s0960-0779(00)00198-3.
- [2] M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [3] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [4] C. Boonpok and J. Khampakdee, Upper and lower α-*-continuity, Eur. J. Pure Appl. Math. 17 (2024), 201–211. https://doi.org/10.29020/nybg.ejpam.v17i1.4858.
- [5] C. Boonpok, N. Srisarakham, (τ₁, τ₂)-continuity for functions, Asia Pac. J. Math. 11 (2024), 21. https://doi.org/10.
 28924/AP JM/11-21.
- [6] C. Boonpok, P. Pue-on, Characterizations of almost (τ₁, τ₂)-continuous functions, Int. J. Anal. Appl. 22 (2024), 33.
 https://doi.org/10.28924/2291-8639-22-2024-33.
- [7] C. Boonpok, C. Klanarong, On weakly (τ₁, τ₂)-continuous functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. https://doi.org/10.29020/nybg.ejpam.v17i1.4976.
- [8] C. Boonpok and J. Khampakdee, Almost strong θ(Λ, p)-continuity for functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. https://doi.org/10.29020/nybg.ejpam.v17i1.4975.
- [9] C. Boonpok, On some spaces via topological ideals, Open Math. 21 (2023), 20230118. https://doi.org/10.1515/ math-2023-0118.
- [10] C. Boonpok and N. Srisarakham, Almost α-*-continuity for multifunctions, Int. J. Anal. Appl. 21 (2023), 107. https: //doi.org/10.28924/2291-8639-21-2023-107.
- [11] C. Boonpok, P. Pue-on, Upper and lower weakly α-*-continuous multifunctions, Int. J. Anal. Appl. 21 (2023), 90. https://doi.org/10.28924/2291-8639-21-2023-90.
- [12] C. Boonpok, J. Khampakdee, Upper and lower weak sβ(*)-continuity, Eur. J. Pure Appl. Math. 16 (2023), 2544–2556. https://doi.org/10.29020/nybg.ejpam.v16i4.4734.
- [13] C. Boonpok, P. Pue-on, Upper and lower sβ(*)-continuous multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1634–1646.
 https://doi.org/10.29020/nybg.ejpam.v16i3.4732.
- [14] C. Boonpok, $\theta(\star)$ -precontinuity, Mathematica, 65 (2023), 31–42. https://doi.org/10.24193/mathcluj.2023.1.04.
- [15] C. Boonpok, N. Srisarakham, Weak forms of (Λ, b) -open sets and weak (Λ, b) -continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. https://doi.org/10.29020/nybg.ejpam.v16i1.4571.
- [16] C. Boonpok, P. Pue-on, Upper and lower weakly (Λ, sp)-continuous multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1047–1058. https://doi.org/10.29020/nybg.ejpam.v16i2.4573.
- [17] C. Boonpok and J. Khampakdee, Slight (Λ , *sp*)-continuity and Λ_{sp} -extremally disconnectedness, Eur. J. Pure Appl. Math. 15 (2022), 1180–1188. https://doi.org/10.29020/nybg.ejpam.v15i3.4369.
- [18] C. Boobpok, $\theta(\star)$ -quasi continuity for multifunctions, WSEAS Trans. Math. 21 (2022), 245–251.
- [19] C. Boonpok, J. Khampakdee, On almost α(Λ, *sp*)-continuous multifunctions, Eur. J. Pure Appl. Math. 15 (2022), 626–634. https://doi.org/10.29020/nybg.ejpam.v15i2.4277.
- [20] C. Boonpok, On some closed sets and low separation axioms via topological ideals, Eur. J. Pure Appl. Math. 15 (2022), 1023–1046. https://doi.org/10.29020/nybg.ejpam.v15i3.4343.
- [21] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2)-continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. https://doi.org/10.29020/nybg.ejpam.v14i4.4072.

- [22] C. Boonpok, Upper and Lower $\beta(\star)$ -Continuity, Heliyon, 7 (2021), e05986. https://doi.org/10.1016/j.heliyon. 2021.e05986.
- [23] C. Boonpok, On characterizations of *-hyperconnected ideal topological spaces, J. Math. 2020 (2020), 9387601. https: //doi.org/10.1155/2020/9387601.
- [24] C. Boonpok, $(\tau_1, \tau_2)\delta$ -semicontinuous multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j. heliyon.2020.e05367.
- [25] C. Boonpok, P. Pue-on, Continuity for multifunctions in ideal topological spaces, WSEAS Trans. Math. 19 (2020), 624–631.
- [26] C. Boonpok, On continuous multifunctions in ideal topological spaces, Lobachevskii J. Math. 40 (2019), 24–35. https: //doi.org/10.1134/s1995080219010049.
- [27] C. Boonpok, C. Viriyapong and M. Thongmoon, On upper and lower (τ_1, τ_2)-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [28] C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [29] C. Boonpok, Almost (*g*, *m*)-continuous functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
- [30] M. Caldas, S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 19–28.
- [31] T. Duangphui, C. Boonpok and C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- [32] E. Ekici, Slightly β -continuous multifunctions, Demonstr. Math. 38 (2005), 469–484.
- [33] J. Khampakdee, S. Sompong, C. Boonpok, Slight $(\tau_1, \tau_2)s$ -continuity for multifunctions, Int. J. Math. Comput. Sci. 20 (2025), 89–93.
- [34] J. Khampakdee, C. Boonpok, Upper and lower $\alpha(\Lambda, sp)$ -continuous multifunctions, WSEAS Trans. Math. 21 (2022), 684–690.
- [35] C. Klanarong, S. Sompong, C. Boonpok, Upper and lower almost (τ₁, τ₂)-continuous multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. https://doi.org/10.29020/nybg.ejpam.v17i2.5192.
- [36] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math. 2020 (2020), 4020971. https://doi.org/10.1155/2020/4020971.
- [37] T. Noiri, Slightly β -continuous functions, Int. J. Math. Math. Sci. 28 (2001), 469–478.
- [38] V. Popa, T. Noiri, On upper and lower β -continuous multifunctions, Real Anal. Exchange, 22 (1996/1997), 362–376.
- [39] V. Popa, T. Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca, 43 (1996), 381–396.
- [40] P. Pue-on, S. Sompong, C. Boonpok, Upper and lower (τ_1, τ_2) -continuous mulfunctions, Int. J. Math. Comput. Sci. 19 (2024), 1305–1310.
- [41] P. Pue-on, C. Boonpok, $\theta(\Lambda, p)$ -continuity for functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
- [42] P. Sangviset, C. Boonpok, C. Viriyapong, Slightly (m, μ) -continuous functions, Far East J. Math. Sci. 85 (2014), 165–176.
- [43] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathscr{D}_1 spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747.
- [44] N. Srisarakham, C. Boonpok, Almost (Λ, p) -continuous functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- [45] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- [46] M. Thongmoon, C. Boonpok, Upper and lower almost $\beta(\Lambda, sp)$ -continuous multifunctions, WSEAS Trans. Math. 21 (2022), 844–853.
- [47] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -extremal disconnectedness in bitopological spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.

- [48] C. Viriyapong, C. Boonpok, Weak quasi (Λ , sp)-continuity for multifunctions, Int. J. Math. Comput. Sci. 17 (2022), 1201–1209.
- [49] C. Viriyapong, C. Boonpok, (Λ, sp) -continuous functions, WSEAS Trans. Math. 21 (2022), 380–385.
- [50] C. Viriyapong, C. Boonpok, (τ₁, τ₂)α-continuity for multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/ 10.1155/2020/6285763.