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Abstract. This paper is concerned with the concepts of upper and lower slightly (τ1, τ2)β-continuous
multifunctions. Furthermore, several characterizations of upper and lower slightly (τ1, τ2)β-continuous
multifunctions are investigated. The relationships between slight (τ1, τ2)β-continuity and other forms of
(τ1, τ2)β-continuity are also discussed.
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1. Introduction

In 2001, Noiri [37] introduced the notion of slightly β-continuous functions and studied the re-
lationships between slight β-continuity, contra-β-continuity [30] and β-continuity [2]. Duangphui
et al. [31] introduced and investigated the notion of (µ, µ′)(m,n)-continuous functions. Furthermore,
several characterizations of strongly θ(Λ, p)-continuous functions, almost strongly θ(Λ, p)-continuous
functions, (Λ, sp)-continuous functions, ?-continuous functions, θ-I -continuous functions, pairwise
M -continuous functions, (g,m)-continuous functions, almost (Λ, p)-continuous functions, θ(Λ, p)-
continuous functions, weakly (Λ, b)-continuous functions, θ(?)-precontinuous functions, (Λ, p(?))-
continuous functions, (τ1, τ2)-continuous functions, almost (τ1, τ2)-continuous functions, weakly (τ1, τ2)-
continuous functions, δp(Λ, s)-continuous functions, and slightly (m,µ)-continuous functions were
presented in [45], [8], [49], [9], [23], [28], [29], [44], [41], [15], [14], [20], [5], [6], [7], [43] and [42],
respectively.
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In 2005, Ekici [32] introduced and investigated slightly β-continuous multifunctions as a gener-
alization of α-continuous multifunctions [39], γ-continuous multifunctions [1] and β-continuous
multifunctions [38]. Laprom et al. [36] introduced and studied the notion of β(τ1, τ2)-continuous
multifunctions. Viriyapong and Boonpok [50] introduced and investigated the concept of (τ1, τ2)α-
continuous multifunctions. Moreover, some characterizations of (τ1, τ2)δ-semicontinuous multifunc-
tions, almost weakly (τ1, τ2)-continuous multifunctions, ?-continuous multifunctions, β(?)-continuous
multifunctions, weakly quasi (Λ, sp)-continuous multifunctions, α-?-continuous multifunctions, al-
most α-?-continuous multifunctions, weakly α-?-continuous multifunctions, sβ(?)-continuous multi-
functions, weakly sβ(?)-continuous multifunctions, θ(?)-quasi continuous multifunctions, almost ı?-
continuous multifunctions, weakly (Λ, sp)-continuous multifunctions, α(Λ, sp)-continuous multifunc-
tions, almost α(Λ, sp)-continuous multifunctions, almost β(Λ, sp)-continuous multifunctions, slightly
(Λ, sp)-continuous multifunctions, (τ1, τ2)-continuous multifunctions, almost (τ1, τ2)-continuous multi-
functions and slightly (τ1, τ2)s-continuous multifunctions were investigated in [24], [21], [26], [22],
[48], [4], [10], [11], [13], [12], [18], [25], [16], [34], [19], [46], [17], [40], [35] and [33], respectively.

In this paper, we introduce the notions of upper and lower slightly (τ1, τ2)β-continuous multifunc-
tions. We also investigate several characterizations of upper and lower slightly (τ1, τ2)β-continuous
multifunctions.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y ) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be
a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect to τi
are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological space
(X, τ1, τ2) is called τ1τ2-closed [27] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed set is called
τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all τ1τ2-closed sets
of X containing A is called the τ1τ2-closure [27] of A and is denoted by τ1τ2-Cl(A). The union of all
τ1τ2-open sets of X contained in A is called the τ1τ2-interior [27] of A and is denoted by τ1τ2-Int(A).

Lemma 1. [27] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the following

properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).

(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).

(3) τ1τ2-Cl(A) is τ1τ2-closed.

(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).

(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).
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A subset A of a bitopological space (X, τ1, τ2) is said to be τ1τ2-clopen [27] if A is both τ1τ2-open
and τ1τ2-closed. A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)β-open [24] (resp.
α(τ1, τ2)-open [47]) if A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A))) (resp. A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A)))).
The complement of a (τ1, τ2)β-open (resp. α(τ1, τ2)-open) set is called (τ1, τ2)β-closed (resp. α(τ1, τ2)-

closed). Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all (τ1, τ2)β-closed
sets of X containing A is called the (τ1, τ2)β-closure of A and is denoted by (τ1, τ2)β-Cl(A). The union
of all (τ1, τ2)β-open sets of X contained in A is called the (τ1, τ2)β-interior of A and is denoted by
(τ1, τ2)β-Int(A).

Lemma 2. For subsets A and B of a bitopological space (X, τ1, τ2), the following properties hold:

(1) A ⊆ (τ1, τ2)β-Cl(A) and (τ1, τ2)β-Cl((τ1, τ2)β-Cl(A)) = (τ1, τ2)β-Cl(A).

