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Abstract. In this paper, a new kind of graph on a commutative semiring is introduced. Let S be a
commutative semiring with unity. The nilpotent graph of S, indicated by ΓN(S), is a graph with vertex set
ZN (S)∗ = {0 6= a ∈ S | ab ∈ N(S) for some 0 6= b ∈ S}; and two vertices a and b are adjacent if and only
if ab ∈ N(S), where N(S) is the set of all nilpotent elements of S. In this article, we investigate the simple
properties of these graphs to relate the combinatorial properties of ΓN(S) to the algebraic properties of the
semiring S. We determine the diameter besides the girth of ΓN(S). We also study the diameter of matrix
algebras. We prove that if F is a semifield and n ≥ 3, then diam (ΓN (Mn(F ))) = 2.
2020 Mathematics Subject Classification. 16Y60.
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1. Introduction

Semirings are helpful tools for resolving issues in a variety of information sciences besides applied
mathematics fields, including automata, coding, graph, and optimization theories, besides computer
program analysis. This is because the structure of semirings offers an algebraic method for analyzing
and modeling the important variables in these fields.

In the past several years, the study of algebraic structures with graph possessions has gained a lot of
attention and producedmany intriguing findings in addition to intriguing questions. Assigning a graph
to a ring is the subject of multiple works, for instance see, [1–10]. In addition, there are several papers
on assigning a graph to semirings, for instance [11–17]. More papers study domination of graphs
such as [21–26]. Every graph in this paper is simple with no loops and multiple edges. Zero-divisor
graph of commutative semiring S was first described by [11]. It is represented by the graph Γ(S) plus
has two distinct vertices ( x besides y ) that are adjacent if xy = 0, with the vertex set Z(S)∗ is the
set of nonzero zero-divisors in S. In contemporary times, a great deal of research has been done on
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zero-divisor graph of rings; see, for instance, [1–4]. Zero-divisor graph of a semiring has been studied
in [11,12]. A graph structure on a ring Rwas defined by Chen in [5]. Its vertices are all of the elements
in R, with the exception of two unique vertices x and y are adjacent if xy ∈ N(R), wherever N(R) is
set of all nilpotent elements in R.

Throughout this paper, S is semiring with unity. A semiring is a set S equipped with binary
operations + and ·where (S,+) is a commutative monoid with identity element 0 , besides (S, ·) is a
monoid with identity element 1 . Too, operations + and · are joined by distributivity and 0 annihilates
S. A semiring is commutative if ab = ba for all a, b ∈ S. Throughout section two of this paper presume
S is commutative semiring with unity. The simplest examplee to commutative semirings is {0, 1} the
Boolean semiring, in which 1+ 1 = 1 · 1 = 1. Besides, the set of nonnegative integers (or reals) with
the standard operations in addition and multiplication, is commutative semiring. A non-empty subset
I in S is named an ideal in S if the next two conditions hold: (i) x + y ∈ I for x, y ∈ I (ii) sx ∈ I for
s ∈ S besides x ∈ I . An ideal I in S is named k-ideal (subtractive ideal) if z, z +w ∈ I , then w ∈ I . {0}
is k-ideal in S by page 66 of [18]. S is named a subtractive semiring if every ideal in S is subtractive
ideal. A semiring S is named semidomain whenever a, b ∈ S with ab = 0 involves that either a = 0

or b = 0 [12]. A semifield is a semiring where a group under multiplication is formed by non-zero
members [12] besides ( [18], p. 52). We refer to Golan [18] for definitions of semiring theory and
related terminology.

The nilpotent graph of rings was introduced in [6] besides [7]. Here, alike to [6] we define ΓN(S) the
nilpotent graph to semiring S. Presume S is a commutative semiring with zero element 0 . An element
a ∈ S is named nilpotent if there exists positive integer n such that an = 0, besides we symbolize N(S)

to be the set of all nilpotent elements in S. We represent X\{0} for each X ⊆ S by X∗. The vertex set
in ΓN(S) is ZN (S)∗, wherever ZN (S) = {x ∈ S | xy ∈ N(S) for certain y ∈ S∗}, besides two different
vertices x besides y in ZN (S)∗ are adjacent if and only if xy ∈ N(S), similarly, yx ∈ N(S). Relaxed to
see that the usual zerodivisor graph Γ(S) introduced by [11] besides [12] is subgraph in ΓN(S). A
semiring S is (von Neuman) regular in case for any x ∈ S there is y ∈ S with xyx = x. For semiring S,
presume Z(S) indicate the set of all zero-divisors in S, besides presume |X| indicate the cardinality of
the subsetX in S. A semiring S is named reduced if S has no non-zero nilpotent elements. A semiring
S is non-reduced if N(S) 6= 0. As a general rule, N(S) is not an ideal in S. Alike to [6] we say S is
named a null semiring if S2 = {0}. Note when S is reduced, at that time ΓN(S) is truly the general
zero-divisor groph Γ(S), as a result we focus our chief attention on non-reduced semirings.

