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Abstract. In this study, we utilized the Kamal residual power series method to solve the fractional-order
population diffusion equation in the Caputo sense. This method combines the residual power series
method with the Kamal transformation integral. The procedure starts by defining the approximate solution
of a power series with unknown coefficients; the residual function is then constructed. By imposing the
condition, the coefficients can be easily calculated, and finally, the approximate series solution is found.
Three different figures were used to evaluate the strategy’s accuracy and effectiveness. This method offers
a significant advantage: it negates the requirement for computing Adomian polynomials, considering
perturbation processes, or performing linearization.
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1. Introduction

The field of fractional calculus is a significant area of mathematics that has been extensively studied.
Research into fractional calculus has rapidly progressed, providing scholars with new tools to solve
complex problems and facilitating the development of more accurate mathematical models. Mathemat-
ical models involving fractional-order derivatives, both linear and nonlinear, have been attracting the
attention of academics in many application fields. In particular, nonlinear fractional-order differential
equations are known to be extremely complex and difficult to conquer. One of these sorts of equations
is the population diffusion model.

The Kamal transformation is an essential technique utilized in a variety of applications. It was
first introduced by A. Kamal in 2016 to solve linear ordinary differential equations with constant
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coefficients [1]). Since then, this Laplace-like transform has grown in popularity among scholars for
solving a variety of mathematical models of scientific problems, including partial integrodifferential
equations [8], delay differential equations [19], and second-order linear Volterra integrodifferential
equation systems [20]. The Kamal transformation is not only useful for classical calculus problems but
also for problems related to the field of fractional calculus.

Oderinu et al. [18] utilized the Kamal transform in solving the linear time-fractional differential
equations. Samar and Saxena [22], [23] applied the Kamal transform to obtain the solutions to some
fractional differential equations and generalized fractional kinetic equations. Johansyah et al. [11]
proposed the approximate solution of the Riccati fractional differential equation and Economic Growth
Model by using the Kamal transform method. Khandelwal [13] presented the solution to the non-
homogenous fractional ordinary differential equation by using the Kamal transform. Johansyah et
al. [10] used the Combined Adomian Decomposition Method with Kamal Integral Transformation and
the Kamal integral transform to solve differential equations of fractional order.

The residual power series method (RPSM) is a tool that can be used to solve scientific issues simply
and powerfully. The semi-analytic method has been gaining more and more attention from scientists
and engineers for the past decade. In 2013, Mohammed H. and Al-Smadi [5] used the RPSM to solve
initial value problems of linear and nonlinear first-order differential equations, whereas Omar et al. [2]
applied this technique to gain the solution for initial value problems of linear and nonlinear high-order
differential equations. Moreover, Amit et al. [16] have shown that the RPSM is a reliable method and is
easily applied to all types of fractional nonlinear problems arising in science and technology. Later in
2016, Fairouz et al. [24] obtained the solution of time fractional reaction-diffusion equations by RPSM,
while Amit et al. [16] solved the fractional Sharma-Tasso-Olever equations. Moreover, Iryna et al. [15]
found the solution of the Fredholm integral equations by using RPSM. Jaradat et al. [9] applied RPSM
to find the solution of time-fractional Drinfeld-Sokolov-Wilson equations. In 2021, Marwan Alquran et
al. [4] used the RPSMmethod to solve a system of n autonomic equations with nonlinear fractional
dimensions.

This work is motivated by the study of Zhang et al. in [26]. The primary objective of this investigation
is to utilize the Kamal integral transform and RPSM to accomplish the initial value problem for
fractional-order population diffusion equations,

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy + σ(u(x, y, t)), (1.1)

u(x, y, 0) = g(x, y), (1.2)

t > 0, 0 < α 6 1. Here,Dα
t is the Caputo fractional derivative with respect to t, u represents population

density, and σ(u) indicates population births and deaths.



Asia Pac. J. Math. 2024 11:79 3 of 16

2. Basic concepts of fractional calculus, Kamal transform and residual power series

This section provides the definition of Caputo fractional derivatives, the Riemann-Liouville fractional
integral, and its important properties. Moreover, the Kamal transform definition and the related concept
of residue power series are reviewed.

