

# DISCONNECTED MULTI-EFFECT DOMINATION IN GRAPHS

# ZAINAB A. HASSAN<sup>1</sup>, MOHAMMED A. ABDLHUSEIN<sup>2,\*</sup>

<sup>1</sup>Department of Mathematics, College of Education for Pure Sciences University of Thi-Qar, Thi-Qar, Iraq <sup>2</sup>College of Education for Women, Shatrah University, Thi-Qar, 64001, Iraq \*Corresponding author: mmhd@shu.edu.iq

Received May 23, 2024

ABSTRACT. In this paper, disconnected multi-effect domination, a novel domination model in graphs is introduced. Let G = (V, E) be a finite, nontrivial, simple, and undirected graph without isolated vertex. A dominating subset  $D \subseteq V$  is a disconnected multi-effect dominating set in G if for every vertex  $v \in D$ ,  $|N(v) \cap (V - D)| \ge 2$  and G[D] is disconnected subgraph. The minimum cardinality over all disconnected multi-effect dominating sets in G is the disconnected multi-effect domination number of Gdenoted by  $\gamma_{dm}(G)$ . Some bounds and properties of disconnected multi-effect domination are studied with respect to order, size, minimum degree, and the maximum degree of a graph. A disconnected multi-effect domination number is determined for a recognized graphs.

2020 Mathematics Subject Classification. 05C69.

Key words and phrases. dominating set; disconnected multi-effect domination; minimum disconnected multi-effect domination.

### 1. INTRODUCTION

Let G = (V, E) be a graph has no isolated vertices with size m = |E| and order n = |V|. The number of edges that incident on a vertex v determines the degree of v, which is denoted by deg(v). A vertex with degree 0 is an isolated vertex, and a vertex with degree 1 is an end or pendant vertex. The minimum and maximum degrees, denoted by  $\delta(G)$  and  $\Delta(G)$ , respectively. G[D] is the subgraph of G induced by the vertices in set D and the edges incident between them. Regarding terms to graph theory, we refer to [23]. One of the regions of graph theory that is expanding the swiftest is the study of domination problems, a thorough analysis on the fundamentals of domination is provided like [13,15]. A set  $D \subseteq V$  is a dominating set if each vertex in V - D is adjacent to a vertex in D. The minimal dominating set D of G is has no proper subset as a dominating set. The domination number  $\gamma(G)$  is the cardinality of the minimum dominating set D of G. Different varieties of dominating

DOI: 10.28924/APJM/11-76

models have emerged depending on the aim of domination due to how important in different kinds of applications as [1,2,4–6,9,10,12,14,20–22,24]. Domination theory has been developing, with researchers delving into different kinds of domination from the prominent researchers who have contributed to this continuing discourse. T. W. Haynes et. al. [15] studied the fundamentals of domination in graphs. A survey of stratified domination in graphs was conducted by T. W. Haynes et. al. [16]. However, total domination stability in graphs were given by M. A. Henning et. al. [17]. Pitchfork domination in graphs are established in 2020 by Manal N. Al-Harere and M. A. Abdlhusein [11]. Doubly connected pitchfork domination are established in 2020 by Mohammed A. Abdlhusein and M. N. Al-Harere [8]. Mohammed A. Abdlhusein introduced stability of inverse pitchfork domination in 2021 [3]. In 2022, some modified types of pitchfork domination and its inverse are given by M. A. Abdlhusein and M. A1-Harere [7]. In 2023, constructing new topological graph with several properties are established by Z. N. Jwair et. al. [18,19]. In this work the disconnected multi-effect domination is discussed. A novel domination model in graphs is introduced. Certain limitations on the disconnected multi-effect domination number correlated with a graph order, size, minimum degree, and maximum degree, and other characteristics are discussed for any graph has this type of domination. Additionally, disconnected multi-effect domination number is determined for some newly updated and known graphs. This raises the question of whether or not any finite, simple, undirected graph G has no isolated vertices has a disconnected multi-effect domination? has been addressed and resolved.

