

UPPER AND LOWER SLIGHTLY ($τ_1, τ_2$)β-CONTINUOUS MULTIFUNCTIONS

CHOKCHAI VIRIYAPONG¹, SUPANNEE SOMPONG², CHAWALIT BOONPOK^{1,∗}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

 2 Department of Mathematics and Statistics, Faculty of Science and Technology, Sakon Nakhon Rajbhat University, Sakon Nakhon, 47000, Thailand

[∗]Corresponding author: chawalit.b@msu.ac.th

Received Jun. 24, 2024

ABSTRACT. This paper is concerned with the concepts of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. Furthermore, several characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions are investigated. The relationships between slight (τ_1 , τ_2) β -continuity and other forms of $(\tau_1, \tau_2)\beta$ -continuity are also discussed.

2020 Mathematics Subject Classification. 54C08; 54C60; 54E55.

Key words and phrases. $(\tau_1, \tau_2)\beta$ -open set; upper slightly $(\tau_1, \tau_2)\beta$ -continuous multifunction; lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunction.

1. Introduction

In 2001, Noiri $\left[37\right]$ introduced the notion of slightly β -continuous functions and studied the re-lationships between slight β-continuity, contra-β-continuity [\[30\]](#page-7-1) and β-continuity [\[2\]](#page-6-0). Duangphui et al. [\[31\]](#page-7-2) introduced and investigated the notion of $(\mu,\mu')^{(m,n)}$ -continuous functions. Furthermore, several characterizations of strongly $\theta(\Lambda, p)$ -continuous functions, almost strongly $\theta(\Lambda, p)$ -continuous functions, $(Λ, sp)$ -continuous functions, *-continuous functions, θ- \mathcal{I} -continuous functions, pairwise M-continuous functions, (g, m) -continuous functions, almost (Λ, p) -continuous functions, $\theta(\Lambda, p)$ continuous functions, weakly (Λ, b) -continuous functions, $\theta(\star)$ -precontinuous functions, $(\Lambda, p(\star))$ continuous functions, (τ_1, τ_2) -continuous functions, almost (τ_1, τ_2) -continuous functions, weakly (τ_1, τ_2) continuous functions, $\delta p(\Lambda, s)$ -continuous functions, and slightly (m, μ) -continuous functions were presented in [\[45\]](#page-7-3), [\[8\]](#page-6-1), [\[49\]](#page-8-0), [\[9\]](#page-6-2), [\[23\]](#page-7-4), [\[28\]](#page-7-5), [\[29\]](#page-7-6), [\[44\]](#page-7-7), [\[41\]](#page-7-8), [\[15\]](#page-6-3), [\[14\]](#page-6-4), [\[20\]](#page-6-5), [\[5\]](#page-6-6), [\[6\]](#page-6-7), [\[7\]](#page-6-8), [\[43\]](#page-7-9) and [\[42\]](#page-7-10), respectively.

DOI: [10.28924/APJM/11-75](https://doi.org/10.28924/APJM/11-75)

In 2005, Ekici [\[32\]](#page-7-11) introduced and investigated slightly β-continuous multifunctions as a gener-alization of α-continuous multifunctions [\[39\]](#page-7-12), γ -continuous multifunctions [\[1\]](#page-6-9) and β-continuous multifunctions [\[38\]](#page-7-13). Laprom et al. [\[36\]](#page-7-14) introduced and studied the notion of $\beta(\tau_1, \tau_2)$ -continuous multifunctions. Viriyapong and Boonpok [\[50\]](#page-8-2) introduced and investigated the concept of $(\tau_1, \tau_2) \alpha$ continuous multifunctions. Moreover, some characterizations of (τ_1, τ_2) δ-semicontinuous multifunctions, almost weakly (τ_1, τ_2) -continuous multifunctions, \star -continuous multifunctions, $\beta(\star)$ -continuous multifunctions, weakly quasi (Λ, sp) -continuous multifunctions, α - \star -continuous multifunctions, almost α - \star -continuous multifunctions, weakly α - \star -continuous multifunctions, $s\beta(\star)$ -continuous multifunctions, weakly $s\beta(\star)$ -continuous multifunctions, $\theta(\star)$ -quasi continuous multifunctions, almost \imath^\star continuous multifunctions, weakly (Λ, sp) -continuous multifunctions, $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\alpha(\Lambda, sp)$ -continuous multifunctions, almost $\beta(\Lambda, sp)$ -continuous multifunctions, slightly (Λ, sp) -continuous multifunctions, (τ_1, τ_2) -continuous multifunctions, almost (τ_1, τ_2) -continuous multifunctions and slightly (τ_1, τ_2) s-continuous multifunctions were investigated in [\[24\]](#page-7-15), [\[21\]](#page-6-10), [\[26\]](#page-7-16), [\[22\]](#page-7-17), [\[48\]](#page-8-3), [\[4\]](#page-6-11), [\[10\]](#page-6-12), [\[11\]](#page-6-13), [\[13\]](#page-6-14), [\[12\]](#page-6-15), [\[18\]](#page-6-16), [\[25\]](#page-7-18), [\[16\]](#page-6-17), [\[34\]](#page-7-19), [\[19\]](#page-6-18), [\[46\]](#page-7-20), [\[17\]](#page-6-19), [\[40\]](#page-7-21), [\[35\]](#page-7-22) and [\[33\]](#page-7-23), respectively.