Definition 2.1. [14] The Euler gamma function is defined by

Γ(z) =

∫ ∞
0

tz−1e−tdt, z ∈ C, with <(z) > 0.

Definition 2.2. [14] The Riemann-Liouville fractional integral of function u : (0,∞) → R, for α ∈ R+ is

defined by

Iαu(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1u(τ)dτ

and Iαu(t) = u(t) if α = 0.

Definition 2.3. [14] The Caputo fractional derivative of function u : (0,∞)→ R, of order α is defined as

cDαu(t) =
1

Γ(n− α)

∫ ∞
0

(t− τ)n−α−1u(n)(τ)dτ, n− 1 < α < n

and cDαu(t) = u(n)(t) if α = n ∈ N.

For the convenience of writing, we will commence employing Dα in the place of cDαu(t). The
important properties of Caputo fractional derivatives and Riemann-Liouville fractional integrals are
briefly mentioned below.

(1) Iαtβ = Γ(β+1)
Γ(β+α+1) t

α+β, β > −1.

(2) Dαµ = 0 for any constant µ.

(3) Dαtβ =


Γ(β + 1)

Γ(β − α+ 1)
tβ−α, β > α,

0, β < α.

(4) DαIαu(t) = u(t),

(5) IαDαu(t) = u(t)−
n−1∑
k=0

u(k)(0)

k!
tk

Definition 2.4. [14] Mittag-Leffler function is the generalization of exponential function denoted by Eα(z)

defined as

Eα(z) =

∞∑
k=0

zk

Γ(kα+ 1)
, α ∈ R+, z ∈ C

Consider set of functions defined as follows

A =
{
u(t) : ∃M,k1, k2 > 0, |u(t)| < Me

|t|
kj , if t ∈ (−1)j × [0,∞)

}
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Definition 2.5. The Kamal transform of function u(t) ∈ A is defined by

K[u(t)] = U(v) =

∫ ∞
0

u(t)e−
t
v dt, t > 0, k1 6 v 6 k2.

Additionally, the inverse of the Kamal transformation is denoted by K−1[U(v)] = u(t), t > 0. The
operators K(·) and K−1(·) are called the Kamal operator and the inverse Kamal operator, respectively.
In this case, the variable v is the factor of the variable t in the function u argument. This converges
over a certain interval. The Kamal transform exists if u(t) for t > 0 is of exponential order, piecewise
continuous, and function; otherwise, it does not exist.

Remark 2.1. The operators K and K−1 are linear, and the Kamal transform of fundamental functions is shown

in [1].

Theorem 2.1. [12] If n ∈ N where n − 1 < α 6 n and K[u(t)] = U(v), the Kamal transformation of the

Caputo fractional derivative of order α > 0 is defined as

K[cDαu(t)] =
U(v)

vα
−
n−1∑
k=0

u(k)(0)

vα−k−1
, n− 1 < α 6 n.

Definition 2.6. [7] If n ∈ N where n− 1 < α 6 n. A power series expansion of the form
∞∑
n=0

an(t− t0)nα = a0 + a1(t− t0)α + a2(t− t0)2α + . . . , t 6 t0

is called fractional power series about t0.

Theorem 2.2. [7] Suppose that u(t) has a fractional power series representation at t = t0 of the form

u(t) =
∞∑
n=0

an(t− t0)nα, t0 6 t < t0 +R.

If Dnαu(t), n = 0, 1, 2, . . . are continuous on (t0, t0 +R), then an = Dnαu(t)
Γ(nα+1) .

Definition 2.7. [7] A power series of the form
∞∑
n=0

fn(x)(t− t0)nα = f0(x) + f1(x)(t− t0)α + f2(x)(t− t0)2α + . . .

is called multiple fractional power series about t = t0, where t is a variable and fm’s are functions of x called the

coefficients of the series.