### 2. DISCONNECTED MULTI-EFFECT DOMINATION IN GRAPHS

In this section, disconnected multi-effect domination is given with its bounds and properties. The order of graph, minimum degree, maximum degree, and other characteristics are discussed for any graph has this type of domination.

**Definition 2.1.** Let G = (V, E) be a finite, nontrivial, simple, and undirected graph without isolated vertex. A dominating subset  $D \subseteq V$  is a disconnected multi-effect dominating set in G if for every vertex  $v \in D$ ,  $|N(v) \cap (V - D)| \ge 2$  and G[D] is disconnected subgraph, and denoted by DMEDS. For example, see Fig 1.

**Definition 2.2.** *A disconnected multi-effect dominating set D of G is minimal if it has no proper disconnected multi-effect dominating subset and denoted by MDMEDS.* 

**Definition 2.3.** A minimal disconnected multi-effect dominating set D of G is said to be minimum if it has the smallest order among all minimal disconnected multi-effect dominating sets in G.

**Definition 2.4.** The minimum cardinality over all disconnected multi-effect dominating sets in G is the disconnected multi-effect domination number of G denoted by  $\gamma_{dm}(G)$ . Such set is denoted by  $\gamma_{dm}$ -set.



(a) Minimum dominating set (b) Minimum disconnected multi-effect dominating set

FIGURE 1. The dominating set and disconnected multi-effect dominating set.

In Fig. 1 (a) there are two vertices in D dominates all other vertices of V - D of a graph G where G[D] is connected graph. In the Fig. 1 (b) there are three vertices in D dominates all other vertices of V - D of a graph G and G[D] is disconnected graph.

**Observation 2.1.** For any graph G = (n, m) with disconnected multi-effect dominating set D and disconnected multi-effect domination number  $\gamma_{dm}(G)$ , we have:

- 1. The order of G is  $n \ge 4$ .
- 2.  $|D| \ge 2$ .
- 3.  $|V D| \ge 2$ .
- 4.  $\delta(G) \ge 1$  and  $\Delta(G) \ge 2$ .
- 5.  $\deg(v) \ge 2 \quad \forall v \in D.$
- 6. Each support vertex belongs to D.
- 7.  $\gamma(G) \leq \gamma_{dm}(G)$

**Theorem 2.1.** Let *G* be a graph and *D* be a *DMEDS* of a graph *G*. If any of the following conditions holds, then *D* is a MDMEDS:

- 1.  $|N(v) \cap D| = 1, \forall v \in V D.$
- 2. G[D] is a null graph.
- 3. Each vertex in D is a support vertex.

*Proof.* Suppose that *D* be any *DMEDS* in a graph *G*. Assume that *D* is not *MDMEDS*. Then, there is at least one vertex  $v \in D$  such that  $D - \{v\}$  is a *MDMEDS*. There are many cases to discussed as follows:

**Case 1.** Assume that the first condition holds, then for any vertex  $u \in V - D$  which is dominated by vertex v, it is not dominated by any vertex in  $D - \{v\}$ . Then,  $D - \{v\}$  is not DMEDS.

**Case 2.** Assume that the second condition holds, then v is not adjacent with any vertex of D since G[D] is a null graph. Therefore, v is not dominated by any vertex from  $D - \{v\}$ . Then,  $D - \{v\}$  is not

DMEDS.

**Case 3.** Assume that the third condition holds, then the proof is similar to proof in Case 1 where u is an end vertex.

**Theorem 2.2.** The size of any graph G = (n, m) having disconnected multi-effect dominating set D and disconnected multi-effect domination number  $\gamma_{dm}(G)$  has boundaries as:

$$2\gamma_{dm}(G) \le m \le \binom{n}{2} - \gamma_{dm} + 1$$

*Proof.* Assume that *D* be a  $\gamma_{dm}$  - set of a graph *G*, then:

**Case 1.** Assume that G[D] and G[V - D] are two null graphs to be G has as few edges as possible. According to the definition of the DMED, there is at least two edges from each vertex of D to V - D. Then, the number of edges between D and V - D equal to  $2|D| = 2\gamma_{dm}(G)$ . Therefore,  $m \ge 2\gamma_{dm}(G)$  this is the lower bound in general.