In this paper, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. We also investigate several characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for $i = 1, 2$. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [\[27\]](#page-7-24) if $A = \tau_1$ -Cl(τ_2 -Cl(A)). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. Let A be a subset of a bitopological space (X,τ_1,τ_2) . The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [\[27\]](#page-7-24) of A and is denoted by $\tau_1\tau_2$ -Cl(A). The union of all $\tau_1\tau_2$ -open sets of X contained in A is called the $\tau_1\tau_2$ -*interior* [\[27\]](#page-7-24) of A and is denoted by $\tau_1\tau_2$ -Int(A).

Lemma 1. [\[27\]](#page-7-24) Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1 \tau_2$ -closure, the following *properties hold:*

- (1) $A \subseteq \tau_1 \tau_2 \text{-} Cl(A)$ *and* $\tau_1 \tau_2 \text{-} Cl(\tau_1 \tau_2 \text{-} Cl(A)) = \tau_1 \tau_2 \text{-} Cl(A)$ *.*
- (2) If $A \subseteq B$, then $\tau_1 \tau_2$ -Cl(A) $\subseteq \tau_1 \tau_2$ -Cl(B).
- (3) $\tau_1 \tau_2 \text{-} Cl(A)$ *is* $\tau_1 \tau_2 \text{-} closed$.
- (4) A *is* $\tau_1 \tau_2$ -closed *if and only if* $A = \tau_1 \tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2\text{-}Cl(X A) = X \tau_1 \tau_2\text{-}Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\tau_1 \tau_2$ -clopen [\[27\]](#page-7-24) if A is both $\tau_1 \tau_2$ -open and $\tau_1\tau_2$ -closed. A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\beta$ -open [\[24\]](#page-7-15) (resp. $\alpha(\tau_1, \tau_2)$ -open [\[47\]](#page-7-25)) if $A \subseteq \tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl(A))) (resp. $A \subseteq \tau_1 \tau_2$ -Int($\tau_1 \tau_2$ -Cl($\tau_1 \tau_2$ -Int(A)))). The complement of a $(\tau_1, \tau_2)\beta$ -open (resp. $\alpha(\tau_1, \tau_2)$ -open) set is called $(\tau_1, \tau_2)\beta$ -closed (resp. $\alpha(\tau_1, \tau_2)$ *closed*). Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $(\tau_1, \tau_2)\beta$ -closed sets of X containing A is called the $(\tau_1, \tau_2)\beta$ -closure of A and is denoted by $(\tau_1, \tau_2)\beta$ -Cl(A). The union of all $(\tau_1, \tau_2)\beta$ -open sets of X contained in A is called the $(\tau_1, \tau_2)\beta$ -interior of A and is denoted by $(\tau_1, \tau_2)\beta$ -Int (A) .

Lemma 2. *For subsets* A *and* B of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) $A \subseteq (\tau_1, \tau_2)\beta$ -Cl(A) and $(\tau_1, \tau_2)\beta$ -Cl($(\tau_1, \tau_2)\beta$ -Cl(A)) = $(\tau_1, \tau_2)\beta$ -Cl(A).
- (2) *If* $A \subseteq B$ *, then* $(\tau_1, \tau_2) \beta$ *-Cl*($A \subseteq (\tau_1, \tau_2) \beta$ *-Cl*(B)*.*
- (3) $(\tau_1, \tau_2)\beta$ -Cl(A) *is* $(\tau_1, \tau_2)\beta$ -closed.
- (4) A *is* $(\tau_1, \tau_2)\beta$ -closed *if and only if* $A = (\tau_1, \tau_2)\beta$ -Cl(A).
- (5) $(\tau_1, \tau_2)\beta$ -Cl(X A) = X $(\tau_1, \tau_2)\beta$ -Int(A).