A graph with vertex set V (G) is denoted by G. A path from x toward y is series of adjacent vertices
x− x1 − x2 − · · · − xn − y.G is connected if a path connects each of G’s two unique vertices; if not, it
is disconnected. For x, y ∈ V (G) with x 6= y, d(x, y) indicates the length of shortest path from x into
y, if such a path does not exist, one uses the convention d(x, y) = ∞. The diameter to G is defined
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as diam(G) = sup{d(x, y) | x besides y are vertices of G}. For any x ∈ V (G),deg(x) symbolizes the
number of edges incident with x, named the degree to x. A cycle is a path that starts besides ends at
the same vertex, has no edges that are repeated, besides has different vertices at every point except the
starting and finishing vertices. The girth of G, symbolized by gr(G), is the length of shortest cycle in
G(gr(G) =∞ if G contains no cycles). When a graph’s vertex set can be divided into two subsets, X
and Y , such that each edge has one end in X plus one end in Y , the graph is named bipartite. Any
bipartite graph with two partitions (X and Y ) in which any vertex in X is linked toward any vertex in
Y is said to be complete. A bipartite graph with part sizes 1 other than n for a given positive integer n is
called a star graph. Apart from the notion of graph theory, we resort to Bondy in addition to Murty [19]
for any ambiguous terminology.

For a semiring S, we symbolize usingMn(S), Sn besides I , the semiring to all n× nmatrices, the set
to n× 1 matrices over S besides the identity matrix, respectively. Too, for i besides j, 1 ≤ j, i ≤ n, one
usage Eij to indicate the element ofMn(S) whose (i, j)-entry is 1 and other entries are 0.

In Section 2, in addition to studying nilpotent graphs over commutative semirings, we generalize
conclusions from [6]. We show that if S be a commutativ semiring, at that time the graph ΓN(S) is
connected besides diam (ΓN(S)) ≤ 3. Too, if ΓN(S) has cycle, at that time gr (ΓN(S)) ≤ 4. In addition,
gr (ΓN(S)) = 3 whenever S iis nonreduced.

In Section 3, we study the concept of nilpotent graphs to matrix semirings over semifields. We fix
the diameter of the nilpotent graph to matrix semirings. We show that if F is a semifield and n ≥ 3,
then diam (ΓN (Mn(F ))) = 2. We show that if F is a semifield, at that time diam (ΓN (Mn(F ))) ≤ 3.

2. The nilpotent graphs of commutative semirings ΓN(S)

This section is primarily meant to illustrate the connectedness, girth, besides diameter to ΓN(S) to
commutative semirings in addition to ordinary semirings. We start by the following definition.

Definition 2.1. Let S be a commutative semiring with unity. The nilpotent graph of S, indicated by ΓN(S),

is an undirected simple graph with vertex set ZN (S)∗ = {0 6= x ∈ S | xy ∈ N(S) for certain 0 6= y ∈ S};

and two different vertices x and y are adjacent if and only if xy ∈ N(S), where N(S) is the set of all nilpotent

elements of S.

It is commonly understood that if and only if ΓN(R) is empty, then a ring R is domain, see ( [6], Remark 1).

A similar result holds for semidomain in the next remark.

Remark 2.1. A semiring S is semidomain if and only if ΓN(S) is empty. Actually, if S is semidomain, at that

time ZN (S)∗ = ∅, besides as a result ΓN(S) is empty. In opposition, if ΓN(S) is empty, at that time by definition,

S have no nonzero zero-divisors according to ΓN(S). As a result S is semidomain.
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Presume S = Zp, besides T = N0 are the semiring of integers modp wherever p is prime number, besides the

semiring of non-negative integers by Remark 2.1 , one has ΓN(S) besides ΓN(T ) contain no vertices.

Remark 2.2. Presume S is regular commutative semiring with identity, then any element in S/Z(S) is unit.

Actually, note for x ∈ S, there is y ∈ S with xyx = x. Now if x /∈ Z(S), at that time xy = 1, henceforth x is

unit.