**Case 2.** Assume that G[D] are union of complete subgraph and isolated vertex,  $G[D] = K_{t-1} \cup K_1$  such that  $|E(G[D])| = m_1$ , and G[V - D] is a complete subgraph to be G have maximum number of edges. Where the number of edges of G[D] and G[V - D] equal to  $m_1$  and  $m_2$  respectively. So

$$m_1 = \frac{|D-1||D-2|}{2} = \frac{(\gamma_{dm}-1)(\gamma_{dm}-2)}{2}$$
$$m_2 = \frac{|V-D||V-D-1|}{2} = \frac{(n-\gamma_{dm})(n-\gamma_{dm}-1)}{2}$$

According to the definition of DMED, there is at most |V - D| edges from each vertex of D to V - D, such that every vertex in D dominates all vertices of V - D. Then, the number of edges between Dand V - D equals to  $|D||V - D| = \gamma_{dm} (n - \gamma_{dm}) = m_3$ . Then, the number of edges of G equals to  $m \le m_1 + m_2 + m_3$ 

$$\leq \frac{(\gamma_{dm}-1)(\gamma_{dm}-2)}{2} + \frac{(n-\gamma_{dm})(n-\gamma_{dm}-1)}{2} + n\gamma_{dm} - \gamma_{dm}^2$$
$$\leq \binom{n}{2} - \gamma_{dm} + 1$$

In general, this is the upper bound.

The lower bound is sharp for  $G = P_5$  where  $\gamma_{dm}(P_5) = 2$  and m = 4 see Fig. 3 (e) and the upper bound is sharp for  $G = F_3$  where  $\gamma_{dm}(F_3) = 2$  and m = 5 see Fig. 11 (a).

#### 3. DISCONNECTED MULTI-EFFECT DOMINATION OF SOME GRAPHS

The disconnected multi-effect domination model is studied for some graphs such as: path, cycle, star graph, complete graph, complete bipartite graph, wheel graph, barbell graph, the corresponding barbell graph, fan graph and double fan graph.

## **Proposition 3.1.** The path graph $P_n$ , $(n \le 4)$ has no disconnected multi-effect domination.

*Proof.* Since deg  $(v_i) \le 2 \ \forall v \in P_i, i = 2, 3, 4$ . When n = 2, there is one vertex dominates one vertex in V - D. When n = 3, there is one vertex  $v_2$  dominates two vertices in V - D, but G[D] is connected graph. When n = 4, if  $D = \{v_1, v_4\}$ , then each one of them dominates one vertex. If  $D = \{v_1, v_3\}$ , then  $v_1$  dominates one vertex and  $v_3$  dominates two vertices. If  $D = \{v_2, v_3\}$ , then each one of them dominates one vertex. If  $D = \{v_2, v_4\}$ , then  $v_2$  dominates two vertices and  $v_4$  dominates one vertex. Everything above is a contraction of our definition, so  $\overline{P_i}$  has no disconnected multi-effect domination. For example, see Fig 2.



FIGURE 2.  $P_3$  and  $P_4$  has no disconnected multi-effect domination.

**Theorem 3.2.** For any path graph  $P_n$ ,  $(n \ge 5)$  we have  $\gamma_{dm}(P_n) = \lfloor \frac{n}{3} \rfloor$ .

*Proof.* Let  $v_1, v_2, \ldots, v_n$  be the vertices of a path graph of order n and let  $D \subseteq V(P_n)$  such that:

$$D = \begin{cases} \{v_{3i-1}, i = 1, 2, \dots, \frac{n}{3}\} & \text{if } n \equiv 0 \pmod{3} \\ \{v_{3i-1}, i = 1, 2, 3, \dots, \left|\frac{n}{3}\right.\} - 1\} \cup \{v_{n-3}, v_{n-1}\} & \text{if } n \equiv 1 \pmod{3} \\ \{v_{3i-1}, i = 1, 2, \dots, \frac{n-2}{3}\} \cup \{v_{n-1}\} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

To prove *D* is the *DMEDS* in path graph. So, we will discuss three cases:

**Case 1:** If  $n \equiv 0 \pmod{3}$ . Let  $D = \{v_{3i-1}, i = 1, 2, \dots, \frac{n}{3}\}$ , since every vertex in D adjacent with exactly two vertices, then it dominates exactly two vertices and G[D] is disconnected graph. Thus, D is the DMEDS and  $\gamma_{dm}(P_n) = \frac{n}{3}$ .