By a multifunction $F: X \to Y$, we mean a point-to-set correspondence from X into Y, and we always assume that $F(x) \neq \emptyset$ for all $x \in X$. For a multifunction $F : X \to Y$, following [\[3\]](#page-6-20) we shall denote the upper and lower inverse of a set B of Y by $F^+(B)$ and $F^-(B)$, respectively, that is, $F^+(B) = \{x \in X \mid F(x) \subseteq B\}$ and

$$
F^{-}(B) = \{ x \in X \mid F(x) \cap B \neq \emptyset \}.
$$

In particular, $F^-(y) = \{x \in X \mid y \in F(x)\}$ for each point $y \in Y$. For each $A \subseteq X$, $F(A) = \bigcup_{x \in A} F(x)$.

3. Upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions

In this section, we introduce the notions of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions. Furthermore, some characterizations of upper and lower slightly $(\tau_1, \tau_2)\beta$ -continuous multifunctions are discussed.

Definition 1. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper slightly* $(\tau_1, \tau_2)\beta$ -continuous *at a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -clopen set V of Y containing $F(x)$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X *containing* x *such that* $F(U) \subseteq V$ *. A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper slightly* $(\tau_1, \tau_2)\beta$ -continuous if F has this property at every point of X.

Theorem 1. *For a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper slightly $(\tau_1, \tau_2)\beta$ -continuous;
- (2) $F^+(V)$ *is* $(\tau_1, \tau_2)\beta$ -open in X for every $\sigma_1\sigma_2$ -clopen set V of Y;

(3) $F^{-}(V)$ *is* $(\tau_1, \tau_2)\beta$ -closed in X for every $\sigma_1\sigma_2$ -clopen set V of Y.

Proof. (1) \Rightarrow (2): Let *V* be any $\sigma_1 \sigma_2$ -clopen set *V* of *Y* and $x \in F^+(V)$. Then, $F(x) \subseteq V$. Since F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $F(U) \subseteq V$. Thus, $x \in U \subseteq F^+(V)$ and hence $x \in (\tau_1, \tau_2)\beta$ -Int $(F^+(V))$. Therefore, we have $F^+(V) \subseteq (\tau_1, \tau_2)\beta$ -Int $(F^+(V))$ and so $F^+(V)$ is $(\tau_1, \tau_2)\beta$ -open in X.

(2) \Leftrightarrow (3): This follows from the fact that $F^{-}(Y - B) = X - F^{+}(B)$ for every subset *B* of *Y*.

(2) \Rightarrow (1): Let *x* ∈ *X* and *V* be any $\sigma_1 \sigma_2$ -clopen set *V* of *Y* containing *F*(*x*). Then, *x* ∈ *F*⁺(*V*) = $(\tau_1, \tau_2)\beta$ -Int $(F^+(V))$. There exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x such that $U \subseteq F^+(V)$. Thus, $F(U) \subseteq V$ and hence F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous at x. This shows that F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 2. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be lower slightly* $(\tau_1, \tau_2)\beta$ -continuous *at a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -clopen set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U *of* X containing x such that $F(z) \cap V \neq \emptyset$ for each $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is *said to be lower slightly* (τ_1, τ_2) *β-continuous if F has this property at every point of X*.

Theorem 2. *For a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *, the following properties are equivalent:*

- (1) F *is lower slightly* (τ_1, τ_2) β -continuous;
- (2) $F^{-}(V)$ *is* $(\tau_1, \tau_2)\beta$ -open in X for every $\sigma_1 \sigma_2$ -clopen set V of Y;
- (3) $F^+(V)$ *is* $(\tau_1, \tau_2)\beta$ -closed in X for every $\sigma_1\sigma_2$ -clopen set V of Y.