Remark 2.3. Presume S is commutative semiring with unity or regular semiring. When S is reduced, at that

time |S| ≤ |Z(S)|2 = |ZN (S)|2, in any case |ZN (S)∗| = |S| − 1. Really, when S is reduced, at that time

ΓN(S) is really zerro-divisor graph Γ(S). Thus, one has |S| ≤ |Z(S)|2 = |ZN (S)|2 via Rem 1 of [1]. If S is

nonreduced commutative semiring, now r besides x are adjacent, for r ∈ S∗ besides x ∈ N(S)∗. As a result

ZN (S) = S. At present we presume S is nonreduced regular semiring. Presume r is a random element in S∗. If

r ∈ Z(S), now ZN (S) = S as Z(S) ⊆ ZN (S), besides so we are done. else, via Rem 2.2, r is unit besides one

indicates an inverse element using r−1. Presume x is nonzero nil-element. It is relaxed to see this r−1x 6= 0, r,

besides r is adjacentt toward r−1x. As a result r ∈ ZN (S), besides thus |ZN (S)| = |S|.

The next two theorems can be thought of as a generalization of Theorems 2.1 besides 2.2 of [6] or Theorems 2.1

besides 2.2 of [7].

Theorem 2.1. Let S be a commutative semiring with unity. Now the next hold:

(1) ΓN(S) is connected.

(2) diam (ΓN(S)) ≤ 3.

(3) When ΓN(S) contains a cycle, at that time gr (ΓN(S)) ≤ 4. Besides, gr (ΓN(S)) = 3, whenever S is

non-reduced.

Proof. First one shown (1) besides (2). Presume x, y ∈ ZN (S)∗ besides x 6= y. Now there exist
x1, y1 ∈ ZN (S)∗ such that xx1, yy1 ∈ N(S) utilizing the ΓN(S) definition.
Case 1: If xy ∈ N(S), at that time x besides y are adjacent besides henceforth d(x, y) = 1.
Case 2: Presume xy /∈ N(S). If x1y1 6= 0, then x− x1y1 − y is the shortest trail from x to y besides as a
result d(x, y) = 2. If x1y1 = 0, at that time x− x1 − y1 − y is a trail (not necessarily the shortest trail)
from x to y besides as a result d(x, y) ≤ 3. The proof of (1) and (2) is thus concluded.
(3)When S a reduced, at that time ΓN(S) a truly thee zero-divisor graph Γ(S). So when ΓN(S) contains
cyclee, now by (1.4) of [2], gr (ΓN(S)) ≤ 4. At this time we presume S is nonreduced besides ΓN(S)

contains aa cycle of size n, wherever n ≥ 4. Without loss of generalization, presume x0 − x1 − · · · −

xn−1 − x0 is such a cycle. Examine the next two instances:
Case 1: Presume all xi ’s are non-nilpotent elements. As S is nonreduced, there is nonzero nilpOtent

element a with a− xi−1 − xi − a is triangle, wherever 1 ≤ i ≤ n. Thus gr (ΓN(S)) = 3



Asia Pac. J. Math. 2024 11:77 5 of 9

Case 2: Presume nilpotency of at least one of xi ’s, give or take x0. Note x0 is adjacent to each xi,
wherever 1 ≤ i ≤ n− 1, as a result x0 − xi − xi+1 − x0 is triangle, wherever 1 ≤ i ≤ n− 2, henceforth
gr (ΓN(S)) = 3. �

An ideal K in commutative semiring S is prime if and only if zw ∈ K involves that z ∈ K or w ∈ K

( [18], Corollary 7.6). Given now an overt description for a nonreduced commutative semiring where
ΓN(S) contains no cycles.

Theorem 2.2. Presume S is a non-reduced commutative semiring with unity besides ΓN(S) is not a singleton.

Then the next claims are now equivalent

(1) gr (ΓN(S)) =∞;

(2) ΓN(S) is a star graph;

(3) S is either null semiring of order 3 , or |N(S)| = 2 besides N(S) is prime ideal in S.

Proof. (1)⇔ (2). Obviously, when ΓN(S) is star groph now its diameter is∞. On the other hand, if
gr (ΓN(S)) = ∞, at that time ΓN(S) is star graph since it has a vertex that is next toward very other
vertices for a nonreduced commutative semiring.

(1) ⇔ (3). The sufficiency is readily apparent. Assume that gr (ΓN(S)) = ∞ for the opposite
direction. If |N(S)| ≥ 3, at that time ΓN(S) contains triangle, a illogicality. Henceforth |N(S)∗| ≤ 2.
Presume the two scenarios listed below:

Case 1: Presume |N(S)∗| = 2, at that time it is obvious this S = N(S). Presume S = {0, a, b}.
If a2 6= 0, at that time a2, a, a + a2 are pairwise different elements in S∗, a conflict (note that when
a + a2 = 0, then a is not nilpotet). So a2 = b2 = 0. If ab 6= 0, then assume without loss that ab = a.
Since 0 = ab2 = abb = ab = a, a conflict occurs. As a result ab = 0 besides S is null semiring.