Theorem 2.3. [7] Suppose that u(x, t) has a multiple fractional power series representation at t = t0 of the

form

u(x, t) =

∞∑
n=0

un(x, t) =

∞∑
n=0

fn(x)(t− t0)nα,
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0 < n− 1 < α 6 n, x ∈ I, t0 6 t < t0 +R. IfDnα
t u(x, t), n = 0, 1, 2, . . . are continuous on I× (t0, t0 +R),

then

fn(x) =
Dnα
t u(x, t)

Γ(nα+ 1)
, n = 0, 1, 2, . . .

HereDnα
t (·) = ∂nα

∂tnα (·) = ∂α

∂tα ( ∂
α

∂tα (. . . ( ∂
α

∂tα (·)))) (n− times), and R = minc∈I Rc, in which Rc is the radius of

convergence of the fractional power series
∑∞

k=0 fn(c)(t− t0)nα.

According to the convergence of the classic residual power series method, there is a real number
0 < λ < 1, such that ||un+1(x, t)|| 6 λ||un(x, t)||, t ∈ (t0, t0 +R).

3. Main results

This section contains the discussion of Kamal RPSM (KRPSM) in solving the fractional diffusion
population equations as well as the examples that support the proposed concepts.

3.1. Implementation of KRPSM in the Fractional Population Diffusion Model. Consider the frac-
tional population diffusion equation

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy + σ(u(x, y, t)), (3.1)

subjects to the initial condition
u(x, y, 0) = g(x, y).

Applying the Kamal transform to (3.1), using linearity and utilizing the Kamal transform of fractional
derivative, one finds that

1

vα
K{u(x, y, t)} − 1

vα−1
u(x, y, 0) = K{(u2(x, y, t))xx}

+K{(u2(x, y, t))yy}+K{σ(u(x, y, t))}.

Imposing the initial condition and rearranging the equation leads to

K{u(x, y, t)} = vαK
{

(u2(x, y, t))xx

}
+ vαK

{
(u2(x, y, t))yy

}
+ vαK

{
σ(u(x, y, t))

}
+ vg(x, y).

After taking the inverse Kamal transform on both sides of the equation, we get

u(x, y, t) = K−1

{
vαK

{
(u2(x, y, t))xx

}}
+K−1

{
vαK

{
(u2(x, y, t))yy

}}
+K−1

{
vαK

{
σ(u(x, y, t))

}}
+ g(x, y).

Suppose the solution to the problem is expressed in the infinite series

u(x, y, t) =

∞∑
n=0

fn(x, y)
tnα

Γ(nα+ 1)
. (3.2)
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According to the RPSM, we define the residual function as follows :

Res∞(x, y, t) = u(x, y, t)− g(x, y)−K−1

{
vαK

{
(u2(x, y, t))xx

}}
−K−1

{
vαK

{
(u2(x, y, t))yy

}
−K−1

{
vαK

{
σ(u(x, y, t))

}}
, (3.3)

and the kth truncated series of (3.2) is denoted by

uk(x, y, t) =

k∑
n=0

fn(x, y)
tnα

Γ(nα+ 1)
.

Since the solution satisfied the initial condition, it leads to f0(x, y) = g(x, y). Hence, the k−order
approximated solution became

uk(x, y, t) = g(x, y) +
k∑

n=1

fn(x, y)
tnα

Γ(nα+ 1)
. (3.4)

Moreover, the k−residual function is given by

Resk(x, y, t) = uk(x, y, t)− g(x, y)−K−1

{
vαK

{
(u2
k(x, y, t))xx

}}
−K−1

{
vαK

{
(u2
k(x, y, t))yy

}
−K−1

{
vαK

{
σ(uk(x, y, t))

}}
.

In order to compute the coefficients fn(x, y), n = 1, 2, 3, . . . in equation (3.4), the recurrence relation
is defined as 

u0(x, y, t) = g(x, y)

Resk(x, y, t) = uk(x, y, t)− g(x, y)−K−1

{
vαK

{
(u2
k−1(x, y, t))xx

}}
−K−1

{
vαK

{
(u2
k−1(x, y, t))yy

}
−K−1

{
vαK

{
σ(uk−1(x, y, t))

}}
,

(3.5)

and the coefficients f1(x, y), f2(x, y), . . . , fk(x, y) are simply obtained by imposing the condition [26]

t−kα · Resk(x, y, t)
∣∣∣
t=0

= 0. (3.6)

3.2. Illustrative examples. This section provides an example of solving the fractional population
diffusion equation by using the KRPSM.