(2) If A ⊆ B, then (τ1, τ2)β-Cl(A) ⊆ (τ1, τ2)β-Cl(B).

(3) (τ1, τ2)β-Cl(A) is (τ1, τ2)β-closed.

(4) A is (τ1, τ2)β-closed if and only if A = (τ1, τ2)β-Cl(A).

(5) (τ1, τ2)β-Cl(X −A) = X − (τ1, τ2)β-Int(A).

By a multifunction F : X → Y , we mean a point-to-set correspondence from X into Y , and we
always assume that F (x) 6= ∅ for all x ∈ X . For a multifunction F : X → Y , following [3] we
shall denote the upper and lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X | F (x) ⊆ B} and

F−(B) = {x ∈ X | F (x) ∩B 6= ∅}.

In particular, F−(y) = {x ∈ X | y ∈ F (x)} for each point y ∈ Y . For each A ⊆ X , F (A) = ∪x∈AF (x).

3. Upper and lower slightly (τ1, τ2)β-continuous multifunctions

In this section, we introduce the notions of upper and lower slightly (τ1, τ2)β-continuous mul-
tifunctions. Furthermore, some characterizations of upper and lower slightly (τ1, τ2)β-continuous
multifunctions are discussed.

Definition 1. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper slightly (τ1, τ2)β-continuous

at a point x ∈ X if for each σ1σ2-clopen set V of Y containing F (x), there exists a (τ1, τ2)β-open set U of X

containing x such that F (U) ⊆ V . A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper slightly

(τ1, τ2)β-continuous if F has this property at every point of X .

Theorem 1. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper slightly (τ1, τ2)β-continuous;

(2) F+(V ) is (τ1, τ2)β-open in X for every σ1σ2-clopen set V of Y ;
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(3) F−(V ) is (τ1, τ2)β-closed in X for every σ1σ2-clopen set V of Y .

Proof. (1) ⇒ (2): Let V be any σ1σ2-clopen set V of Y and x ∈ F+(V ). Then, F (x) ⊆ V . Since
F is upper slightly (τ1, τ2)β-continuous, there exists a (τ1, τ2)β-open set U of X containing x such
that F (U) ⊆ V . Thus, x ∈ U ⊆ F+(V ) and hence x ∈ (τ1, τ2)β-Int(F+(V )). Therefore, we have
F+(V ) ⊆ (τ1, τ2)β-Int(F+(V )) and so F+(V ) is (τ1, τ2)β-open in X .

(2)⇔ (3): This follows from the fact that F−(Y −B) = X − F+(B) for every subset B of Y .
(2) ⇒ (1): Let x ∈ X and V be any σ1σ2-clopen set V of Y containing F (x). Then, x ∈ F+(V ) =

(τ1, τ2)β-Int(F+(V )). There exists a (τ1, τ2)β-open set U ofX containing x such that U ⊆ F+(V ). Thus,
F (U) ⊆ V and hence F is upper slightly (τ1, τ2)β-continuous at x. This shows that F is upper slightly
(τ1, τ2)β-continuous. �

Definition 2. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower slightly (τ1, τ2)β-continuous

at a point x ∈ X if for each σ1σ2-clopen set V of Y such that F (x) ∩ V 6= ∅, there exists a (τ1, τ2)β-open set U

of X containing x such that F (z) ∩ V 6= ∅ for each z ∈ U . A multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is

said to be lower slightly (τ1, τ2)β-continuous if F has this property at every point of X .

Theorem 2. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower slightly (τ1, τ2)β-continuous;

(2) F−(V ) is (τ1, τ2)β-open in X for every σ1σ2-clopen set V of Y ;

(3) F+(V ) is (τ1, τ2)β-closed in X for every σ1σ2-clopen set V of Y .

Proof. The proof is similar to that of Theorem 1. �

Definition 3. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be slightly (τ1, τ2)β-continuous if for each

x ∈ X and each σ1σ2-clopen set V of Y containing f(x), there exists a (τ1, τ2)β-open set U of X containing x

such that f(U) ⊆ V .

Corollary 1. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is slightly (τ1, τ2)β-continuous;

(2) f−1(V ) is (τ1, τ2)β-open in X for each σ1σ2-clopen set V of Y ;

(3) f−1(V ) is (τ1, τ2)β-closed in X for each σ1σ2-clopen set V of Y .

Definition 4. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper (τ1, τ2)β-continuous at a point

x ∈ X if for each σ1σ2-open set V of Y containing F (x), there exists a (τ1, τ2)β-open set U of X containing x

such that F (U) ⊆ V . A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper (τ1, τ2)β-continuous if

F has this property at each point of X .