Case 2: Presume |N(S)∗| = 1. Set x, y ∈ S\N(S). If x = y, at that time xy = x2 /∈ N(S), for
otherwise x ∈ N(S), an illogicality. If x 6= y, at that time xy /∈ N(S), for otherwise, there is a triangle
x− y − a− x, where a ∈ N(S)∗, an illogicality again. N(S) is as a result prime ideal. �

We shall go through the typical rings’ zero–divisor graphs in the next. The next theorem is like to
Theorem 2.3 in [7].

Theorem 2.3. Presume S is a regular semiring with identity 1. At that time ΓN(S) is connectoed besides

diam (ΓN(S)) ≤ 3.

Proof. Observe that if S is reduced, it now becomes special case to Γ(S) of Thm 2.3 in [3] according to
the definition of ΓN(S). At this time presume S is non-reduced. At that time ZN (S) = S using Rem 2.4.
As S is regular, one see thatt any elementt in S is exactly either unit or of Z(S) via Rem 2.3. Presume n
is the lowest positive integer with xn = 0 and x be a nonzero nilpotent element. One establishes the
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existence of a path from r1 to r2 of length no more than 3 for every two different vertices, r1 plus r2, in
ΓN(S). One examines next cases

Case 1: r1, r2 ∈ S\Z(S). Note that xr−1
1 6= 0, r1, and r−1

2 xn−1 6= 0, r2. It is easy to see r1 − xr−1
1 −

r−1
2 xn−1 − r2 is a path from r1 to r2 and as a result diam (ΓN(S)) ≤ 3.
Case 2: r1 ∈ S\Z(S), r2 ∈ Z(S)∗. If r2 is left zeroo-divisor, at that time there exists a nonzero element

b with r2b = 0. If bx = 0, at that time r1 − xr−1
1 − b − r2 is a path from r1 toward r2. If bx 6= 0, then

r1 − xn−1r−1
1 − bx − r2 is a path from r1 toward r2. Likewise, one can show it as soon as r2 is right

zero-divisor.
Case 3: r1, r2 ∈ Z(S)∗. If r1r2 ∈ N(S), then r1 − r2 is a path from r1 to r2. Now presume that

r1r2 /∈ N(S). If there is a, b ∈ S∗ with r1a = br2 = 0, then one obtains a path r1 − a− b − r2 when
ab = 0 or a path r1 − ab− r2 when ab 6= 0. If there exist a, b ∈ S∗ such that r1a = r2b = 0 and br2 6= 0

then there is a path r1 − abr2 − br2 − r2 when abr2 6= 0 or a path r1 − a− br2 − r2 when abr2 = 0. So,
ΓN(S) is joined besides diam (ΓN(S)) ≤ 3. �

Example 2.1. An inspection will shows that a set SP4 = {0, 1, 2, b} equipped with operations + besides · defined

as: is a semiring with unity (which is is not ring) see [13]. V (ΓN (SP4)) = {2, b}. Here, 2 · b = 0 ∈ N(S).

+ 0 1 2 b

0 0 1 2 b

1 1 2 1 2

2 2 1 2 1

b b 2 1 0

. 0 1 2 b

0 0 0 0 0

1 0 1 2 b

2 0 2 2 0

b 0 b 0 b

As a result, 2− b is a path from 2 to b. So, 2 and b are adjacent in ΓN (SP4). As a result diam (ΓN (SP4)) = 1

Figure 1. ΓN (SP4)

Example 2.2. {2, 4, 6} is the set of all nontrivial nilpptent elements in Z8 in commutative semiring Z8.

Henceforth N (Z8) = {2, 4, 6}. Thus, V (ΓN (Z8)) = {2, 4, 6} ∪ {1, 3, 5, 7} = {1, 2, 3, 4, 5, 6, 7}, since

1 · 4 = 3 · 4 = 5 · 4 = 7 · 4 = 4 ∈ N (Z8). It is clear that any vertex x of {2, 4, 6} is adjacent to every

vertex of ΓN (Z8) \{x}. Clearly, ΓN (Z8) is connected graph besides diam (ΓN (Z8)) = 2.
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Theorem 2.4. Assume I is non-zero proper ideal in S. Now ΓN(I) is complete whenever ΓN(S) is complete.