Proof. The proof is similar to that of Theorem [1.](#page-2-0)

Definition 3. *A function* $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be slightly* $(\tau_1, \tau_2) \beta$ -continuous *if for each* $x \in X$ and each $\sigma_1 \sigma_2$ -clopen set V of Y containing $f(x)$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X containing x *such that* $f(U) \subseteq V$ *.*

Corollary 1. *For a function* $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) f *is slightly* $(\tau_1, \tau_2)\beta$ -continuous;
- (2) $f^{-1}(V)$ *is* $(\tau_1, \tau_2)\beta$ -open in X for each $\sigma_1\sigma_2$ -clopen set V of Y;
- (3) $f^{-1}(V)$ *is* $(\tau_1, \tau_2)\beta$ -closed *in* X for each $\sigma_1 \sigma_2$ -clopen set V of Y.

Definition 4. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper* $(\tau_1, \tau_2)\beta$ -continuous at a point $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists a (τ_1, τ_2) β -open set U of X containing x *such that* $F(U) \subseteq V$ *. A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper* $(\tau_1, \tau_2) \beta$ -continuous *if* F *has this property at each point of* X*.*

Theorem 3. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is upper* $(\tau_1, \tau_2)\beta$ -continuous, then F *is upper slightly* (τ_1, τ_2) *β*-continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing $F(x)$. Since F is upper $(\tau_1, \tau_2)\beta$ continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq V$. This shows that F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 5. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be lower* $(\tau_1, \tau_2) \beta$ -continuous at a point $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X *containing* x *such that* $F(z) \cap V \neq \emptyset$ for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to *be lower* $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Theorem 4. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is lower* $(\tau_1, \tau_2)\beta$ -continuous, then F is lower *slightly* (τ_1, τ_2) *β*-continuous.

Proof. The proof is similar to that of Theorem [3.](#page-3-0) □

Recall that a bitopological space (X, τ_1, τ_2) is said to be (τ_1, τ_2) -extremally disconnected [\[47\]](#page-7-25) if the $\tau_1\tau_2$ -closure of every $\tau_1\tau_2$ -open set U of X is $\tau_1\tau_2$ -open.

Lemma 3. [\[47\]](#page-7-25) *For a bitopological space* (X, τ_1, τ_2) *, the following properties are equivalent:*

- (1) (X, τ_1, τ_2) *is* (τ_1, τ_2) *-extremally disconnected.*
- (2) *Every* (τ_1, τ_2) *r-open set of X is* $\tau_1 \tau_2$ -closed.
- (3) *Every* (τ_1, τ_2) *r-closed set of X is* $\tau_1 \tau_2$ -open.

Definition 6. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper almost* $(\tau_1, \tau_2)\beta$ -continuous *at a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X *containing* x *such that* $F(U) \subseteq \sigma_1 \sigma_2$ -*Int*($\sigma_1 \sigma_2$ -*Cl*(V))*. A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper almost* $(\tau_1, \tau_2)\beta$ -continuous if F has this property at each point of X.

Lemma 4. *For a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F* is upper almost $(\tau_1, \tau_2)\beta$ -continuous;
- (2) *for each* $x \in X$ *and each* (σ_1, σ_2) *r*-open set V of Y *containing* $F(x)$ *, there exists a* $(\tau_1, \tau_2)\beta$ -open set of *X* containing x such that $F(U) \subseteq V$.

Theorem 5. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is upper slightly* $(\tau_1, \tau_2)\beta$ -continuous and (Y, σ_1, σ_2) *is* (τ_1, τ_2) -extremally disconnected, then *F is upper almost* (τ_1, τ_2) *β*-continuous.

Proof. Let $x \in X$ and V be any (σ_1, σ_2) r-open set of Y containing $F(x)$. Then, by Lemma [3](#page-4-0) we have V is $\sigma_1\sigma_2$ -clopen in Y. Since F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq V$. By Lemma [4,](#page-4-1) F is upper almost $(\tau_1, \tau_2)\beta$ -continuous.

Definition 7. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be lower almost* $(\tau_1, \tau_2)\beta$ -continuous *at a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open

set U of X containing x such that $\sigma_1 \sigma_2$ -Int $(\sigma_1 \sigma_2$ -Cl(V)) \cap F(z) \neq Ø for every $z \in U$. A multifunction $F:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ *is said to be lower almost* $(\tau_1,\tau_2)\beta$ -continuous if F has this property at each point *of* X*.*

Lemma 5. *For a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$, the following properties are equivalent:

- (1) *F is lower almost* (τ_1, τ_2) *β*-continuous;
- (2) *for each* $x \in X$ *and each* $(\sigma_1, \sigma_2)r$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open *set of* X *containing* x *such that* $U \subseteq F^{-}(V)$ *.*

Theorem 6. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is lower slightly* $(\tau_1, \tau_2)\beta$ -continuous and (Y, σ_1, σ_2) *is* (τ_1, τ_2) -extremally disconnected, then *F is lower almost* (τ_1, τ_2) *β*-continuous.