Example 3.1. [3] Consider the fractional population diffusion equation

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy + hu(x, y, t), (3.7)

where h is constant, subjects to initial condition u(x, y, 0) =
√
xy. The exact solution of this problem when

α = 1 is u(x, y, t) =
√
xyeht.
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Note that g(x, y) =
√
xy and σ(u) = hu(x, y, t). The recurrence relation for this problem is given by

u0(x, y, t) =
√
xy,

Resk(x, y, t) = uk(x, y, t)−
√
xy −K−1

{
vαK{(u2

k−1(x, y, t))xx}
}

−K−1
{
vαK{(u2

k−1(x, y, t))yy}
}

−K−1
{
vαhK{uk−1(x, y, t)}

}
, k > 1. (3.8)

For k = 1, the 1-st truncated series solution is

u1(x, y, t) = f0(x, y) + f1(x, y)
tα

Γ(α+ 1)

and the relation becomes

Res1(x, y, t) = u1(x, y, t)−√xy −K−1
{
vαK{(u2

0(x, y, t))xx}
}

−K−1
{
vαK{(u2

0(x, y, t))yy}
}
−K−1

{
vαhK{u0(x, y, t)}

}
= f1(x, y)

tα

Γ(α+ 1)
− h√xy tα

Γ(α+ 1)
.

Searching for f1(x, y) by using the condition (3.6) with k = 1, t−αRes1(x, y, t)
∣∣
t=0

= 0, we obtained
f1(x, y) = h

√
xy. Hence, the first-order approximate solution of the equation is

u1(x, y, t) =
√
xy + h

√
xy

tα

Γ(α+ 1)
.

For k = 2, the 2-nd truncated series solution is

u2(x, y, t) =
√
xy +

h
√
xy tα

Γ(α+ 1)
+
f2(x, y)t2α

Γ(2α+ 1)
.

Substitute into (3.8), and it finds that

Res2(x, y, t) = u2(x, y, t)−√xy −K−1
{
vαK{(u2

1(x, y, t))xx}
}

−K−1
{
vαK{(u2

1(x, y, t))yy}
}
−K−1

{
vαhK{u1(x, y, t)}

}
=
h
√
xy tα

Γ(1 + α)
+
f2(x, y)t2α

Γ(1 + 2α)

−K−1

{
vαK

{[
f2

0 +
2f0f1t

α

Γ(1 + α)
+

f2
1 t

2α

Γ2(1 + α)

]
xx

}}

−K−1

{
vαK

{[
f2

0 +
2f0f1t

α

Γ(1 + α)
+

f2
1 t

2α

Γ2(1 + α)

]
yy

}}

−K−1

{
vαh

(
K{f0}+K

{
f1

tα

Γ(1 + α)

})}
=
f2(x, y)t2α

Γ(2α+ 1)
−
h2√xyt2α

Γ(2α+ 1)
.
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In order to find f2(x, y), the condition (3.6) is applied for k = 2,

t−2αRes2(x, y, t)
∣∣
t=0

= 0.

It obtains

f2(x, y) = h2√xy.

Therefore, the second-order approximate solution is written as

u2(x, y, t) =
√
xy +

√
xy

htα

Γ(α+ 1)
+
√
xy

h2t2α

Γ(2α+ 1)
.

By processing in a similar way, one find that

fk(x, y) = hk
√
xy, k = 0, 1, 2, . . . ,

and the k-order approximate solution is

uk(x, y, t) =
√
xy +

h
√
xy tα

Γ(α+ 1)
+
h2√xy t2α

Γ(2α+ 1)
+ · · ·+

hk
√
xy tkα

Γ(kα+ 1)

=
√
xy

k∑
n=0

(htα)n

Γ(nα+ 1)
.