**Case 2:** If  $n \equiv 1 \pmod{3}$ . Let  $D = \{v_{3i-1}, i = 1, 2, 3, \dots, \lfloor \frac{n}{3} \rfloor - 1\} \cup \{v_{n-3}, v_{n-1}\}$ , since every vertex in D adjacent exactly two vertices, then it dominates exactly two vertices and G[D] is disconnected graph. Thus, D is the DMEDS and  $\gamma_{dm}(P_n) = \lceil \frac{n}{3} \rceil$ .

**Case 3:** If  $n \equiv 2 \pmod{3}$ . Let  $D = \left\{ v_{3i-1}, i = 1, 2, \dots, \frac{n-2}{3} \right\} \cup \{v_{n-1}\}$ , since every vertex in D adjacent exactly two vertices, then it dominates exactly two vertices and G[D] is disconnected graph. Thus, D is the DMEDS and  $\gamma_{dm}(P_n) = \left\lceil \frac{n}{3} \right\rceil$ .

To prove that *D* is a minimum *DMEDS* in each the previous cases. Let *D'* is a *DMEDS* in *G*, such that |D'| < |D|, then there exist one or more vertices of V - D don't dominated by any vertex of D'

or G[D'] is connected graph. This contraction with the concept of the *DMEDS*. Hence, D' is not *DMEDS* and *D* is the minimum *DMEDS*. For example, see Fig 3.



FIGURE 3. A minimum disconnected multi-effect dominating set of  $P_n$ 

**Theorem 3.3.** *Given a cycle graph*  $C_n$ *, then:* 

$$\gamma_{dm}\left(C_{n}\right) = \left\lceil \frac{n}{3} \right\rceil \quad \text{for } n \ge 4$$

*Proof.* To prove *D* is the *DMEDS* in cycle graph. Let  $v_1, v_2, \ldots, v_n$  be the vertices of a cycle graph of order *n* and let  $D \subseteq V(C_n)$  such that

$$D = \begin{cases} \{v_{3i-2}, i = 1, \dots, \frac{n}{3}\} & \text{if } n \equiv 0 \pmod{3} \\ \{v_{3i-2}, i = 1, 2, \dots, \frac{n-1}{3}\} \cup \{v_{n-1}\} & \text{if } n \equiv 1 \pmod{3} \\ \{v_{3i-2}, i = 1, 2, \dots, \frac{n+1}{3}\} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

So, the following three cases are discussed:

**Case1:** If  $n \equiv 0 \pmod{3}$ . Let  $D = \{v_{3i-2}, i = 1, 2, \dots, \frac{n}{3}\}$ , then every  $v \in D$  dominates exactly two vertices and G[D] is disconnected graph. Then, D is a DMEDS.

**Case 2:** If  $n \equiv 1 \pmod{3}$ . Let  $D = \{v_{3i-2}, i = 1, 2, \dots, \frac{n-1}{3}\} \cup \{v_{n-1}\}$ , then each vertex of D dominates two vertices and G[D] is disconnected graph. Therefore, D is a DMEDS.

**Case 3:** If  $n \equiv 2 \pmod{3}$ . Let  $D = \{v_{3i-2}, i = 1, 2, \dots, \frac{n+1}{3}\}$ , then every vertex of D dominates two vertices and G[D] is disconnected graph. Hence, D is a DMEDS. Thus, in all above cases D is a  $\gamma_{dm}$  set and  $\gamma_{dm} (C_n) = \lceil \frac{n}{3} \rceil$ .

The set D is a minimum DMEDS in each the previous three cases and the proof of it similar to the proof of Theorem 3.2. For example, see Fig 4.