Proof. By utilizing Lemma [5,](#page-5-0) this can be proved similarly to that of Theorem [5.](#page-4-2) □

Definition 8. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be upper weakly* (τ_1, τ_2) *β-continuous at a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y containing $F(x)$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X *containing* x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V). A multifunction $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be upper *weakly* (τ_1, τ_2) β-continuous if F has this property at each point of X.

Theorem 7. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is upper weakly* $(\tau_1, \tau_2)\beta$ -continuous, then F is *upper slightly* (τ_1, τ_2) *β*-continuous.

Proof. Let $x \in X$ and V be any $\sigma_1 \sigma_2$ -clopen set of Y containing $F(x)$. Since F is upper weakly $(\tau_1, \tau_2)\beta$ continuous, there exists a $(\tau_1, \tau_2)\beta$ -open set of X containing x such that $F(U) \subseteq \sigma_1 \sigma_2$ -Cl(V) = V. This shows that F is upper slightly $(\tau_1, \tau_2)\beta$ -continuous.

Definition 9. *A multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is said to be lower weakly* $(\tau_1, \tau_2)\beta$ -continuous at *a point* $x \in X$ *if for each* $\sigma_1 \sigma_2$ -open set V of Y such that $F(x) \cap V \neq \emptyset$, there exists a $(\tau_1, \tau_2)\beta$ -open set U of X *containing* x *such that* $\sigma_1 \sigma_2$ -Cl(V) \cap F(z) \neq \emptyset for every $z \in U$. A multifunction $F : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ *is said to be lower weakly* (τ_1, τ_2) β *-continuous if F has this property at each point of X*.

Theorem 8. *If a multifunction* $F : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ *is lower weakly* $(\tau_1, \tau_2)\beta$ -continuous, then F is *lower slightly* (τ_1, τ_2) *β*-continuous.

Proof. The proof is similar to that of Theorem [7.](#page-5-1)

ACKNOWLEDGEMENTS

This research project was financially supported by Mahasarakham University.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