When k →∞, the solution to this problem trends to the exact one,

u(x, y, t) = lim
k→∞

uk(x, y, t) =
√
xyEα(htα).

Note that if α = 1 this solution reduces to u(x, y, t) =
√
xyeht which is related to the outcome of [3].

Figure 1. The 3D graph shows a comparison of the exact solution and the approximate
solution obtained (u2(x, y, t)KRPSM) when x ∈ [0, 1], y ∈ [0, 1], h = 0.5, t = 1 and α = 1

for example 3.1
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Figure 2. The table depics a comparison of the exact solution and an 2-order approxi-
mate solution obtained from KRPSM, RPSM [25], ERPSM [26] and HPM [17] when
t = α = 1 and h = 0.5 for the example 3.1

Figure 3. The 3D graph compares the exact solution and the approximate solution
obtained (u2(x, y, t)KRPSM) when x ∈ [0, 1], y ∈ [0, 1], h = 1, r = 2, t = 1 and α = 1 for
example 3.2

Example 3.2. [3] Next, consider the fractional population diffusion equations in the form

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy + hu(x, y, t)(1− ru(x, y, t)), (3.9)

where h, r are constants, subjects to

u(x, y, 0) = e

√
hr
8

(x+y)
.

For α = 1, the exact solution of this problem is u(x, y, t) = e

√
hr
8

(x+y)+ht
.
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Here σ(u(x, y, t)) = hu(x, y, t)(1− ru(x, y, t)) and g(x, y) = e

√
hr
8

(x+y)
. By recurrence relation (3.5),

one finds that

u0(x, y, t) = e

√
hr
8

(x+y)
,

Resk(x, y, t) = uk(x, y, t)− e
√
hr
8

(x+y) −K−1

{
vαK{(u2

k−1(x, y, t))xx}
}

−K−1

{
vαK{(u2

k−1(x, y, t))yy}
}
−K−1

{
vαhK{uk−1(x, y, t)}

}
+K−1

{
vαhrK{(u2

k−1(x, y, t))}
}
, k > 1. (3.10)

Consider k = 1. The 1-st truncated series solution is

u1(x, y, t) = f0(x, y) + f1(x, y)
tα

Γ(α+ 1)
= e

√
hr
8

(x+y)
+
f1(x, y)tα

Γ(α+ 1)

and the iterative relation is obtained by

Res1(x, y, t) =
f1(x, y)tα

Γ(1 + α)
−K−1

{
vαK

{
(e

2
√
hr
8

(x+y)
)xx

}}
−K−1

{
vαK

{
(e

2
√
hr
8

(x+y)
)yy

}}
−K−1

{
v1+αhe

√
hr
8

(x+y)
}

+K−1

{
vαhrK

{
e

2
√
hr
8

(x+y)
}}

= f1(x, y)
tα

Γ(α+ 1)
− he

√
hr
8

(x+y) tα

Γ(α+ 1)
.

To find the coefficient f1(x, y), we impose the condition t−αRes1(x, y, t)
∣∣
t=0

= 0which leads to f1(x, y) =

he

√
hr
8

(x+y)
. Hence, the 1-st order approximate solution is

u1(x, y, t) = e

√
hr
8

(x+y)
+ e

√
hr
8

(x+y) htα

Γ(α+ 1)
.

Consider k = 2. We define the 2-nd truncated series solution

u2(x, y, t) = f0(x, y) +
f1(x, y)tα

Γ(α+ 1)
+
f2(x, y)t2α

Γ(2α+ 1)
.