FIGURE 4. A minimum disconnected multi-effect dominating set of  $C_n$ 

**Proposition 3.4.** A star graph  $S_n (n \ge 3)$  has no disconnected multi-effect domination.

*Proof.* According to the definition the star graph is a bipartite graph of the form  $K_{1,n}$ . Let  $u \in S_n$  be a support vertex adjacent with pendants vertices  $v_1, v_2, \ldots, v_n$ , then if  $u \in D$ , it dominates three or more end vertices. But G[D] is connected graph. If  $u \notin D$ , then every vertex of the  $n \ge 3$  end vertices dominate only v which is a contradiction. Hence,  $S_n$  has no disconnected multi-effect dominating set.

## **Proposition 3.5.** Every complete graph $K_n$ has no disconnected multi-effect dominating set.

*Proof.* Since every vertex in  $K_n$  is joined with all other vertices, so that every vertex in disconnected multi-effect dominating set D can be dominates two or more vertices. Then, there is one vertex in D that dominates all vertices of V - D in the complete graph  $K_n$ , but G[D] is connected graph. Hence,  $K_n$  has no disconnected multi-effect dominating set. For example, see Fig 5.



FIGURE 5. A complete graph  $K_n$  has no disconnected multi-effect domination.

**Theorem 3.6.** The complete bipartite graph  $K_{n,m}$  has a disconnected multi-effect dominating set if and only if n and  $m \ge 2$ , where  $\gamma_{dm}(K_{n,m}) = \min\{n, m\}$ 

*Proof.* suppose that  $U_1$  and  $U_2$  be the two sets of vertices of  $K_{n,m}$ , such that  $|U_1| = n$  and  $|U_2| = m$ . So, the following three cases are discussed:

**Case 1.** If n < m, then D must be contains, n vertices of  $U_1$  where every vertex in  $U_1$  will dominates all the m vertices, that belong to V - D, and G[D] is disconnected graph. Hence  $\gamma_{dm}(K_{n,m}) = n$ **Case 2.** If m < n, then D must be contains, m vertices of  $U_2$  where each vertex in D will dominates all vertices in  $U_1$ , that belong to V - D, and G[D] is disconnected graph. Hence,  $\gamma_{dm}(K_{n,m}) = m$ **Case 3.** If n = m, then D must be contains, n vertices of  $U_1$  or m vertices of  $U_2$  where each vertex in Dwill dominates every vertices in V - D, and G[D] is disconnected graph. Hence,  $\gamma_{dm}(K_{n,m}) = n$  or m.

The set D is a minimum DMEDS in all the previous three cases and the proof of it similar to the proof of Theorem 3.2. For example, see Fig 6.

If n = 1 and  $m \ge 1$ , there is one vertex in  $U_1$  will dominates all the m vertices, but G[D] is connected graph. Hence,  $K_{n,m}$  has no disconnected multi-effect domination.



FIGURE 6. A minimum disconnected multi-effect dominating set of  $K_{n,m}$ 

**Theorem 3.7.** *If G is a wheel graph*  $W_n (n \ge 3)$ *, then* 

$$\gamma_{dm}\left(W_{n}
ight) = \left\lceil \frac{n}{3} \right\rceil \quad \text{for } n \geq 4$$

*Proof.* Since the wheel graph  $W_n = C_n + K_1$ . Let  $v_1, v_2, \ldots, v_{n+1}$  be the vertices of  $W_n$  where deg  $(v_i) = 3$  for all  $i = 1, 2, \ldots, n$  and deg  $(v_{n+1}) = n$ . The three cases that follow can be obtained based on n in

order to select a set D.

$$D = \begin{cases} \{v_{3i-2}, i = 1, 2, \dots, \frac{n}{3}\} & \text{if } n \equiv 0 \pmod{3} \\ \{v_{3i-2}, i = 1, 2, \dots, \left\lfloor \frac{n}{3} \right\rfloor - 1\} \cup \{v_{n-1}\} & \text{if } n \equiv 1 \pmod{3} \\ \{v_{3i-2}, i = 1, 2, \dots, \left\lfloor \frac{n}{3} \right\rfloor\} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