REFERENCES

- [1] M.E. Abd El-Monsef, A.A. Nasef, On multifunctions, Chaos Solitons Fractals 12 (2001), 2387–2394. [https://doi.org/](https://doi.org/10.1016/s0960-0779(00)00198-3) [10.1016/s0960-0779\(00\)00198-3](https://doi.org/10.1016/s0960-0779(00)00198-3).
- [2] M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- [3] C. Berge, Espaces topologiques fonctions multivoques, Dunod, Paris, 1959.
- [4] C. Boonpok and J. Khampakdee, Upper and lower α - α -continuity, Eur. J. Pure Appl. Math. 17 (2024), 201–211. [https:](https://doi.org/10.29020/nybg.ejpam.v17i1.4858) [//doi.org/10.29020/nybg.ejpam.v17i1.4858](https://doi.org/10.29020/nybg.ejpam.v17i1.4858).
- [5] C. Boonpok, N. Srisarakham, (τ_1, τ_2) -continuity for functions, Asia Pac. J. Math. 11 (2024), 21. [https://doi.org/10.](https://doi.org/10.28924/APJM/11-21) [28924/APJM/11-21](https://doi.org/10.28924/APJM/11-21).
- [6] C. Boonpok, P. Pue-on, Characterizations of almost (τ_1, τ_2) -continuous functions, Int. J. Anal. Appl. 22 (2024), 33. <https://doi.org/10.28924/2291-8639-22-2024-33>.
- [7] C. Boonpok, C. Klanarong, On weakly (τ_1, τ_2) -continuous functions, Eur. J. Pure Appl. Math. 17 (2024), 416–425. <https://doi.org/10.29020/nybg.ejpam.v17i1.4976>.
- [8] C. Boonpok and J. Khampakdee, Almost strong $\theta(\Lambda, p)$ -continuity for functions, Eur. J. Pure Appl. Math. 17 (2024), 300–309. <https://doi.org/10.29020/nybg.ejpam.v17i1.4975>.
- [9] C. Boonpok, On some spaces via topological ideals, Open Math. 21 (2023), 20230118. [https://doi.org/10.1515/](https://doi.org/10.1515/math-2023-0118) [math-2023-0118](https://doi.org/10.1515/math-2023-0118).
- [10] C. Boonpok and N. Srisarakham, Almost α - \star -continuity for multifunctions, Int. J. Anal. Appl. 21 (2023), 107. [https:](https://doi.org/10.28924/2291-8639-21-2023-107) [//doi.org/10.28924/2291-8639-21-2023-107](https://doi.org/10.28924/2291-8639-21-2023-107).
- [11] C. Boonpok, P. Pue-on, Upper and lower weakly α - \star -continuous multifunctions, Int. J. Anal. Appl. 21 (2023), 90. <https://doi.org/10.28924/2291-8639-21-2023-90>.
- [12] C. Boonpok, J. Khampakdee, Upper and lower weak $s\beta(*)$ -continuity, Eur. J. Pure Appl. Math. 16 (2023), 2544–2556. <https://doi.org/10.29020/nybg.ejpam.v16i4.4734>.
- [13] C. Boonpok, P. Pue-on, Upper and lower $s\beta(x)$ -continuous multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1634–1646. <https://doi.org/10.29020/nybg.ejpam.v16i3.4732>.
- [14] C. Boonpok, $\theta(x)$ -precontinuity, Mathematica, 65 (2023), 31–42. <https://doi.org/10.24193/mathcluj.2023.1.04>.
- [15] C. Boonpok, N. Srisarakham, Weak forms of (Λ, b) -open sets and weak (Λ, b) -continuity, Eur. J. Pure Appl. Math. 16 (2023), 29–43. <https://doi.org/10.29020/nybg.ejpam.v16i1.4571>.
- [16] C. Boonpok, P. Pue-on, Upper and lower weakly (Λ, sp) -continuous multifunctions, Eur. J. Pure Appl. Math. 16 (2023), 1047–1058. <https://doi.org/10.29020/nybg.ejpam.v16i2.4573>.
- [17] C. Boonpok and J. Khampakdee, Slight (Λ , sp)-continuity and Λ_{sp} -extremally disconnectedness, Eur. J. Pure Appl. Math. 15 (2022), 1180–1188. <https://doi.org/10.29020/nybg.ejpam.v15i3.4369>.
- [18] C. Boobpok, $\theta(\star)$ -quasi continuity for multifunctions, WSEAS Trans. Math. 21 (2022), 245–251.
- [19] C. Boonpok, J. Khampakdee, On almost $\alpha(\Lambda, sp)$ -continuous multifunctions, Eur. J. Pure Appl. Math. 15 (2022), 626–634. <https://doi.org/10.29020/nybg.ejpam.v15i2.4277>.
- [20] C. Boonpok, On some closed sets and low separation axioms via topological ideals, Eur. J. Pure Appl. Math. 15 (2022), 1023–1046. <https://doi.org/10.29020/nybg.ejpam.v15i3.4343>.
- [21] C. Boonpok, C. Viriyapong, Upper and lower almost weak (τ_1, τ_2) -continuity, Eur. J. Pure Appl. Math. 14 (2021), 1212–1225. <https://doi.org/10.29020/nybg.ejpam.v14i4.4072>.
- [22] C. Boonpok, Upper and Lower $\beta(\star)$ -Continuity, Heliyon, 7 (2021), e05986. [https://doi.org/10.1016/j.heliyon.](https://doi.org/10.1016/j.heliyon.2021.e05986) [2021.e05986](https://doi.org/10.1016/j.heliyon.2021.e05986).