Substitute into (3.10), then

Res2(x, y, t) =
he

√
hr
8

(x+y)
tα

Γ(α+ 1)
+
f2(x, y)t2α

Γ(2α+ 1)

−K−1

{
vαK

{[
f2

0 +
2f0f1t

α

Γ(α+ 1)
+

f2
1 t

2α

Γ2(α+ 1)

]
xx

}}

−K−1

{
vαK

{[
f2

0 +
2f0f1t

α

Γ(α+ 1)
+

f2
1 t

2α

Γ2(α+ 1)

]
yy

}}

−K−1

{
vαhK

{
f0 + f1

tα

Γ(α+ 1)

}}
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+K−1

{
vαhrK

{
f2

0 +
2f0f1t

α

Γ(α+ 1)
+

f2
1 t

2α

Γ2(α+ 1)

}}

=
f2(x, y)t2α

Γ(2α+ 1)
− h2t2αe

√
hr
8

(x+y)

Γ(2α+ 1)
.

Solving for the coefficient f2(x, y), the condition (3.6) for k = 2 is taken, t−2αRes2(x, y, t)
∣∣
t=0

= 0.

Hence, f2(x, y) = h2e

√
hr
8

(x+y)
. The 2nd-order approximate solution is found

u2(x, y, t) = e

√
hr
8

(x+y)
+ e

√
hr
8

(x+y) htα

Γ(α+ 1)
+ e

√
hr
8

(x+y) h2t2α

Γ(2α+ 1)
.

Using precisely the same method, it can be demonstrated that

fk(x, y) = hke

√
hr
8

(x+y)
, k = 0, 1, 2, . . . .

Therefore, the k-order approximate solution of this problem is

uk(x, y, t) = e

√
hr
8

(x+y)
+
he

√
hr
8

(x+y)
tα

Γ(α+ 1)
+
h2e

√
hr
8

(x+y)
t2α

Γ(2α+ 1)
+ . . .+

hke

√
hr
8

(x+y)
tkα

Γ(kα+ 1)

= e

√
hr
8

(x+y)
k∑

n=0

(htα)n

Γ(nα+ 1)
.

Note that when k →∞, the exact solution is written

u(x, y, t) = lim
k→∞

uk(x, y, t) = e

√
hr
8

(x+y)
Eα(htα)

and if α = 1 this solution is reduced to u(x, y, t) = e

√
hr
8

(x+y)+ht
.

Example 3.3. [3] Consider the fractional population diffusion equation as follows :

Dα
t u(x, y, t) = (u2(x, y, t))xx + (u2(x, y, t))yy +

1

96
u−1(x, y, t)− 1

2
, (3.11)

with respect to the initial condition

u(x, y, 0) =
1

4

√
2(x2 + y2) + y + 5.

The exact solution of the initial value problem when α = 1 is

u(x, y, t) =
1

4

√
2(x2 + y2) + y +

t

3
+ 5.
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Figure 4. The table shows a comparison of the exact solution and an 2-order approxi-
mate solution obtained from KRPSM and ERPSM [26] when r = 2, α = 1 and h = 1 for
the example 3.2

Figure 5. The 3D graph demonstrates a comparison of the exact solution and the
approximate solution obtained from KRPSM (u2(x, y, t)KRPSM) when x ∈ [0, 1], y ∈

[0, 1], t = 1 and α = 1 for example 3.3

Note that σ(u(x, y, t)) =
1

96
u−1(x, y, t) − 1

2
and g(x, y) =

1

4

√
2(x2 + y2) + y + 5. The recurrence

relation for this problem is

u0(x, y, t) =
1

4

√
2(x2 + y2) + y + 5,

Resk(x, y, t) = uk −
1

4

√
2(x2 + y2) + y + 5−K−1

{
vαK{

(
u2
k−1(x, y, t)

)
xx
}
}

−K−1

{
vαK{

(
u2
k−1(x, y, t)

)
yy
}
}
−K−1

{
vα

96
K{u−1

k−1(x, y, t)}
}

+
tα

2Γ(α+ 1)
, k > 1.
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For k = 1, the 1-st truncated series solution is given by

u1(x, y, t) = f0(x, y) +
f1(x, y)tα

Γ(α+ 1)
=

1

4

√
2(x2 + y2) + y + 5 +

f1(x, y)tα

Γ(α+ 1)

and the 1-st residual function is

Res1(x, y, t) = u1(x, y, t)− 1

4

√
2(x2 + y2) + y + 5−K−1

{
vαK{

(
u2

0(x, y, t)
)
xx
}
}

−K−1

{
vαK{

(
u2

0(x, y, t)
)
yy
}
}
−K−1

{
vα

96
K{u−1

0 (x, y, t)}
}

+
tα

2Γ(α+ 1)

=
f1(x, y)tα

Γ(α+ 1)
− tα

Γ(α+ 1)24
√

2(x2 + y2) + y + 5
.