**Case 1.** If  $n \equiv 0 \pmod{3}$ , assume that D has one vertex for from each three consecutive vertices of  $C_n$ . Hence,  $D = \{v_{3i-2}, i = 1, 2, ..., \frac{n}{3}\}$ . Every vertex in D dominates three vertices,  $v_{n+1}$  and another two vertices adjacent with it, and G[D] is disconnected graph. Therefore, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = \frac{n}{3}$ . **Case 2.** If  $n \equiv 1 \pmod{3}$ , assume that  $D = \{v_{3i-2}, i = 1, 2, ..., [\frac{n}{3}] - 1\} \cup \{v_{n-1}\}$ . Each vertex in D dominates three vertices,  $v_{n+1}$  and another two vertices adjacent with it, but there are two vertices  $v_1, v_{n-1}$  of D dominate  $v_n, v_{n+1}$  and another vertex, and G[D] is disconnected graph. Hence, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = [\frac{n}{3}]$ .

**Case 3.** If  $n \equiv 2 \pmod{3}$ . Let  $D = \{v_{3i-2}, i = 1, 2, \dots, \lfloor \frac{n}{3} \rfloor\}$ . Every vertex in D dominates three vertices,  $v_{n+1}$  and another two vertices adjacent with it, but there are two vertices  $v_1, v_{n-1}$  of D dominate  $v_n, v_{n+1}$  and another vertex, and G[D] is disconnected graph. Hence, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = \lfloor \frac{n}{3} \rfloor$ .

The set D is a minimum DMEDS in each the previous three cases and the proof of it similar to the proof of Theorem 3.2. For example, see Fig 7.



FIGURE 7. A minimum disconnected multi-effect dominating set of  $W_n$ 

**Proposition 3.8.** For the barbell graph  $B_{n,n}$  ( $n \ge 3$ ), has disconnected multi-effect domination and  $\gamma_{dm}$  ( $B_{n,n}$ ) = 2.

*Proof.* Since  $B_{n,n}$  have two copies of  $K_n$  joined by a bridge, and since  $K_n$  has no disconnected multi effect domination by Proposition 3.5. Then, D must be contains two non-adjacent vertices of  $B_{n,n}$ , and G[D] is disconnected graph. So that every copy of complete graph contains one vertex from D that dominates the n - 1 vertices of complete graph  $K_n$ . When the bridge must be lies on two vertices belong to V - D. For example, see Fig 8.

FIGURE 8. A minimum disconnected multi-effect dominating set of  $B_{n,n}$ 

**Definition 3.1.** [11] The corresponding barbell graph  $B_n^n (n \ge 3)$  is a graph created by joined a bridge between each pair of corresponding vertices in two copies of the complete graph  $K_n$  (see Fig. 9), such that  $V(B_{n,n}^c) = 2n$  and  $E(B_{n,n}^c) = 2\binom{n}{2} + n$ .



FIGURE 9. The corresponding barbell graph.

**Proposition 3.9.** The corresponding barbell graph  $B_{n,n}^c (n \ge 3)$ , has disconnected multi-effect domination and  $\gamma_{dm} (B_{n,n}^c) = 2$ 

*Proof.* Since  $B_{n,n}^c$  have two copies of  $K_n$  created by joined a bridge between every two corresponding vertices, and since  $K_n$  has no disconnected multi effect domination by Proposition 3.5. Then, D must be contains two non-adjacent vertices of  $B_{n,n}^c$  and G[D] is disconnected graph. Such that every copy of complete graph must contains one vertex in D dominates other vertices of  $K_n$ . For example, see Fig 10.



FIGURE 10. A minimum disconnected multi-effect dominating set of  $B_{n,n}^C$ .