- [23] C. Boonpok, On characterizations of *-hyperconnected ideal topological spaces, J. Math. 2020 (2020), 9387601. [https:](https://doi.org/10.1155/2020/9387601) [//doi.org/10.1155/2020/9387601](https://doi.org/10.1155/2020/9387601).
- [24] C. Boonpok, (τ_1, τ_2) δ-semicontinuous multifunctions, Heliyon, 6 (2020), e05367. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.heliyon.2020.e05367) [heliyon.2020.e05367](https://doi.org/10.1016/j.heliyon.2020.e05367).
- [25] C. Boonpok, P. Pue-on, Continuity for multifunctions in ideal topological spaces, WSEAS Trans. Math. 19 (2020), 624–631.
- [26] C. Boonpok, On continuous multifunctions in ideal topological spaces, Lobachevskii J. Math. 40 (2019), 24–35. [https:](https://doi.org/10.1134/s1995080219010049) [//doi.org/10.1134/s1995080219010049](https://doi.org/10.1134/s1995080219010049).
- [27] C. Boonpok, C. Viriyapong and M. Thongmoon, On upper and lower (τ_1 , τ_2)-precontinuous multifunctions, J. Math. Computer Sci. 18 (2018), 282–293. <https://doi.org/10.22436/jmcs.018.03.04>.
- [28] C. Boonpok, M-Continuous Functions in Biminimal Structure Spaces, Far East J. Math. Sci. 43 (2010), 41–58.
- [29] C. Boonpok, Almost (q, m) -continuous functions, Int. J. Math. Anal. 4 (2010), 1957–1964.
- [30] M. Caldas, S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 19–28.
- [31] T. Duangphui, C. Boonpok and C. Viriyapong, Continuous functions on bigeneralized topological spaces, Int. J. Math. Anal. 5 (2011), 1165–1174.
- [32] E. Ekici, Slightly β-continuous multifunctions, Demonstr. Math. 38 (2005), 469–484.
- [33] J. Khampakdee, S. Sompong, C. Boonpok, Slight (τ_1 , τ_2)s-continuity for multifunctions, Int. J. Math. Comput. Sci. 20 (2025), 89–93.
- [34] J. Khampakdee, C. Boonpok, Upper and lower $\alpha(\Lambda, sp)$ -continuous multifunctions, WSEAS Trans. Math. 21 (2022), 684–690.
- [35] C. Klanarong, S. Sompong, C. Boonpok, Upper and lower almost (τ_1, τ_2) -continuous multifunctions, Eur. J. Pure Appl. Math. 17 (2024), 1244–1253. <https://doi.org/10.29020/nybg.ejpam.v17i2.5192>.
- [36] K. Laprom, C. Boonpok, C. Viriyapong, $\beta(\tau_1, \tau_2)$ -continuous multifunctions on bitopological spaces, J. Math. 2020 (2020), 4020971. <https://doi.org/10.1155/2020/4020971>.
- [37] T. Noiri, Slightly β-continuous functions, Int. J. Math. Math. Sci. 28 (2001), 469–478.
- [38] V. Popa, T. Noiri, On upper and lower β-continuous multifunctions, Real Anal. Exchange, 22 (1996/1997), 362–376.
- [39] V. Popa, T. Noiri, On upper and lower α -continuous multifunctions, Math. Slovaca, 43 (1996), 381–396.
- [40] P. Pue-on, S. Sompong, C. Boonpok, Upper and lower (τ_1 , τ_2)-continuous mulfunctions, Int. J. Math. Comput. Sci. 19 (2024), 1305–1310.
- [41] P. Pue-on, C. Boonpok, $\theta(\Lambda, p)$ -continuity for functions, Int. J. Math. Comput. Sci. 19 (2024), 491–495.
- [42] P. Sangviset, C. Boonpok, C. Viriyapong, Slightly (m, μ) -continuous functions, Far East J. Math. Sci. 85 (2014), 165–176.
- [43] N. Srisarakham, C. Boonpok, On characterizations of $\delta p(\Lambda, s)$ - \mathcal{D}_1 spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747.
- [44] N. Srisarakham, C. Boonpok, Almost (Λ, p)-continuous functions, Int. J. Math. Comput. Sci. 18 (2023), 255–259.
- [45] M. Thongmoon, C. Boonpok, Strongly $\theta(\Lambda, p)$ -continuous functions, Int. J. Math. Comput. Sci. 19 (2024), 475–479.
- [46] M. Thongmoon, C. Boonpok, Upper and lower almost $\beta(\Lambda, sp)$ -continuous multifunctions, WSEAS Trans. Math. 21 (2022), 844–853.
- [47] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -extremal disconnectedness in bitopological spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- [48] C. Viriyapong, C. Boonpok, Weak quasi (Λ, sp)-continuity for multifunctions, Int. J. Math. Comput. Sci. 17 (2022), 1201–1209.
- [49] C. Viriyapong, C. Boonpok, (Λ, sp)-continuous functions, WSEAS Trans. Math. 21 (2022), 380–385.
- [50] C. Viriyapong, C. Boonpok, (τ_1,τ_2) α -continuity for multifunctions, J. Math. 2020 (2020), 6285763. [https://doi.org/](https://doi.org/10.1155/2020/6285763) [10.1155/2020/6285763](https://doi.org/10.1155/2020/6285763).