By utilizing the condition (3.6) for k = 1, t−αRes1(x, y, t)
∣∣
t=0

= 0 to get the coefficient

f1(x, y) =
1

24
√

2(x2 + y2) + y + 5
.

Hence, the 1-st order approximate solution is

u1(x, y, t) =

√
2(x2 + y2) + y + 5

4
+

tα

24
√

2(x2 + y2) + y + 5 Γ(α+ 1)
.

Consider k = 2. The 2-nd truncated series solution is found

u2(x, y, t) = f0(x, y) +
f1(x, y)tα

Γ(α+ 1)
+
f2(x, y)t2α

Γ(2α+ 1)

=

√
2(x2 + y2) + y + 5

4
+

tα

24
√

2(x2 + y2) + y + 5Γ(α+ 1)

+
f2(x, y)t2α

Γ(2α+ 1)
,

and the residual function is displayed

Res2(x, y, t) =
tα

24
√

2(x2 + y2) + y + 5 Γ(α+ 1)
+
f2(x, y)t2α

Γ(2α+ 1)

+
1

144

[ 1

(2(x2 + y2) + y + 5)2
− 8x2

(2(x2 + y2) + y + 5)3

]
· Γ(2α+ 1)t3α

Γ2(α+ 1)Γ(3α+ 1)

+
1

576

[ 4

(2(x2 + y2) + y + 5)2
− 2(4y + 1)2

(2(x2 + y2) + y + 5)3

]
· Γ(2α+ 1)t3α

Γ2(α+ 1)Γ(3α+ 1)

−K−1

{
vα

96f0
K
{

1− f1t
α

f0Γ(α+ 1)
+

(
f1t

α

f0Γ(α+ 1)

)2

− . . .
}}

=
f2(x, y)t2α

Γ(2α+ 1)
+

1

144

[ 1

(2(x2 + y2) + y + 5)2
− 8x2

(2(x2 + y2) + y + 5)3

]
× Γ(2α+ 1)t3α

Γ2(α+ 1)Γ(3α+ 1)
+

1

576

[ 4

(2(x2 + y2) + y + 5)2
− 2(4y + 1)2

(2(x2 + y2) + y + 5)3

]
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× Γ(2α+ 1)t3α

Γ2(α+ 1)Γ(3α+ 1)
+

1

96
· 2

3(2(x2 + y2) + y + 5)3/2
· t2α

Γ(2α+ 1)
+ . . .

By complying the condition (3.6) with k = 2, t−2αRes2(x, y, t)
∣∣
t=0

= 0, the coefficient f2(x, y) is
obtained

f2(x, y) = − 1

144(
√

2(x2 + y2) + y + 5)3
.

Therefore, the 2-nd order approximate series solution is

u2(x, y, t) =

√
2(x2 + y2) + y + 5

4
+

1

24
√

2(x2 + y2) + y + 5
· tα

Γ(α+ 1)

− 1

144(2(x2 + y2) + y + 5)3/2
· t2α

Γ(2α+ 1)

Figure 6. The table shows a comparison of the exact solution and an 2-order approxi-
mate solution obtained from KRPSM and ADM [21] when α = 1 for the example 3.3

4. Discussion and conclusion

The Kamal RPSM is an efficient technique for solving scientific models. In this study, we have
successfully applied the Kamal transform together with the RPSM to find the solution to the fractional
population diffusion equation in the Caputo sense. This method is superior to the classical version
because it relies on the simplicity and convenience of finding the coefficient of the solution series
through condition (3.6). The proposed method presented the solution to the nonlinear problem in the
form of a convergent series, most of which converges to the exact solution as shown in examples 3.1
and 3.2.
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