Theorem 3. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper (τ1, τ2)β-continuous, then F is upper

slightly (τ1, τ2)β-continuous.
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Proof. Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). Since F is upper (τ1, τ2)β-
continuous, there exists a (τ1, τ2)β-open set of X containing x such that F (U) ⊆ V . This shows that F
is upper slightly (τ1, τ2)β-continuous. �

Definition 5. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower (τ1, τ2)β-continuous at a point

x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅, there exists a (τ1, τ2)β-open set U of X

containing x such that F (z) ∩ V 6= ∅ for every z ∈ U . A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to

be lower (τ1, τ2)β-continuous if F has this property at each point of X .

Theorem 4. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower (τ1, τ2)β-continuous, then F is lower

slightly (τ1, τ2)β-continuous.

Proof. The proof is similar to that of Theorem 3. �

Recall that a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)-extremally disconnected [47] if the
τ1τ2-closure of every τ1τ2-open set U of X is τ1τ2-open.

Lemma 3. [47] For a bitopological space (X, τ1, τ2), the following properties are equivalent:

(1) (X, τ1, τ2) is (τ1, τ2)-extremally disconnected.

(2) Every (τ1, τ2)r-open set of X is τ1τ2-closed.

(3) Every (τ1, τ2)r-closed set of X is τ1τ2-open.

Definition 6. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper almost (τ1, τ2)β-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x), there exists a (τ1, τ2)β-open set U of X

containing x such that F (U) ⊆ σ1σ2-Int(σ1σ2-Cl(V )). A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said

to be upper almost (τ1, τ2)β-continuous if F has this property at each point of X .

Lemma 4. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is upper almost (τ1, τ2)β-continuous;

(2) for each x ∈ X and each (σ1, σ2)r-open set V of Y containing F (x), there exists a (τ1, τ2)β-open set of

X containing x such that F (U) ⊆ V .

Theorem 5. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is upper slightly (τ1, τ2)β-continuous and

(Y, σ1, σ2) is (τ1, τ2)-extremally disconnected, then F is upper almost (τ1, τ2)β-continuous.

Proof. Let x ∈ X and V be any (σ1, σ2)r-open set of Y containing F (x). Then, by Lemma 3 we have V
is σ1σ2-clopen in Y . Since F is upper slightly (τ1, τ2)β-continuous, there exists a (τ1, τ2)β-open set of
X containing x such that F (U) ⊆ V . By Lemma 4, F is upper almost (τ1, τ2)β-continuous. �

Definition 7. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower almost (τ1, τ2)β-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y such that F (x) ∩ V 6= ∅, there exists a (τ1, τ2)β-open
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set U of X containing x such that σ1σ2-Int(σ1σ2-Cl(V )) ∩ F (z) 6= ∅ for every z ∈ U . A multifunction

F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower almost (τ1, τ2)β-continuous if F has this property at each point

of X .

Lemma 5. For a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) F is lower almost (τ1, τ2)β-continuous;

(2) for each x ∈ X and each (σ1, σ2)r-open set V of Y such that F (x)∩V 6= ∅, there exists a (τ1, τ2)β-open

set of X containing x such that U ⊆ F−(V ).

Theorem 6. If a multifunction F : (X, τ1, τ2) → (Y, σ1, σ2) is lower slightly (τ1, τ2)β-continuous and

(Y, σ1, σ2) is (τ1, τ2)-extremally disconnected, then F is lower almost (τ1, τ2)β-continuous.

Proof. By utilizing Lemma 5, this can be proved similarly to that of Theorem 5. �

Definition 8. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper weakly (τ1, τ2)β-continuous

at a point x ∈ X if for each σ1σ2-open set V of Y containing F (x), there exists a (τ1, τ2)β-open set U of X

containing x such that F (U) ⊆ σ1σ2-Cl(V ). A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be upper

weakly (τ1, τ2)β-continuous if F has this property at each point of X .

Theorem 7. If a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is upper weakly (τ1, τ2)β-continuous, then F is

upper slightly (τ1, τ2)β-continuous.

Proof. Let x ∈ X and V be any σ1σ2-clopen set of Y containing F (x). Since F is upper weakly (τ1, τ2)β-
continuous, there exists a (τ1, τ2)β-open set of X containing x such that F (U) ⊆ σ1σ2-Cl(V ) = V . This
shows that F is upper slightly (τ1, τ2)β-continuous. �

Definition 9. A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be lower weakly (τ1, τ2)β-continuous at

a point x ∈ X if for each σ1σ2-open set V of Y such that F (x)∩ V 6= ∅, there exists a (τ1, τ2)β-open set U ofX

containing x such that σ1σ2-Cl(V ) ∩ F (z) 6= ∅ for every z ∈ U . A multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2)

is said to be lower weakly (τ1, τ2)β-continuous if F has this property at each point of X .

Theorem 8. If a multifunction F : (X, τ1, τ2)→ (Y, σ1, σ2) is lower weakly (τ1, τ2)β-continuous, then F is

lower slightly (τ1, τ2)β-continuous.

Proof. The proof is similar to that of Theorem 7. �
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