**Proposition 3.10.** If G is a fan graph  $F_n$ . Then  $F_n$  has disconnected multi-effect domination, where  $\gamma_{dm}(F_n) =$ 

$$\begin{cases} 2 & \text{if } n = 3\\ \left\lceil \frac{n}{3} \right\rceil & \text{if } n \ge 4 \end{cases}$$

*Proof.* Since the fan graph  $F_n = P_n + K_1$ , let  $v_1, v_2, \ldots, v_{n+1}$  be the vertices of  $F_n$  where deg  $(v_1) =$ deg  $(v_n) = 2$  and deg  $(v_i) = 3$  for  $i = 2, 3, \ldots, n-1$  and deg  $(v_{n+1}) = n$ . The four cases that follow can be obtained based on n in order to select a set D.

$$D = \begin{cases} \{v_1, v_3\} & \text{if } n = 3\\ \{v_{3i-1}, i = 1, 2, \dots, \frac{n}{3}\} & \text{if } n \equiv 0 \pmod{3}\\ \{v_{3i-1}, i = 1, 2, \dots, \frac{n-1}{3}\} \cup \{v_n\} & \text{if } n \equiv 1 \pmod{3}\\ \{v_{3i-1}, i = 1, 2, \dots, \frac{n+1}{3}\} & \text{if } n \equiv 2 \pmod{3} \end{cases}$$

**Case 1:** If n = 3, let  $D = \{v_1, v_3\}$ , since there is one vertex in  $K_1$  is joined all vertices of  $P_3$ . Then, each vertex of D dominate  $v_2$  and  $v_4$ . Then, every vertex  $v \in D$  dominates exactly two vertices and G[D] is disconnected graph. Therefore, D is  $\gamma_{dm}$  - set and  $\gamma_{dm} = |D| = 2$ .

**Case 2:** If  $n \equiv 0 \pmod{3}$ , assume that D has one vertex for from each three consecutive vertices of  $P_n$ . Hence,  $D = \{v_{3i-1}, i = 1, 2, \dots, \frac{n}{3}\}$ . Every vertex in D dominates three vertices,  $v_{n+1}$  and another two vertices adjacent with it, and G[D] is disconnected graph. Therefore, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = \left[\frac{n}{3}\right]$ . **Case 3:** If  $n \equiv 1 \pmod{3}$ . Let  $D = \{v_{3i-1}, i = 1, 2, \dots, \frac{n-1}{3}\} \cup \{v_n\}$ , every vertex in D dominates three vertices except the last vertex where it dominates two vertices. So, each vertex in D dominates two or three vertices and G[D] is disconnected graph. Thus, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = \left[\frac{n}{3}\right]$ .

**Case 4:** If  $n \equiv 2 \pmod{3}$ . Let  $D = \{v_{3i-1}, i = 1, 2, \dots, \frac{n+1}{3}\}$ , every vertex in D dominates three vertices except the last vertex where it dominates two vertices. So, each vertex in D dominates two or three vertices and G[D] is disconnected graph. Thus, D is  $\gamma_{dm}$  – set and  $\gamma_{dm} = |D| = \lceil \frac{n}{3} \rceil$ . The set D is a minimum DMEDS in all the previous four cases and the proof of it similar to the proof of Theorem 3.2. For example, see Fig 11.



FIGURE 11. A minimum disconnected multi-effect dominating set of  $F_n$ .

**Proposition 3.11.** Let G be the double fan graph  $(P_n + \bar{k}_2)$ , then  $\gamma_{dm} (P_n + \bar{K}_2) = 2$  if  $n \ge 2$ .

*Proof.* Let  $D = \{v_1, v_2\} = V(\bar{K}_2)$ , since every vertex in  $\bar{K}_2$  is joined with all vertices in  $P_n$ . Then each vertex of D dominates all vertices in  $P_n$ . So  $\gamma_{dm} (P_n + \bar{K}_2) = 2$ 

To proof that *D* is a minimum *DMEDS*. Let *D'* is a *DMEDS* in graph *G*, such that |D'| < |D|, then there exist one or more vertices in V - D don't dominated by any vertex of *D'* and *G* [*D'*] is connected graph. Hence, *D'* is not *DMEDS* and *D* is the minimum *DMEDS*. For example, see Fig 12.



FIGURE 12. A minimum disconnected multi-effect dominating set of  $P_n + \bar{K}_2$ .

#### 4. CONCLUSION:

Here, a novel kind of domination is known as "disconnected multi-effect domination" is presented. A relationship is determined between the disconnected multi-effect domination number and the order, size, minimum degree and maximum degree of the graph. This work creates a variety of standard graphs and some modified ones that allow the domination number to be calculated.