Proof. Presume S is semiring besides I be non-zero proper ideal in S. Presume x, y are any two vertices
in ΓN(I). Now x · z, y ·w ∈ N(I), for certain 0 6= z, w belong to I ≤ S. So, x, y ∈ V (ΓN(S)). As ΓN(S) is
complete now x, y are adjacent in ΓN(S). As a result, x, y are adjacent in ΓN(I). Consequently, ΓN (S1)

is complete graph. �

3. The nilpotent graph of matrix algebras

In this section, we show that if F is a semifield besides n ≥ 3, at that time diam (ΓN (Mn(F ))) = 2.
We show that if F is a semifield, then diam (ΓN (M2(F ))) ≤ 3. In this section the semiring not necessary
to be commutative. Begin by the next remark.

Remark 3.1. If S = Mn(F ), where F is a semifield besides n ≥ 2, then all nonzero element in S is vertex

in ΓN(S). Really, if A is aa non-singular matrix, at that time A adjacent toward A−1E1n besides as a result

A ∈ V (ΓN(S)). Too, if A is a singular matrix, at that time AY = 0 for certain 0 6= Y ∈ S. As a result

A ∈ V (ΓN(S)).

The next two theorems can be thought of as a generalization of ( [8], Theorems 1 and 2).

Theorem 3.1. If F is a semifield besides n ≥ 3, then diam (ΓN (Mn(F ))) = 2.

Proof. Presume that A,B ∈ Mn(F ) and C = [0 | X], where X ∈ Fn. Then AC = [0 | AX] and
BC = [0 | BX]. Presume thatW1 = {X ∈ Fn | AnX = 0} besidesW2 = {X ∈ Fn | BnX = 0}, where
An besides Bn are the nth rows of A besides B, respectively. Both W1 besides W2 are subspaces of
Fn. One has dimWi ≥ n− 1, for i = 1, 2. As n ≥ 3, there is 0 6= X0 ∈W1∩W2. Presume C = [0 | X0].
Obviously, C is adjacent to both A besides B. Now diam (ΓN (Mn(F ))) ≤ 2. However, Enn besides I
are two non-adjacent vertices in ΓN (Mn(F )). As a result diam (ΓN (Mn(F ))) = 2. �

Theorem 3.2. If F is a semifield, at that time diam (ΓN (M2(F ))) ≤ 3.

Proof. Presume A,B ∈M2(F ) and X be a nilpotent matrix inM2(F ). We have the next cases:
Case 1: A besides B are non-singular matrices. Now A−XA−1 −B−1X −B is a path.
Case 2: While B,A are a singular and non-singular matrix, respectively. Now BY = 0 for some 0 6= Y .
If Y X = 0, at that timeA−XA−1−Y −B is a trail (path). If Y X 6= 0, at that pointA−XA−1−Y X−B

is a trail.
Case 3: A besides B a singularr matricess. If AB is nilpotent, now A−B is trail. Else, there is Y,X 6= 0

with AX = 0 besides Y B = 0. If XY = 0, now A − X − Y − B is a trail. Too, A− XY − B is trail
(path), in place of XY 6= 0. As a result diam (ΓN (M2(F ))) ≤ 3. �

Theorem 3.3. Let S be an additively regular subtractive semisimple finite semiring, then diam (ΓN(S)) ≤ 3.
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Proof. As S is finit semisimple semiring, he is an Artinian besides as a result the Jacobson radical to
S, J(S) is nilpotent by Theorem 4.4 in [20]. We have the next cases:

Case 1: J(S) 6= 0. Presume 0 6= x ∈ J(S). Evidently, all vertex in ΓN(S) is adjacent to x besides as a
result diam (ΓN (M2(S))) ≤ 2.

Case 2: J(S) = 0. As S is additively regular subtractive semisimple semiring using Theorem 4.14 of
[20], S ∼= D1 × · · · ×Dn ×Mn1 (T1)× · · · ×Mnt (Tt) for suitable additively regular division semirings
D1, . . . , Dn besides division rings T1, . . . , Tr(n ≥ 0, t ≥ 0). Since S is a finite semiring by using Theorem
4 in [8], diam (ΓN(S)) ≤ 3. By the proof of Theorem 3.3 the following result is obvious. �

Corollary 3.1. If S is an additively regular subtractive semisimple finite semiring with J(S) 6= 0. Then

diam (ΓN(S)) ≤ 2.

4. Conclusion

This work defines and studies the nilpotent graph of a commutative semiring S,ΓN(S), an undirected
graph. We examined the girth, diameter, besides connectedness of ΓN(S). We observed that if S is
commutative semiring then ΓN(S) is connected and diam (ΓN(S)) ≤ 3. If ΓN(S) contains a cycle, then
gr (ΓN(S)) ≤ 4. Besides, if S is nonreduced, then gr (ΓN(S)) ≤ 3.
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