### AUTHORS' CONTRIBUTIONS

All authors have read and approved the final version of the manuscript. The authors contributed equally to this work.

#### CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest regarding the publication of this paper.

#### References

- M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algorithm. Appl. 13 (2020), 2150009. https://doi.org/10.1142/s1793830921500099.
- M.A. Abdlhusein, Applying the (1,2)-pitchfork domination and its inverse on some special graphs, Bol. Soc. Paran. Mat. 41 (2022), 1–8. https://doi.org/10.5269/bspm.52252.
- [3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), 1009–1016. https: //doi.org/10.22075/ijnaa.2021.4956.
- [4] M.A. Abdlhusein, M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algorithm. Appl. 13 (2020), 2150038. https://doi.org/10.1142/s1793830921500385.
- [5] M.A. Abdlhusein, M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), 281–288. https://doi.org/10.1007/s13226-021-00082-z.
- [6] M.A. Abdlhusein, M.N. Al-Harere, Pitchfork domination and its inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), 51–55.
- [7] M.A. Abdlhusein, M.N. Al-harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1–9. https://doi.org/10.5269/bspm.51201.
- [8] M.A. Abdlhusein, M.N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. Appl. Eng. Math. 12 (2022), 82–91.
- [9] Z.H. Abdulhasan, M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2386 (2022), 060013. https: //doi.org/10.1063/5.0066872.
- [10] Z.H. Abdulhasan, M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), 913–919. https://doi.org/10.22075/ijnaa.2021.5147.
- [11] M.N. Al-Harere, M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algorithm. Appl. 12 (2020), 2050025. https://doi.org/10.1142/s1793830920500251.
- [12] L.K. Alzaki, M.A. Abdlhusein, A.K. Yousif, Stability of (1,2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), 265–274. https://doi.org/10.22075/ijnaa.2021.5035.

- [13] E.J. Cockayne, S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247–261. https://doi. org/10.1002/net.3230070305.
- [14] M.C. Gudgeri, Varsha, Double domination number of some families of graph, Int. J. Recent Technol. Eng. 9 (2020), 161–167. https://doi.org/10.35940/ijrte.b3307.079220.
- [15] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc., New York, 1998.
- [16] T.W. Haynes, M.A. Henning, P. Zhang, A survey of stratified domination in graphs, Discr. Math. 309 (2009), 5806–5819. https://doi.org/10.1016/j.disc.2008.02.048.
- [17] M.A. Henning, M. Krzywkowski, Total domination stability in graphs, Discr. Appl. Math. 236 (2018), 246–255. https: //doi.org/10.1016/j.dam.2017.07.022.
- [18] Z.N. Jwair, M.A. Abdlhusein, The neighborhood topology converted from the undirected graphs, Proc. IAM. 11 (2022), 120–128.
- [19] Z.N. Jwair, M.A. Abdlhusein, Constructing new topological graph with several properties, Iraqi J. Sci. 64 (2023), 2991–2999. https://doi.org/10.24996/ijs.2023.64.6.27.
- [20] P. Nataraj, R. Sundareswaran, V. Swaminathan, Complementary equitably totally disconnected equitable domination in graphs, Discr. Math. Algorithm. Appl. 13 (2020), 2150043. https://doi.org/10.1142/s1793830921500439.
- [21] C.Y. Ponnappan, P. Surulinathan, S.B. Ahamed, The perfect disconnected domination number in fuzzy graphs, Int. J. IT, Eng. Appl. Sci. Res. 7 (2018), 11–14.
- [22] S. Radhi, M. Alrm; Irm; Abdlhusein, A. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), 473–480. https://doi.org/10.22075/ijnaa.2021.4826.
- [23] M.S. Rahman, Basic graph theory, Springer, 2017. https://doi.org/10.1007/978-3-319-49475-3.
- [24] W.A. Rheem, M.A. Abdlhusein, Pitchfork edge domination in graphs, Asia Pac. J. Math. 11 (2024), 66. https://doi. org/10.28924/APJM/11-66.